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Abstract: Production–Living–Ecological Space (PLES) is a useful tool to identify land use status
patterns and optimize land resource allocation. In this study, the spatial econometric model was
chosen to analyze the driving factors of land use change in Chaoyang District, part of the rural–urban
fringe in Beijing, from the perspective of PLES evolution, from 2005 to 2020. The results showed the
following: (1) Production Space (PS) to Living-Non-Farm Production Space (LNPS) has been the
most significant conversion process of PLES since 2005, making LNPS the PLES type with the highest
proportion in the study area. (2) With the spatial order from near-to-far from the city center, the scale
of PS was reduced and concentrated, Ecological Space (ES) was formed in a green belt at the periphery
of Beijing, Eco-Agricultural Production Space (EAPS) and Living-Agricultural Production Space were
rapidly reduced, and LNPS was rapidly expanded in the point-line-plane order. (3) The PS to LNPS
conversion was mainly driven by economic development and industrial structure upgrades, while
the PS to ES conversion was mainly due to the distribution of population density and also industrial
structures. The conversion of EAPS to LNPS was driven by the increase of the urbanization rate and
economic growth. This study confirmed the policy-driven effect of the conversion from PS to ES. Due
to the “Concentric Circle” spatial structure of Beijing, the conversion of PLES is generally related to
the distance from the city center.

Keywords: rural–urban fringe; production–living–ecological space; driving factors; spatial econo-
metric model; Beijing

1. Introduction

In the 1990s, China adjusted its urban development strategy and promoted “urbaniza-
tion”, which accelerated the expansion of built-up areas. However, dramatic changes in
land use and serious ecological and environmental problems also appeared [1]. Meanwhile,
the rural–urban fringe not only provided land for urban construction, but also became the
temporary residence of a floating population from rural areas there to make a living in
cities [2]. Urban planning has focused on the prediction and constraint of the urban scale
and structures in China, but its implementation effect has been limited at the rural–urban
fringe, since the speed and direction of urban expansion are difficult to control under the
conditions of rapid urbanization [3]. In addition, land use in the rural–urban fringe is
also affected by the urban–rural dual system, with Chinese characteristics [4]. As urban
built-up areas continue to spread outwards, the pressure on cultivated land protection is
increasing, and the rural–urban fringe has become a “land contested area” between the
urban and rural, resulting in disordered changes in land use, environmental pollution, and
unbalanced rural–urban development [5].

Since the 1950s, Beijing has planned to disperse urban functions and limit the disor-
derly sprawl of the central city by building a “Greenbelt”. For decades, policies have failed
to fully achieve these goals [6], and agricultural production and ecological functions in
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Beijing’s rural–urban fringe are gradually disappearing [3]. In 2014, Beijing began to carry
out policies to relieve Beijing of functions nonessential to its role as the capital. Industrial
production activities with low value in the rural–urban fringe were required to close down
or move to areas farther away from the city [7]. In 2016, the latest master plan of Beijing
made it clear that the city would strictly control its city size, optimize the spatial structure,
and improve the regional ecological environment [8]. In order to reconstruct the pattern
of the urban ecological landscape and promote sustainable rural transformation in the
rural–urban fringe, Beijing began to implement a Spatial Planning System.

“Production–Living–Ecological Space (PLES)” is a new tool for implementing Spatial
Planning. In specific operations, areas need to be divided into three types of space: “Pro-
duction Space (PS), Living Space (LS), and Ecological Space (ES)” [9]. From the perspective
of land use, a certain land use type usually has one or more of the functions of production,
living, and ecological [10]. PS is dominated by “Production Functions”, including the pro-
vision of industrial, agricultural, and service products, requiring cultivated land, industrial
land, and commercial land. LS is dominated by “Living Functions”, where human beings
carry out daily activities to meet the needs of living, consumption, and entertainment,
requiring residential land, public service land, and square land. ES is a space dominated
by “Ecological Functions”, mainly to provide ecological products and services, such as
woodland, grassland, and water. Based on the perspective of PLES, identifying the current
spatial pattern of the rural–urban fringe and analyzing its evolution and driving mecha-
nisms can provide a scientific basis for the optimal allocation of land resources, as well as
improve the government’s planning and management ability for environmental protection
and land use in the rural–urban fringe [11].

