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Abstract: Following vegetation reclamation in mining areas, secondary damage may occur at any
time, especially in locations that have been mined for decades or even hundreds of years. Effective
monitoring strategies are required to accurately assess plant growth and to detect the ecological
effects of reclamation. Single satellite monitoring is often difficult to ensure vegetation monitoring
needs, therefore multi-source remote sensing is preferred. Different sensor parameters and variation
in spectral bands can lead to differences in the type of data obtained, and subsequently, methods for
evaluating these differences are required for simultaneous sensor/band use. In this study, NDVI
was selected to characterize the vegetation growth of the Antaibao Open-pit Coal Mine Dump by
analyzing the correlation between different types of sensors (Landsat 8, HJ, Sentinel-2) and vegetation
greenness in order to facilitate satellites’ replacement and supplement. Results show that: (1) Landsat
8 and Sentinel-2 satellite have a high relevance for monitoring the vegetation, but the correlation
between these two sensors and HJ is relatively low, (2) the correlation between NDVI values var-
ied by vegetation type, tree (R = 0.8698) > combined grass, shrub and tree (R = 0.7788) > grass
(R = 0.7619) > shrub (R = 0.7282), and (3) the phenomenon of “Low value is high, high value is low”
in the NDVI value with HJ satellite monitoring may have been caused by a weak signal strength and
low sensitivity of the HJ sensor. Comparing the correlation of multi-source sensors to monitor the
vegetation in the mining areas can be helpful to determine the alternative supplement of sensors
through conversion formulas, which are helpful in realizing the long-term monitoring of dumps and
detecting reclamation response in mining areas.

Keywords: multi-source sensors; NDVI; reclamation mining area; linear regression analysis

1. Introduction

Coal has played a vital role in meeting China’s energy production demands. Coal
has been critical for providing energy required for sustaining life and ensuring the pro-
duction of good and services. In 2019, China industrial enterprises produced 3.75 billion
tons of raw coal, an increase of 4.2% over the previous year [1]. While mineral resources
provide the energy required for economic development, these also result in unprecedented
severe environmental degradation, including air pollution, large-scale land disturbance,
and damage to ecosystem resilience and sustainability [2,3]. To compensate for the eco-
logical damage caused by mining activities, it is often accompanied by reclamation in the
long-term mining process [4]. One of the most important steps in reclamation is vegetation
restoration. By using effective monitoring techniques within mining areas, vegetation
conditions can be reclaimed by enhancing restoration planning and implementation [5,6].
Relying only on traditional ground sampling experiments to monitor vegetation condition
requires tremendous manpower and financial resources, which is not realistic. Compared
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with traditional methods, remote sensing monitoring can accomplish large-scale vegetation
monitoring and provide effective and timely vegetation information [6–13].

Although remote sensing monitoring is convenient, it is often difficult for single satel-
lite data to ensure the continuity of time and space. Therefore, exploring the association
between different satellites is conducive to supplementing the different types of satellite
data, thus realizing long-term and all-around monitoring needs. There are many studies
on the use of remote sensing technology to monitor vegetation growth to determine the
correlation between different sensors, both locally and globally. Based on the measured
reflectance data on the ground and the PROSALL model, Yang Fei et al. compared the
LAI and fresh biomass of Environmental satellite and Landsat satellite data, and analyzed
the influence of the main influencing factors between the two sensors [14]. Xu Guangzhi
identified grasslands as the source area of the Beijing–Tianjin sandstorm as the research
object. The author selected China satellite sensors, BJ-1 and HJ, and the American Landsat
satellite data as the data sources, combined with the simultaneous ground measurement of
grassland vegetation coverage, leaf area index and above-ground biomass data. The study
systematically compared the differences in the three sensors in estimating the physiolog-
ical parameters of grassland [15]. Based on multi-source remote sensing data, Kristin B.
Byrd conducted a long-term historical time series along the Pacific Coast along with the
plant community layer to analyze the impact of its changes on wetlands [16]. Due to the
high cloud cover in the tropics, this limits the acquisition of optical remote sensing data.
Amoakoh Alex O combined optical images with radar and elevation data and found that
the integrated Sentinel-2, Sentinel-1, and SRTM datasets have the highest overall accuracy
(94%) [17].