2. Literature Review
2.1. Land Use in the Rural–Urban Fringe

The “rural–urban fringe” is a region between the urban built-up area and agricultural
area, with both urban and rural characteristics. How was the rural–urban fringe formed?
One view was that the rural–urban fringe is a natural expansion of the city, since the growth
rate of construction land is higher than the population [12]. The other view held that
the rural–urban fringe is the result of unplanned urban expansion, and its development
direction cannot be predicted [13]. However, due to the particularity of the geographical
location, the rural–urban fringe has always been regarded as an important reserve space for
urban development, which also has an important impact on the evolution of the urban form.
Therefore, land use changes in the rural–urban fringe have received increasing attention by
researchers [14].

The characteristics and forming mechanisms of the rural–urban fringe have been
different in China and the West. Under the background of suburbanization, the rural–urban
fringe of some cities in Europe and North America had low construction density, large per
capita land occupancy, single land use functions, and higher forest coverage, and were
usually used for the layout of urban functional facilities or high-end residential areas [15].
Agricultural land and the ecological landscape were separated by urban built-up areas to
some extent [16]. However, studies in China found that the rural–urban fringe has tended to
gather a large amount of industries affiliated with the city, and a floating population. Land
use was characterized by “mixed use functions, fast change of types, high construction
density, and difficult administration” [17]. In this context, land use change caused a variety
of ecological and environmental effects [18], including the heat island effect, urban flood
disasters, and soil pollution [19], and thus changed the ecosystem service function and
landscape ecological pattern in the rural–urban fringe.

This was related to the urbanization stage, urban planning, and land property rights
systems in China and the West. Western developed countries were the first to complete in-
dustrialization and urbanization. Furthermore, the improvement of the urban road system
made long-distance commuting possible [20]. In addition, the decline of the central city and
people’s yearning for a rural lifestyle jointly promoted the emergence of suburbanization,
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in order that the rural–urban fringe was rapidly developed. Eventually, residential land
was separated from other land types, and large-scale residential areas appeared in the rural–
urban fringe [21]. At the end of the 20th century, China’s rural–urban fringe had expanded
under the background of rapid urbanization. Household registers and land management
are the basis of the urban–rural dual system in China. Under the premise of maintaining
the stability of the system, the rural–urban fringe played an important role in promoting
the development of the urban economy [22]. Specifically, the rural collective land in the
rural–urban fringe became the main source of urban construction at a low transaction price,
and the floating population living there provided abundant labor resources for the city [2].
Therefore, to better understand the evolution of urban development and the spatial pattern
in China, it is necessary to further analyze land use changes and their driving factors in the
rural–urban fringe.

2.2. Driving Factors of Land Use Change

Few studies had focused on the driving forces of land use change in the rural–urban
fringe, and researchers paid increased attention on urban or rural areas [23]. Land use
change in the rural–urban fringe was closely related to urban growth/expansion. Therefore,
relevant researches had an important reference value for this paper. Land use is a dynamic
complex system driven by natural and humanistic factors [24]. Under different spatial
scales and different calculation methods, the analysis results of driving factors of land
use changes will be different to some extent [25]. Natural factors, such as climate, slope,
and soil type, have significant effects on land use changes at large scales and in long time
series [26], especially in natural geographical areas, such as river basins, mountains, and
coastal zones [27]. At a smaller spatial scale or with a shorter research time, relatively stable
natural factors are the main constraints, especially for land use in the rural–urban fringe,
while humanistic factors with more frequent changes were the main driving force [28].
Population, economic development, the industrial structure, and other factors were shown
to have important impacts on land use changes [29].

In case studies, population and income level changes were the main driving forces
of land use changes [30]. For example, in regions dominated by agriculture, population
growth drove the increase of cultivated land and construction land [31], while in highly
urbanized regions, population growth or urbanization drove the decrease of cultivated
land [32]. Economic growth had a significant positive driving force for the expansion of
construction land, while its impact on the change of ecological land, such as water area and
forest land, was more complex [33]. The increase of the proportion of secondary industries
usually drove the expansion of construction land, and was a negative driving force for
the growth of cultivated land, grassland, and forest land [34]. In terms of sustainable
development capacity, the growth of fixed asset investment or per capita income was a
significant driving force for the expansion of construction land [28,34]. Other studies found
that policy factors related to land management and proximity to traffic arteries could also
significantly affect the changes of land use [35].