Judging from current research results, although there have been a large number of
studies on the interactive comparison of different satellites vegetation monitoring, there are
few comparative studies on monitoring the vegetation of dumps in mining areas. There are
many differences between the vegetation within mining areas and ordinary vegetation. Coal
mining can create large-scale ecological disturbances within mining areas, causing problems
such as ground subsidence and vegetation degradation, which makes the vegetation
ecosystem in the mining area highly unstable in the early stage of formation. Additionally,
in the process of forming dumps, open-pit coal mining occupies a large amount of land,
destroys the original landscape, affects the quality of local habitats, and poses a serious
threat to the ecosystem. Therefore, the restoration and reconstruction of dumps have
become the key factor in reclamation. It is very important to judge the restoration of
the ecological environment by monitoring vegetation restoration. At present, there are
more than 1500 open-pit mines in China, and large quantities of abandoned rocks and
soils have been produced during the mining process. It is difficult to realize long-term
monitoring of soil dumps through a single sensor, and multiple sensors are usually required
to complement each other. In summary, comparing the correlation of multi-source sensor
monitoring with vegetation in mining areas will help to accomplish long-term monitoring
of dumps and to implement the reconstruction of ecological structure [18].

In this paper, NDVI was calculated by multi-source remote sensing satellites (Landsat
8, HJ, Sentinel-2) in order to monitor the vegetation growth of the Antaibao Open-pit
Coal Mine in Shuozhou city, Shanxi Province. The regression of NDVI was then analyzed
to reflect the correlation between different sensors and vegetation cover. In this way,
the correlation coefficients and transformation equations of different sensors for monitoring
the reclaimed vegetation were estimated to facilitate the replacement and supplement
of different satellite sensor data in monitoring and reclamation assessment. This may
play a reference role for multi-source and dynamic monitoring of the vegetation change
within mining areas, which is beneficial for improving the accuracy and continuity of
vegetation monitoring.
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2. Materials and Methods
2.1. Study Area

The Antaibao Open-pit Coal Mine is located in Shuozhou city, Shanxi Province,
112◦10′58”~113◦30′ E, 39◦23′~39◦37′ N [19], in the east of the Loess Plateau. The cli-
mate is characterized as a continental monsoon climate. The landform type is a loess hill
with an elevation that ranges from approximately 1300 to 1400 m. Seasons are distinct,
characterized by lower rainfall and snow in the spring, concentrated precipitation in the
summer, less rain in the autumn, and lower snowfall in the winter. The annual average
temperature ranges between 5.4 and 13.8 ◦C, and average annual precipitation ranges
between 428 and 449 mm.

The vegetation cover types of the four dumps are distinct. The vegetation coverage
within the South Dump (SD) is dominated by tree species. The vegetation here has formed
as tall tree bodies in a long-term stable environment, with roots that have an independent
trunk and the trunk is distinct from the canopy. According to the actual site investigation,
the main tree species is black locust (Robinia pseudoacacia Linn.), and also contains a small
amount of sea buckthorn (Hippophae rhamnoides Linn.), caragana (Caragana Korshinskii Kom),
and poplar (Populus L.). The West Dump (WD) is dominated by shrubs and contains a high
density of sea buckthorn. Types of grasses include alfalfa (Medicago sativa L.) and erect
milkvetch (Astragalus adsurgens pall) within the West Expansion Dump (WED). The Inner
Dump (ID) is dominated by a mix of grasses, shrubs, and trees, covered by sea buckthorn,
narrow-leaved oleaster (Elaeagnus angustifolia Linn.), elm (Ulmus pumila L.) and caragana.
The differences between the four dumps are mainly reflected in the differences between
vegetation cover. At the same time, invasions of different species may exist within a small
scope. Based on this, the following four study areas were determined (Figure 1).
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Figure 1. Location of the study area (Shuozhou City, Shanxi Province, 112◦10′58”~113◦30′ E,
39◦23′~39◦37′ N).

Currently, Antaibao is one of the largest open-pit coal mines in China. Its mining
began in 1985, and during the process of mining, the boundary of the mining area has
been continuously adjusted. For more than 30 years, a relatively mature “integration of
mining, transportation, drainage and rehabilitation” was carried out [20]. In this study,
four dumps in the Antaibao were selected as the study objects, namely, the South Dump,
the West Dump, the West Expansion Dump, and the Inner Dump. Each dump has under-
gone a relatively long period of reclamation work, and currently forms a relatively stable
ecosystem. The relevant information of each dump is shown in Table 1 [21–24].
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Table 1. Basic information of the four dumps.

Dump Abandon Time Formation Time Reclamation Time Main Vegetation
Cover Types

South Dump 1985 1989 1990 tree
West Dump 1985 1993 1994–1996 shrub

West Expansion Dump 1993 2005 2006–2008 grass

Inner Dump 1989
The disposal work is
expected to continue

until 2059
1998–2001 Mix of grass, shrub,

and tree

Due to dump occupation during mining, many environmental problems, such as
terrain destruction, vegetation damage, and reduction in biodiversity, have continuously
taken place, causing the dump to become a key site in land reclamation and ecological
restoration [25]. In the Antaibao Open-pit Coal Mine, the integrated process of “mining-
transport-dumping-reclamation” from west to east was adopted. Due to variable regional
topography, dumps adopted different reclamation methods, leading to differences in the
ecological restoration speed. Although the South Dump was first abandoned, the sponta-
neous combustion of coal gangue within the dump not only burned the vegetation, but also
directly affected the soil moisture content, thus hindering the growth of surrounding vege-
tation. Later, the South Dump was reclaimed repeatedly, but the recovery speed was still
slow. The West Dump was reclaimed in 1994 and 1996, with increasing vegetation coverage
as the reclamation goal, but the recovery speed was also slow. In 2010, due to the industrial
adjustment, the area occupied by the interference increased to 7.12% [23]. In the early
formation of the West Expansion Dump, it was covered by natural forest, and later part
of it was developed as an open-pit mining dump. Due to the short period of reclamation,
there are still major disturbances and the ecosystem has not yet reached a stable state.
The Inner Dump was an open pit in the early stage, and it was discharged after the pit is
closed. Its recovery speed after reclamation was better than that of the other dumps.

2.2. Data Collection

In order to ensure the consistency of the vegetation spectrum information as much as
possible, and in reference to existing research, August was selected for collecting images due
to the excellent condition of the vegetation growth at this time [26]. Compared with other
remote sensing satellites (such as ZY satellite and GF satellite), Landsat 8, Sentinel-2, and HJ
satellites have earlier launch times and longer estimated service lives, and span a larger
monitoring time. These are more suitable for long-term mining monitoring. The Landsat
8 and Sentinel-2 data used in the study were downloaded from the U.S. Geological Survey
website (https://earthexplorer.usgs.gov/, accessed on 14 July 2021), and the HJ1A data
were downloaded from the China Resources Satellite Application Center website (http:
//www.cresda.com/CN/, accessed on 22 July 2021). The relevant information of the
obtained data is as follows (Table 2).

Table 2. Data list.

Sensor Spatial Resolution (m) Time Overall Cloud
Coverage

Cloud Coverage
within the Study Area

Landsat 8 OLI 15, 30 15 August 2019 0.10% 0%
Sentinel-2 MSI 10, 20, 60 14 August 2019 3.94% 0%

HJ1A CCD1 30 28 August 2019 0.00% 0%

The Spectral Response Function refers to the ratio of the received radiance to the
incident radiance at each wavelength of the sensor. Due to the limitation of sensor hardware,
the spectral response functions of different sensors are quite different, which has a very

https://earthexplorer.usgs.gov/
http://www.cresda.com/CN/
http://www.cresda.com/CN/
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direct impact on the reflectivity of vegetation [27]. In order to reflect the differences in
sensors more clearly, the sensor-specific spectral response function is shown in Figure 2.
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Landsat 8, and HJ respectively).

Landsat satellites are jointly managed by USGS and NASA, and have the longest
monitoring time. Since 1972, nine satellites have been launched, but Landsat 6 failed
to launch, Landsat 7 was lost in 2012, and Landsat 8 was launched in 2013, equipped
with OLI sensors. The 30 m visible light waveband, 15 m panchromatic waveband,
and 30 m shortwave infrared waveband of Landsat enabled realization of long-term ground
monitoring [28]. The Sentinel-2 optical satellite was launched in 2015, and managed by
ESA (European Space Agency, Paris, France). It carried a high-resolution and multi-spectral
image device to obtain 10 m visible light waveband, 20 m infrared waveband, 20 m red
edge waveband, and 20 m shortwave infrared waveband information. The satellite is
mainly used to monitor the growth of vegetation and land use cover. HJ (Environmental
Disaster Satellite) was launched in 2008, and specially developed by China for detecting
natural disasters. It is widely used in disaster monitoring and ecological assessment [29].

2.3. Method

In order to compare the correlation between sensor monitoring results under different
types of vegetation cover (Table 1), NDVI monitored by HJ, Sentinel-2, and Landsat 8 were
obtained separately. Based on the NDVI results, the correlations under different vegetation
cover were obtained by unary linear regression analysis.