The spatial heterogeneity of land parcel and the regional characteristics made land
use change inevitably appear as a spatial correlation, especially at a small spatial scale [36].
For the analysis of driving factors of land use changes, common methods include multiple
linear regression, cellular automata, and principal component analysis [37]. However,
regression analysis based on classical statistics did not consider the spatial correlation of
land use change, which led to the underestimation of parameters [38]. Geographically
and Temporally Weighted Regression (GTWR) and Geographically Weighted Regression
(GWR) adopt panel data for econometric analysis. GTWR could compensate for the non-
stationary problem caused by the limitation of the sample size in GWR, and it was suitable
for analyzing the impact of spatial interactions between multiple cities on land changes at
a large spatial scale [39]. In addition, although the operation process of GTWR and GWR is
simple, the results of regression analysis are not intuitive, which is similar to the problems
of Probit Regression and Binary Logit Regression [40]. When the explained variable or the
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random error term has a significant spatial correlation, it is more appropriate to introduce
the spatial econometric model to analyze the driving factors of land use change.

2.3. PLES and Land Use

In China, PLES provided a new perspective for the study of land use. Due to the
fact that one of the manifestations of land use change was its leading function change, the
production, living, and ecological are functions of land use change. With the concept and
method of PLES, researchers could identify the spatial characteristics and laws of land
use more clearly, in order to provide a scientific basis for the optimal allocation of land
resources. The research focused on PLES includes “spatial identification and pattern evolu-
tion analysis [9], spatial classification and livability/coordination/function evaluation [41],
and spatial optimization and planning applications [42]”. Furthermore, the research scales
have covered different levels of administrative units or physical geographical zones. For
example, participatory mapping, semi-structured interviews, and spatial analysis tech-
nologies had been used to identify the spatial pattern of rural PLES and provided a policy
basis for the optimization of rural space [9]. In addition, the evaluation index of PLES
function system was constructed to measure the coordination level of regional development
and identify land use conflicts, which was of great significance for exploring the path of
sustainable development in underdeveloped areas [42]. These research results have been
applied to environmental protection, rural development, land management, and urban
planning. However, there was still not enough attention to the rural–urban fringe.

In addition to the traditional PLES, some land types have multiple Production–Living–
Ecological Functions (PLEF), introducing difficulties into the research around PLES [43].
As a result, the concept of “compound functional space” was introduced, and space types,
such as “production-ecological space, semi-production space, and weak ecological space”
were derived, forming a variety of classification standards for PLES [22]. There are two
main methods to identify and divide PLES, namely, the land use type combination and
index system method. The land use type combination has been widely used, which is based
on different PLEFs exerted by land, and it directly merges the land use type to realize the
classification of PLES. It can also be used to calculate the PLEF of each grid according to
the scoring result of each land use type [44]. The index system method uses multi-source
data (such as social and economic statistics data, remote sensing data, and soil data, etc.) to
construct an index system according to the definition of PLES, quantitatively calculate the
PLEF of administrative units or grid units, and then identify PLES [45]. Comparing the
two methods, the land use type combination method is more suitable for mesoscale and
micro-scale analysis due to its simple operation and unified classification standard [41].
Therefore, this paper will refer to the concept of “compound functional space”, and use the
method of land use type combination to identify PLES.

To summarize, with the rapid change of land use and the high degree of functional
mixing in the rural–urban fringe, this was an important supplement in order to analyze the
evolution of PLES in the rural–urban fringe under the background of increasing recognition
of “compound functional space” [46]. Analyzing driving factors is the basis for under-
standing the relationship between human activities and the evolution of PLES [47]. The
spatial pattern evolution of PLES identified by land use type combinations is essentially
the change of land use, and it is related to regional natural environment and economic and
social conditions [48]. However, there have been few relevant research papers.