2.3.1. Preprocessing

In order to reduce the influence of sensor parameters, the image data from three
satellites were preprocessed, including radiation calibration and atmospheric correction.
After decompressing the Landsat 8 data, ENVI5.3 software was used for radiometric
calibration to convert the DN value into a radiance value, and for FLAASH atmospheric
correction to eliminate the influence of atmospheric factors and convert surface reflectance
to land surface reflectance. Using Sen2Cor 02.09.00 software, Sentinel-2 data was subjected
to radiation calibration and atmospheric correction. Sen2Cor software is a tool plug-in
formatted for Sentinel-2 Level 2A products produced by ESA, which performs radiation
calibration and atmospheric correction on L1C data. After atmospheric correction, SNAP
software was used to convert the data format and resample images to 30 m spatial resolution
to ensure the spatial resolution was consistent with that of other data. The original HJ
data were subjected to radiometric calibration and band composition using patch tools,
and the data after radiometric calibration were subjected to format conversion, geometric
correction, and FLAASH atmospheric correction using ENVI5.3 software.
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2.3.2. NDVI

The rapid development of remote sensing technology has enabled many vegetation
indices to be obtained by formula calculations based on image band data, which has
promoted the wide application of various vegetation indices in vegetation evaluation and
monitoring [30]. The Normalized Difference Vegetation Index, reflecting characteristics of
plant growth, vegetation coverage, and biomass, is widely used as an indicator to monitor
vegetation growth. It has been used by many scholars both locally and globally for a
long time to study the vegetation condition [31]. In this study, NDVI was selected as an
indicator for vegetation monitoring to reflect the growth status of vegetation. Relevant
studies have shown that this index can eliminate the influence of other factors (terrain,
shadow, and atmosphere) to a certain extent.

As the most commonly used vegetation index, NDVI is defined as the ratio of the
difference of the near-infrared and infrared bands to the sum of the near-infrared and
infrared bands [32], and the threshold is [−1,1].

NDVI =
(NIR− R)
(NIR + R)

where NDVI is the normalized difference vegetation index, NIR is the near-infrared band,
and R is the visible red band. Generally speaking, when−1 < NDVI < 0, the land cover type
is cloud, water, snow, etc., which are without vegetation cover; when NDVI = 0, the ground
cover is rock or bare soil; when 0 < NDVI < 1, the land is usually covered by vegetation.
The larger the NDVI value, the better the vegetation condition. Based on the preprocessed
remote sensing image, NDVI is calculated by the above formula.

2.3.3. Unary Linear Regression Analysis

Currently, regression analysis is a widely used predictive analysis method that can
discover the association among variables through time series models, providing the correla-
tion coefficient and linear regression equation [33,34]. Regression analysis originated from
basic statistical concepts; based on the statistical results, related mathematical methods
are used to obtain the basic assumptions, statistical inferences, and regression diagnosis.
This is very useful for practical research, including dummy variables, interaction, auxiliary
regression, polynomial regression, spline function regression, and step function regression.

Origin software has an effective data analysis function and is often used for analysis of
statistical variables in scientific research and practical applications [35]. When calculating
NDVI in this study, it was found that, due to the influence of design parameters and solar
altitude angles of sensors, NDVI calculated by different sensors has certain differences.
Exploring the differences between NDVI results from monitoring using different sensors is
of great significance to the mutual substitution and supplementation of sensor data. In this
study, based on the results of NDVI, 1000 random pixel points were established within
dumps for regression analysis.

3. Results and Analysis
3.1. NDVI and Related Analysis in the South Dump

The South Dump was formed in 1985, and its reclamation started in 1990. It has
experienced the longest reclamation time among the four dumps, and the physical and
chemical attributes of the ecosystem are relatively stable. In the later reclamation work,
due to improper operation, the coal gangue spontaneously combusted to cause damage
to the reclaimed vegetation, which caused secondary damage to ecosystem. At present,
the main type of vegetation coverage in the South Dump is trees. Figure 3 shows the NDVI
results in the South Dump under the monitoring of three sensors.
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Figure 3. NDVI monitored by different satellite sensors in the South Dump ((a): NDVI caculated
from Sentinel-2(S2); (b): NDVI caculated from Landsat 8(L8); (c) NDVI caculated from HJ).

According to Figure 3, the overall trend of NDVI in the South Dump under the
monitoring of the three sensors is the same: showing a strip-like low value in the west,
alternating yellow and red in the figure; a high value in the middle, shown as a large area
in green in the figure; and a striped median value in the south, rendered as a red band in
the figure. Judging from the actual situation, the strip-shaped low value in the west is the
area of vegetation damage after reclamation due to the spontaneous combustion of coal
gangue. The spontaneous combustion of coal gangue has always been a major problem in
mining reclamation, and an effective solution is still being sought. From the perspective
of the image rendering effect, the spatial effect of Sentinel-2 data in Figure 3a is the best
because the original resolution of the Sentinel-2 data is the highest (10 m).

A total of 1000 random points were selected in the South Dump, and the correlation of
random points’ NDVI was analyzed under three types of sensors monitoring to obtain the
conversion equations and correlation coefficients between every pair of sensors.

According to Figure 4, the fitting graphics of 1000 random points in the South Dump,
itis observed that, in this area with trees as the main coverage type, Landsat 8 and Sentinel-2
have the best fitting effect and the highest correlation coefficient. From the NDVI value
of random points, the number of abnormal points between Landsat 8 and Sentinel-2 is
the least. Sentinel-2 and HJ sensors show a difference in NDVI results. When NDVI < 0.4,
the fitting effect of the two sensors obviously shows that the value under HJ monitoring
is higher than the value under Sentinel-2 monitoring. When NDVI > 0.5, the fitting effect
of the two gradually moves closer to the fitting curve, indicating that the two types of
sensors are more suitable for complementing each other in an area with high-density
vegetation cover. The correlation coefficient between Landsat 8 and HJ is 0.8779, there are
few abnormal points, and the fitting effect is ideal. The correlation coefficients and R2 of
Landsat 8, Sentinel-2, and HJ are summarized as follows (Table 3).

Taken together, the correlation coefficients between every pair of sensors in the South
Dump were all above 0.8; notably, the correlation coefficient of Landsat 8 and Sentinel-2
sensors was 0.9266. This has certain reference significance for vegetation monitoring in
areas covered by trees. However, the HJ and Sentinel-2 sensors are quite different, and were
in the range of 0.4 < NDVI < 0.5, indicating that the two are not suitable for replacing and
complementing each other in areas with medium-density vegetation coverage.
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3.2. NDVI and Related Analysis in the West Dump

The West Dump began to be abandoned in 1985 and basically took shape in 1993.
Its reclamation began in 1994 with increasing vegetation coverage as the main goal.
The ecosystem is now relatively stable. The current vegetation coverage type is mainly
shrub. Figure 5 shows the NDVI results in the West Dump under the monitoring of the
three sensors.
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According to Figure 5, from an overall point of view, the overall trend of NDVI under
three sensor monitoring is consistent, showing a strip-like low value in the west, a high-
value distribution trend in most of the central and eastern regions, and a small regional
low-value area in the northeast. Due to the high accuracy of the Sentinel-2 original image
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data, the linear distribution within the dump in Figure 5a can be observed more clearly.
It is estimated that the linear distribution is the transportation road within the West Dump.

A total of 1000 random points were selected in the West Dump, and the correlation of
the NDVI of the random points was analyzed under the monitoring of the three sensors to
obtain the conversion equations and correlation coefficients between every pair of sensors.

According to Figure 6, the fitting graphics of 1000 random points in the West Dump,
it is observed that in this area with shrubs as the main coverage type, NDVI values under
Landsat 8 and Sentinel-2 monitoring were mostly higher than 0.4, showing that the West
Dump had a high-density vegetation coverage. In addition, the coefficient of the equation
between Landsat 8 and Sentinel-2 was 0.6610, which is less than 1, indicating that the NDVI
under Sentinel-2 monitoring is generally larger than that of Landsat 8 monitoring. HJ and
Sentinel-2 sensors do not show an obvious fitting effect when NDVI < 0.4. However, when
NDVI increases above 0.4, the fitting effect gradually moves closer to the fitting curve.
The fitting effect of Landsat 8 and HJ is also improved when NDVI > 0.5, but there are some
outliers. The correlation coefficients and R2 of Landsat 8, Sentinel-2 and HJ are summarized
in Table 4.

Land 2022, 11, x FOR PEER REVIEW 9 of 16 
 

Figure 5. NDVI monitored by different satellite sensors in the West Dump (HJ, S2, and L8 are acro-
nyms for HJ, Sentinel-2, and Landsat 8 satellites, respectively. (a): NDVI caculated from Sentinel-2); 
(b): NDVI caculated from Landsat 8; (c) NDVI caculated from HJ). 

According to Figure 5, from an overall point of view, the overall trend of NDVI under 
three sensor monitoring is consistent, showing a strip-like low value in the west, a high-
value distribution trend in most of the central and eastern regions, and a small regional 
low-value area in the northeast. Due to the high accuracy of the Sentinel-2 original image 
data, the linear distribution within the dump in Figure 5a can be observed more clearly. 
It is estimated that the linear distribution is the transportation road within the West 
Dump. 

A total of 1000 random points were selected in the West Dump, and the correlation 
of the NDVI of the random points was analyzed under the monitoring of the three sensors 
to obtain the conversion equations and correlation coefficients between every pair of sen-
sors. 

According to Figure 6, the fitting graphics of 1000 random points in the West Dump, 
it is observed that in this area with shrubs as the main coverage type, NDVI values under 
Landsat 8 and Sentinel-2 monitoring were mostly higher than 0.4, showing that the West 
Dump had a high-density vegetation coverage. In addition, the coefficient of the equation 
between Landsat 8 and Sentinel-2 was 0.6610, which is less than 1, indicating that the 
NDVI under Sentinel-2 monitoring is generally larger than that of Landsat 8 monitoring. 
HJ and Sentinel-2 sensors do not show an obvious fitting effect when NDVI < 0.4. How-
ever, when NDVI increases above 0.4, the fitting effect gradually moves closer to the fit-
ting curve. The fitting effect of Landsat 8 and HJ is also improved when NDVI > 0.5, but 
there are some outliers. The correlation coefficients and R2 of Landsat 8, Sentinel-2 and HJ 
are summarized in Table 4. 