Therefore, this paper will take Chaoyang District of Beijing as an example to analyze
land use changes and driving factors in the rural–urban fringe from the perspective of PLES
(Figure 1). First, we used the land use type combination to identify PLES in the rural–urban
fringe from 2005 to 2020. Second, we used the ArcGIS spatial analysis tools to analyze
the evolution characteristics of PLES. Finally, we used the Spatial Econometric Model to
analyze the driving factors of PLES.
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3. Study Areas and Data
3.1. Study Areas

As the capital of China, Beijing is also one of the largest cities in China. Its urban area
consists of Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai, and Shijingshan Districts
(Figure 2). In 2020, the total population of Beijing’s urban area exceed 10 million, and the
area is 1381 km2. Beijing is a typical “Concentric Circle” spatial layout with several traffic
circuits [17], and the structure of its rural–urban fringe is relatively clear. In the process of
the development of the central city, the importance of the rural–urban fringe is increasing.
Analyzing the spatial pattern evolution is of great significance for optimizing the urban
spatial structure of the city, and promoting the economical use of land in the rural–urban
fringe [3].
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Figure 2. Location of the study area in Beijing.

The study area of this paper included 169 villages, with a length of about 28 km from
north to south and a width of about 15 km from east to west. In 2020, the total population
was about 1.7 million, of which 950,000 could be considered a floating population. The
study area was located in the east of central city, surrounding about half of the central city of
Beijing, forming a relatively complete rural–urban fringe in space. In China’s urban–rural
dual administrative system, the study area is classified as rural, which was significant to
ensure the integrity of the research data. Since 2005, under the influence of the economic
development of the central city and the expansion of built-up areas, the industrial structure,
population composition, and land use have changed greatly, and the PLES of the study
area has also changed.

3.2. Data Sources

The data used in this paper mainly included land use and socioeconomic data. The
land use source data came from the Chinese Academy of Sciences Resource and Envi-
ronmental Science Data Center (http://www.resdc.cn, accessed on 1 July 2021), with a
spatial resolution of 30 m, which was based on Landsat TM images of the United States. In
addition, it was generated by an artificial visual interpretation. On this basis, the source

http://www.resdc.cn
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data were calibrated using the survey data of land change in Chaoyang District over the
years, to improve its accuracy. The time span was from 2005 to 2020. Socioeconomic
data sources included: “Chaoyang District Statistical Yearbook (2005–2020)”, “Chaoyang
District National Economic and Social Development Statistical Bulletin (2005–2020)”, and
“Chaoyang Rural Economic Data (2005–2021)”.

4. Methodology
4.1. PLES Classification

In this paper, the land use type combination was chosen to depict the PLES. First,
combined with the characteristics of both agricultural and non-agricultural production
in the rural–urban fringe, the traditional PLEF was divided into four functions: “Living,
ecological, agricultural production, and non-agricultural production” [22]. Second, one
land type usually had a variety of PLEFs, especially in China’s rural–urban fringe, where
land use had a more evident mixed feature in the PLEF. Therefore, this paper drew on
the concept of “compound functional space”, referring to various researchers regarding
the classification system of Chinese PLES [41,43,44]. According to the PLEF of different
land types, the PLES in the study area could be divided into “PS, ES, Eco-Agricultural
Production Space (EAPS), Living-Agricultural Production Space (LAPS), and Living-Non-
Farm Production Space (LNPS)” (Table 1).

Table 1. PLEF and PLES classification of different land use types.

Land Use Types/PLEF Living Ecological Agricultural
Production

Non-Agricultural
Production PLES

Cultivated land
√ √

EAPS
Garden land

√ √
EAPS

Forest land
√

ES
Grassland

√
ES

Commercial land
√ √

LNPS
Industrial/Warehouse land

√
PS

Urban residential land
√ √

LNPS
Rural residential land

√ √
LAPS

Public management land
√ √

LNPS
Transportation land

√ √
PS

River/Lake
√

ES
Reservoir/Pond

√ √
EAPS

Tidal wetland
√

ES

For example, the basic function of cultivated land and garden land is agricultural
production, but they also have certain ecological service functions. Therefore, agricultural
land, such as cultivated land and garden land, was classified as EAPS. The basic function of
commercial land is non-farm production, and it also has a certain living function. Therefore,
it was classified as LNPS. Urban and rural residential land is mainly used for living function,
with certain production functions at the same time. In China, urban residential land can
be used for commercial rental, and rural residential land can also be used for agricultural
production activity in the rural–urban fringe. Therefore, they were respectively classified as
LNPS/LAPS. Transportation land is used for the construction of high-grade roads, railways,
and supporting facilities, which mainly bears the function of non-agricultural production
and agricultural production in the rural–urban fringe. Therefore, transportation land was
classified as PS. The PLES classification of other land use types followed similar rules.

4.2. Space Patterns Transfer Matrix

The transfer matrix is often used to quantitatively analyze the direction and speed of
land use change. The essence of the transfer matrix is to analyze the dynamic characteristics
and trends of land use changes using the transition probability and stable state equation of
Markov Chain. The demarcation of PLES is based on land use type. Therefore, the transfer



Land 2022, 11, 314 7 of 18

matrix can also be used to analyze the quantitative characteristics of PLES evolution. The
formula is as follows:

P =

 P11 · · · P1n
. . . Pij . . .
Pn1 . . . Pnn

 (1)

In the formula, i = 1, 2, . . . n; j = 1, 2, . . . n; n is the number of PLES. Pij is the percentage
of the total area converted from space type i to j in a certain period. Pii is the percentage
of total area of space type i that remains unchanged. Pi+ can be further calculated, which
is the percentage of space type i in the total area in the base period. P+j represents the
percentage of space type j in the total area in the final period. Pi+ − Pii represents the
percentage of space type i transferred out in the study period. P+j − Pjj is the percentage of
the area transformed into space type j in the study period.

By analogy with the land use dynamic index, the space type dynamic index can be
used to analyze the change speed and range of a certain PLES in the study period. The
formula is as follows:

K =
Ub −Ua

Ua
× 1

T
× 100% (2)

where K is the space type dynamic index, Ua and Ub are the area of a certain PLES in the
base period and final period, respectively, and T is the duration of the study period.

4.3. Centroid and Standard Deviational Ellipse

The Centroid and Standard Deviational Ellipse are both classical spatial analysis tools,
which can be used to describe the spatial characteristics of geographical elements, such as
centrality, aggregation, and orientation. PLES is a patchy geographical element, and thus
the Centroid and Standard Deviational Ellipse can describe the spatial pattern evolution of
PLES in a more detailed way.

The Mean Center tool of ArcGIS can be used to calculate the centroid coordinates of
different types of PLES at different times.

X =
n

∑
i=1

xi
n

, Y =
n

∑
i=1

yi
n

(3)

In the formula, xi and yi are the spatial coordinates of factor i, X and Y are the average
center of factor i, and n is the total number of patches.

The Standard Deviational Ellipse can describe the distribution direction and movement
trend of PLES, and it includes the center of the circle, azimuth, major axis, and minor axis.
The center of the ellipse is calculated using the arithmetic mean center:

SDEx =

√
∑n

i=1
(
xi − X

)2

n
, SDEy =

√
∑n

i=1
(
yi −Y

)2

n
(4)

Then, we can determine the direction of the ellipse by taking the X axis as the criterion,
due north as 0 degrees, clockwise rotation, and azimuth calculation formula:

θ = actan

[(
∑n

i=1 x2
i −∑n

i=1 y2
i

)
+

√(
∑n

i=1 x2
i −∑n

i=1 y2
i

)2
+ 4(∑n

i=1 xiyi)
2
]

/2 ∑n
i=1 xiyi (5)

In the formula, xi and yi are the difference between the mean center and the xy
coordinates.

Finally, we calculated the standard deviation of the XY axes as follows:

σx =
√

2

√
∑n

i=1(xicosθ − yisinθ)2

n
, σy =

√
2

√
∑n

i=1(xisinθ − yicosθ)2

n
(6)
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4.4. Spatial Econometric Model

Spatial econometric models are mainly divided into the Spatial Lag Model (SLM) and
Spatial Error Model (SEM).

SLM is used to analyze the influence of dependent variables of adjacent regions on the
dependent variables of this region, namely, the spatial spillover effect. The mathematical
expression is:

Y = ρWY + Xβ + ε (7)

In the formula, Y is the dependent variable, X is the independent variable matrix, and
β reflects the influence of independent variable X on the dependent variable Y. WY is the
spatial lag dependent variable matrix, and ρ is the spatial regression coefficient, reflecting
the spatially dependent effect of sample observations. ε is a random error term vector
and follows a normal distribution. W is the spatial weight matrix based on geographical
proximity, similar to what is shown below.