  

Figure 6. Correlation analysis of NDVI value based on random points (The figures include the con-
version equation and correlation coefficient between every pair of sensors for NDVI. (a) shows the 
fitting result of NDVI between Landsat 8 and Sentinel-2; (b) shows the fitting result of NDVI be-
tween Sentinel-2 and HJ; (c) shows the fitting result of NDVI between HJ and Sentinel-2). 

Table 4. The NDVI fitting results of the West Dump under multi-source sensor monitoring. 

Satellite Sensor R2 Correlation Coefficient 
Landsat 8 and Sentinel-2 0.7220 0.8499 

Sentinel-2 and HJ  0.3788 0.6160 
HJ and Landsat 8 0.5158 0.7186 

Taken together, the correlation coefficients of NDVI under the monitoring of the 
three sensors in the area covered by shrubs shows a large difference: the correlation coef-
ficient between Landsat 8 and Sentinel-2 sensors was also the highest, as in the case of the 
South Dump, and the fitting effect was still the best. Relatively speaking, the correlation 

Figure 6. Correlation analysis of NDVI value based on random points (The figures include the
conversion equation and correlation coefficient between every pair of sensors for NDVI. (a) shows
the fitting result of NDVI between Landsat 8 and Sentinel-2; (b) shows the fitting result of NDVI
between Sentinel-2 and HJ; (c) shows the fitting result of NDVI between HJ and Sentinel-8).

Table 4. The NDVI fitting results of the West Dump under multi-source sensor monitoring.

Satellite Sensor R2 Correlation Coefficient

Landsat 8 and Sentinel-2 0.7220 0.8499
Sentinel-2 and HJ 0.3788 0.6160
HJ and Landsat 8 0.5158 0.7186

Taken together, the correlation coefficients of NDVI under the monitoring of the
three sensors in the area covered by shrubs shows a large difference: the correlation
coefficient between Landsat 8 and Sentinel-2 sensors was also the highest, as in the case of
the South Dump, and the fitting effect was still the best. Relatively speaking, the correlation
coefficient between HJ and Sentinel-2 sensors was lowest in West Dump. Although the
correlation coefficient between Landsat 8 and HJ sensor was at a medium level, there were
still some abnormal points.

3.3. NDVI and Related Analysis in the West Expansion Dump

The West Expansion Dump began to be abandoned in 1985 and basically took shape
in 1993. The ecological environment is now relatively stable, and the current vegetation
cover type is mainly grass. Figure 7 shows the NDVI results in the West Expansion Dump
under the monitoring of the three sensors.
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caculated from Sentinel-2(S2); (b): NDVI caculated from Landsat 8(L8); (c): NDVI caculated from HJ).

According to Figure 7, the overall trend of NDVI under three sensor monitoring is
similar, but the NDVI results under HJ monitoring are not ideal for clearly distinguishing
the high and low values. Sentinel-2, having the highest original resolution, has the highest
sensitivity to NDVI and the best rendering effect among the three sensors. The monitoring
results of Sentinel-2 can enable the high and low values of NDVI to be distinguished more
clearly. Additionally, the distribution of roads within the dump can be clearly observed
under Sentinel-2 monitoring.

A total of 1000 random points were selected in the West Expansion Dump, and the
correlation of NDVI of the random points was analyzed under the monitoring of the
three sensors to obtain the conversion equations and correlation coefficients between every
pair of sensors.

According to Figure 8, the fitting graphics of 1000 random points in the West Expansion
Dump, in this area with grass as the main coverage type, NDVI under Landsat 8 and
Sentinel-2 monitoring was closely arranged near the fitting curve, which reflects that the
two sensors have a high correlation when monitoring grass. The monitoring results of the
HJ and Sentinel-2 sensors clearly show that NDVI under Sentinel-2 monitoring is higher
than that of HJ monitoring because the conversion equation coefficient is more than 1.
The correlation coefficient between the two is only 0.6495, and the linear fitting cannot fit
most points very well. The fitting curve of Landsat 8 and HJ also shows that NDVI values
under HJ monitoring are generally lower. The correlation coefficients and R2 of Landsat 8,
Sentinel-2, and HJ are summarized Table 5.
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Table 5. The NDVI fitting results of the West Expansion Dump under multi-source sensor monitoring.