SEM is used to analyze the impact of the error term, which is the influence of the
spatial correlation of unobservable factors in the adjacent region on the dependent variable
in this region. The mathematical expression is:

Y = Xβ + ε, ε = λWε + µ (8)

where ε is the random error term vector, and λ is a spatial error coefficient, which measures
the spatial dependence of sample observations. µ is a random error term vector, which
obeys a normal distribution.

Performing the Lagrange Multiplier (LM) test on the estimation results of Ordinary
Least Square Linear Regression (OLS), then, comparing Lagrange Multiplier (lag) and
Lagrange Multiplier (error) of regression results, allowed us to select the appropriate model.
If the former is statistically more significant than the latter, SLM will be selected. On the
contrary, SEM is selected. If neither of them is significant, OLS is used.

Spatial autocorrelation analysis can be used for auxiliary analysis based on spatial data
modeling. The Moran index can judge whether there is a significant correlation between the
spatial internal elements. The value is within (−1, 1), with a value greater than 0 indicating
a positive correlation, a value less than 0 indicating a negative correlation, and a value
equal to 0 indicating no correlation.

4.5. Variable Selection

The rural–urban fringe supports diverse production and living activities of human
beings, in which human factors evidently have an important impact on the evolution of
PLES. In addition to the driving factors of land use changes confirmed in previous studies,
this paper also focused on the effects of policy factors and distance factors. Since 2014,
the main focus of urban planning for “Relocation of Non-Capital Functions” in Beijing
has been adjusting the use of inefficient construction land and constructing urban parks
to increase the greening rate. In this context, Chaoyang District, in accordance with the
requirements of the Beijing Municipal government, issued a policy to select 12 townships
(including 107 villages) as pilots to implement urbanization and greening construction
(Pilot Township of Greenbelt). This policy may affect the evolution of PLES in the study
area. As a part of the urban spatial structure, land use in the rural–urban fringe has been
closely related to the urban development. Therefore, the evolution of PLES may also be
related to the distance from the urban center.

Above all, in view of the actual situation and data availability of the study area,
nine independent variables, including the urbanization rate of registered population and
GDP, were selected from the dimensions of population, economic, industrial, and policies
(Table 2). To avoid overly large differences in the magnitude of regression coefficients of
independent variables, this study took logarithms of variables, such as “GDP, collective
economic income, per capita fixed asset investment, and per capita labor income of farmers”.
“Proportion of secondary industry” was the region’s industrial and manufacturing output
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as a share of GDP. “Distance from urban center” was the straight-line distance from the
geometric center of the township to the urban center (Tian’anmen Square). The dependent
variable was the space type with a large conversion area from 2005 to 2020, and the sample
size was 169.

Table 2. Variable selection of the model.

Variable Type Variable Variable Description Max Min Mean Standard
Deviation

dependent
variable

space-v1 PS→LNPS 115.53 8.94 43.67 30.45
space-v2 EAPS→ES 50.9 8.28 21.75 11.52
space-v3 EAPS→LNPS 28.56 0.14 8.58 6.84
space-v4 PS→ES 19.25 0.19 4.8 4.92

independent
variables

urban-rate Urbanization rate→(%) 45.74 0.46 17.19 13.78
pop-density Population density (per square km) 30.22 −21.81 1.73 12.33
GDP GDP (10,000 yuan) 19.64 17.01 18.28 0.78
income-CE Collective economic income (10,000 yuan) 14.11 10.95 12.42 0.96
share-SI Proportion of secondary industry (%) 23 −56 −5.32 17.36
per-FI Per capita fixed asset investment (yuan) 684.11 −76.28 103.74 210.75
per-PI Per capita labor income of farmers (yuan) 10.15 6.88 9.61 0.68
greenbelt Pilot Township of Greenbelt (0/1) 1 0 0.63 0.48
distance Distance from urban center (km) 20.37 8.54 13.99 3.6

To determine the specific spatial econometric model, SPSS was first used to select
independent variables. The selection of independent variables was based on Stepwise
Regression. Entry and Removal in the stepwise probability were 0.05 and 0.10, respectively,
indicating that when the p-value of the score test of the regression coefficient was less than
0.05, this variable would be included in the regression equation, and when the p-value was
greater than 0.10, this variable would be excluded. According to the analysis results of
SPSS, the number of independent variables of the four models was 7, 6, 6, 6, respectively. In
the VIF test, the VIF values of all the variables were less than 5, and the average VIF value
was 2.372. Therefore, errors caused by multicollinearity could be excluded.