Satellite Sensor R2 Correlation Coefficient

Landsat 8 and Sentinel-2 0.7836 0.8853
Sentinel-2 and HJ 0.4213 0.6495
HJ and Landsat 8 0.5631 0.7507

Taken together, the correlation coefficients when multi-sensor monitoring is applied to
grass in the West Expansion Dump are close to the results when multi-sensor monitoring is
applied to shrubs in the West Dump; that is, correlation coefficients between Landsat 8 and
Sentinel-2 > correlation coefficients between Landsat 8 and HJ > correlation coefficients
between HJ and Sentinel-2.

3.4. NDVI and Related Analysis in the Inner Dump

The Inner Dump began to be discarded in 1989, and it is expected that the discarding
work will continue until 2059. It is in a state of reclamation while being currently abandoned.
The vegetation cover type is mainly a mix of grass, shrubs, and trees. Figure 9 shows the
NDVI results in the Inner Dump under the monitoring of the three sensors.
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According to Figure 9, the overall trend of NDVI results under the monitoring of the
three sensors is consistent in most areas. However, the results under HJ monitoring have
obvious abnormal values in the northeast region. This t should be an area with high NDVI
values, but it has a low value distribution. After inspection, it was found that the original
image pixels were missing. From the perspective of NDVI distribution, Sentinel-2 data
and Landsat 8 data are very similar, they have a better effect on distinguishing high values
and low values, and the vegetation distribution inside the dump can be clearly observed.
Furthermore, it should be pointed out that the detail of Sentinel-2 is the clearest of the
three sensors.

A total of 1000 random points were selected in the Inner Dump, and the correlation of
random points’ NDVI was analyzed under the monitoring of the three sensors to obtain
the conversion equations and correlation coefficients between every pair of sensors.
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According to Figure 10, the fitting graphics of 1000 random points in the Inner Dump,
it is observed that, in this area where the main vegetation coverage type is a mix of grass,
shrubs, and trees, there are generally more irregularly distributed points when performing
correlation analysis between any pair of sensors. However, a large number of discrete
points does not have a large effect on the correlation coefficient. The correlation coefficient
between Landsat 8 and Sentinel-2 is close to 0.9, the correlation coefficient between Landsat
8 and HJ is higher than 0.8, and the correlation coefficient between Sentinel-2 and HJ exceeds
0.6. The correlation coefficients and R2 of Landsat 8, Sentinel-2, and HJ are summarized in
Table 6.

Table 6. The NDVI fitting results of the Inner Dump under multi-source sensor monitoring.

Satellite Sensor R2 Correlation Coefficient

Landsat 8 and Sentinel-2 0.7670 0.8759
Sentinel-2 and HJ 0.6526 0.6526
HJ and Landsat 8 0.7519 0.8080

On the whole, the fitting results of NDVI under three sensor monitoring were more
controversial in the Inner Dump. Although there were many abnormal points, the correla-
tion coefficient was not the lowest, indicating that the overall fitting effect was relatively
good. Objectively speaking, the reclamation time of the Inner Dump occurred later than
that of the West Dump, but the fitting effect is better than that of the West Dump, indicating
that fitting effect and reclamation time have no direct connection.

3.5. Comprehensive Analysis of Multi-Source Satellite Monitoring Results

According to the random point information, statistical characteristic values, including
the maximum, minimum, and average values of NDVI monitored by multi-source satellites
within each dump, were derived.

According to Table 7, under the same vegetation type coverage, the monitoring re-
sults under different sensors were different; under different types of vegetation coverage,
the correlations of sensor monitoring results were also different.

From the average value of the correlation coefficients, the correlation of satellite
monitoring results is affected by the vegetation cover type, showing that correlation from
strong to weak was: tree > mix of grass, shrub, and tree > grass > shrub.

From the point of view of reclamation time, the South Dump began to be abandoned
first, and the long-term restoration has formed a relatively stable ecosystem. The reclama-
tion time of the Inner Dump is similar to that of the West Dump, but the correlation coeffi-
cients of the satellite monitoring results are higher than those of the West Dump. The West
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Dump has been restored to a certain extent after reclamation, but has not yet reached a
stable state due to disturbance caused by man-made or other factors. Although the recovery
time after reclamation within the West Expansion Dump is the shortest, the correlation
coefficients of the satellite monitoring results are not the lowest, and are close to the results
of the Inner Dump.

Table 7. NDVI statistical characteristic values based on different vegetation cover types.