Then, the Lagrange Multiplier (LM) test was performed on the OLS model estimation
results (Table 3). Moran’s I (error) of dependent variables was significantly positive,
indicating that in OLS regression models, their random error terms had different degrees
of spatial positive correlation. Therefore, it was necessary to use the spatial econometric
model to analyze driving factors. Comparing the p-value of LM lag and LM error, SLM
should be used for the dependent variables space-v1 and space-v2. Accordingly, SEM should
be adopted for dependent variables space-v3 and space-v4. For testing the fitting effect of
the spatial econometric model, in addition to the Coefficient of Determination R2 test, the
Log Likelihood (log-L), Akaike Information Criterion (AIC), and Schwartz Criterion (SC)
are used, among other indicators. The judgment criterion is that the larger the log-L, the
smaller the AIC and SC, and the better the model fitting effect [49].

Table 3. Test results of Lagrange Multiplier.

Dependent
Variable

Moran’s I (Error) LM Spatial Lag LM Spatial Error Robust LM Spatial Lag Robust LM Spatial Error

Value p-Value Value p-Value Value p-Value Value p-Value Value p-Value

space-v1 5.274 0.001 8.923 0.001 2.973 0.084 12.583 0.001 3.686 0.057
space-v2 2.781 0.010 5.063 0.012 1.259 0.286 9.862 0.001 5.631 0.022
space-v3 2.092 0.029 1.072 0.875 5.637 0.016 1.958 0.203 6.462 0.009
space-v4 −2.893 0.008 1.694 0.238 4.296 0.037 0.759 0.481 4.694 0.034
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5. Results
5.1. How Has the PLES Evolved?
5.1.1. Type Conversion of PLES

According to the transfer matrix and space type dynamic index of PLES (Table 4),
from 2005 to 2010, the conversion scale of PLES was the largest. The area of PS which
turned into LNPS reached 2409.73 hm2, accounting for 18.24% of the turn-out space. PS
was supplemented by ES, EAPS, and LAPS at the same time, and its area increased slightly.
From the perspective of the space type dynamic index, the change of LNPS was the most
evident, with an average annual growth rate of 31.9%. EAPS mainly turned into PS and ES,
while LAPS mainly turned into PS and LNPS, with an annual decrease of 4.88% and 7.81%,
respectively. From 2010 to 2015, the conversion scale of PLES was the smallest. The area of
PS which turned into LNPS reached 1303.57 hm2, accounting for 20.27% of the turn-out
space. However, as it was supplemented by ES and EAPS, the area of PS decreased only
slightly, with an annual decrease of 0.32%. LNPS continued to expand, but the annual
growth rate dropped to 8.42%. EAPS and LAPS continued to shrink. From 2015 to 2020, the
conversion of PS to LNPS was still the main direction observed, with a conversion area of
2152.45 hm2, accounting for 36.38% of the turn-out space. In addition, the PS area began to
shrink, with an annual decrease of 4.31%. ES was mainly supplemented by PS and EAPS,
with an average annual growth rate of 4.25%.

Table 4. PLES transfer matrix from 2005 to 2020.

Periods PLES Types Inflow (hm2) Dynamic Index
PS ES EAPS LNPS LAPS

Outflow
(hm2)

2005–2010

PS 8289.58 744.35 429.50 2409.73 208.31 0.53
ES 1086.18 3236.83 536.44 314.21 40.93 0.66

EAPS 1593.14 902.38 4902.34 477.05 38.26 −4.88
LNPS 424.53 166.82 62.26 1736.50 56.94 31.9
LAPS 1009.31 337.35 51.20 1413.09 3506.70 −7.81

2010–2015

PS 10,584.10 406.01 77.22 1303.57 22.99 −0.32
ES 286.06 4585.68 61.31 433.20 0.00 2.33

EAPS 565.60 727.23 4159.23 437.54 2.18 −5.36
LNPS 126.29 81.47 2.12 6332.06 6.31 8.42
LAPS 632.92 191.13 13.93 798.96 2136.87 −8.51