Dump
Main

Vegetation
Cover Type

Sensor Min Max Mean Mean Value of
Correlation Coefficient

South Dump tree
LNDVI 0.0790 0.8278 0.6280

0.8698SNDVI 0.0840 0.8961 0.6607
HNDVI 0.1603 0.6641 0.4892

West Dump shrub
LNDVI 0.1978 0.8563 0.6645

0.7282SNDVI 0.1633 0.8848 0.6945
HNDVI 0.2121 0.6634 0.5234

West
Expansion Dump

grass
LNDVI 0.1255 0.8709 0.5754

0.7619SNDVI 0.0953 0.9139 0.5988
HNDVI 0.2127 0.6948 0.4632

Inner Dump Mixed coverage
LNDVI −0.4715 0.8836 0.5619

0.7788SNDVI −0.4075 0.9309 0.5865
HNDVI −0.0795 0.7221 0.4632

From the mean of NDVI, the monitoring values of Landsat 8 and Sentinel-2 sensors are
similar for every vegetation cover type, while the values under HJ monitoring are relatively
lower. Additionally, from the point of view of NDVI value, NDVI monitored by the HJ is
generally in the middle range. That is, compared with Landsat 8 and Sentinel-2 satellites
sensors, NDVI values under HJ monitoring show a phenomenon in which the low values
are higher and the high values are lower.

4. Discussion
4.1. Analysis of the Influence of Satellite Surface Reflectance

Differences in atmospheric conditions, observation angles, and surface morphology
during imaging by different satellite sensors are likely to cause systematic errors in ap-
parent reflectance, thus further affecting the results of NDVI in the later calculations [36].
In Figure 2, through the spectral curves of the three satellite sensors, it can be seen that
the spectral curve characteristics of Sentinel-2 and Landsat 8 have high consistency in
the blue and red bands. Compared with Landsat 8, the Sentinel-2 satellite sensor has a
wider wavelength in the near-infrared band and a narrower wavelength in the green band.
However, the spectral curve characteristics of the HJ satellite sensors are very different,
showing that the wavelengths of the visible light band and the near-infrared band are
relatively wide. The spectral response function of HJ causes the phenomenon of “Low value
is high and high value is low” in vegetation monitoring, which indicates that the HJ sensor
is weaker than other satellite sensors in acquiring vegetation information. Differences in
spectral response functions result in differences in the reflection signals of objects received
by the sensor in the red and near-infrared bands.

4.2. Analysis for Influence of Spatial Resolution

The original spatial resolution of Sentinel-2 is 10 m, and the original spatial resolution
of Landsat 8 and HJ is 30 m. Although resampling was undertaken, the results in Figure 3
indicate that different data have different abilities to distinguish the details of ground
objects. The higher the spatial resolution of the image, the easier it is to capture the spectral
information of small objects.
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4.3. Analysis for Influence of Transit Time

Although the satellite image data were obtained within the same month, changes
in atmospheric conditions also have a certain impact on the cross-comparison results.
The solar zenith angle will change with the satellite transit time, which will also affect the
inversion results of apparent reflectance [37].

5. Conclusions

Through the interactive comparison of Landsat 8, Sentinel-2, and HJ sensors, it was
found that the correlations of different sensors in monitoring vegetation make a significant
difference to the results. The conclusions are as follows:

(1) Landsat 8 and Sentinel-2 data have a high correlation for monitoring vegetation,
but the correlation between the above two sensors and the HJ sensor is relatively low,
and the difference between Sentinel-2 and HJ is more obvious. The mean correlation
coefficient between Landsat 8 and Sentinel-2 is 0.8845, the mean correlation coefficient
between Sentinel-2 and HJ is 0.6808, and the mean correlation coefficient between HJ and
Landsat 8 is 0.7888.

(2) The results of correlation analysis show that the correlation of sensor monitoring
results changes with the change in vegetation coverage. From strong to weak, it is ordered
as: tree in the South Dump (R = 0.8698) > combined grass, shrub, and tree in the Inner
Dump (R = 0.7788) > grass in the West Expansion Dump (R = 0.7619) > shrub in the West
Dump (R = 0.7282).

(3) The phenomenon of “Low value is high and high value is low” in the NDVI value
under HJ monitoring may be caused by the weaker signal strength of the HJ sensor in the
visible light band.

It should be pointed out that the conversion equations of multi-source remote sensing
data obtained in this study are only applicable to the specific vegetation cover type in
the Loess Plateau, and the atmospheric conditions are good. In addition, there are some
problems, such as loss of pixel information and pixel distortion of the original environmen-
tal satellite data, which affect the correlation analysis. Additionally, it should be pointed
out that NDVI has some limitations. Although NDVI can reflect vegetation growth well,
the monitoring accuracy is directly affected by the development of remote sensing technol-
ogy. In addition, cloudy and foggy weather in some areas has an impact on the quality of
remote sensing images, which directly leads to large fluctuations in NDVI data, resulting
in errors in vegetation identification. Furthermore, related research shows that NDVI has
lower sensitivity in areas with high vegetation density [38].
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