2015–2020

PS 9006.12 869.18 64.58 2152.45 19.30 −4.31
ES 127.70 5553.46 45.42 281.77 10.72 4.25

EAPS 98.16 527.97 3303.50 360.83 0.00 −4.01
LNPS 59.99 168.78 2.69 9194.97 13.15 6.6
LAPS 208.40 178.06 13.71 563.11 1150.03 −8.71

In general, from 2005 to 2020, the areas of EAPS and LAPS have been shrinking, and
the space type dynamic index values were –3.69 and –5.27, respectively. On the contrary,
LNPS continued to receive large-scale turn-in from other types of PLES, with an average
annual growth rate of 27.04%. By 2020, it had become the largest space type in the study
area, accounting for 35.52%. PS first increased and then decreased, while ES first decreased
and then increased, especially during the period from 2015 to 2020, when PS decreased
significantly and ES continued to expand. In the whole study period, the space type
dynamic index values of the two were –1.42 and 2.59, respectively.

In analyzing the details of the conversion of PLES, the main conversion direction
of PLES was found to be from PS to LNPS in the periods of 2005–2010, 2010–2015, and
2015–2020, and its proportion in the total conversion area gradually increased from 18.24%
to 36.38%. A comprehensive analysis pattern evolution of PLES found that the urban-
ization mode of the study area was different from the traditional “Agricultural/Rural
residential land→Urban construction land” path, showing instead the “Agricultural/Rural
residential land→Industrial land→Urban construction land” three-phase path. The typical
characteristic that industrialization drives urbanization development was confirmed.
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In addition, from 2010 to 2015, the minor direction of conversion was from EAPS to
ES, accounting for 12.42% of the conversion area. From 2015 to 2020, the minor direction
was from PS to ES, accounting for 14.69% of the conversion area. The scale of ES gradually
expanded, indicating that the ecological environment protection in the study area has
been paid increasing attention. This may also be related to the fact that Beijing began to
implement the “Relocation of Non-Capital Functions” in 2014, which significantly reduced
the proportion of industrial production, and improved the ecological environment quality
in the downtown and rural–urban fringe areas [10].

5.1.2. Spatial Characteristics of PLES

By describing the centroid and standard deviation ellipses, the evolution path and
expansion direction of PLES could be clearly displayed (Figure 3). They have the following
characteristics:
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(1) PS presented a trend of location offshoring, spatial aggregation, and scale reduction.
In 2005, PS in the study area was relatively intensively distributed. Since then, with
the expansion of LNPS, PS has moved outward to the fringe of the city, shrinking in
scale. By 2020, PS was mainly concentrated in the south-central and eastern townships.
From 2005 to 2010, the centroid of PS was mainly concentrated in the middle of the
study area, and the long axis of the standard deviation ellipse was north–south. From
2010 to 2015, the centroid of PS gradually moved to the northeast, and the ellipse
moved along with it. The ratio of long and short axis increased, indicating that PS
was showing a trend of expanding to the fringe of the city. From 2015 to 2020, the
centroid moved to the southwest direction, and the long axis of the ellipse shifted
to the northeast–southwest direction, since PS in the northern area was significantly
reduced.

(2) The scale of ES decreased first and then increased, and gradually formed an ecological
spatial ring in the eastern region. There were two stages of ES conversion. From
2005 to 2010, ES showed a shrinking trend, especially in the central and southern
areas. Thereafter, ES in the south recovered slightly, while in the north, it continued to
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increase. The scattered ES gradually connected dots into lines, with a slight increase
in scale. By 2020, ES was mainly distributed in the central, northern, and eastern
fringe of the study area, forming a green ecological landscape belt. The trend of
ES expansion to the northeast was evident. From 2005 to 2020, the centroid of ES
moved to the northeast, the long axis of the standard deviation ellipse presented
a northwest-southeast direction, and the ratio of the long and short axis gradually
increased.

(3) EAPS was rapidly reduced in the spatial order from near-to-far from the city center.
In 2005, EAPS was mainly distributed in the north, northeast, and southeast. With the
expansion of LNPS and offshoring of PS, EAPS was shrinking from inside to outside
and from west to east, especially in the period of 2005–2015, when its scale reduced
evidently. By 2020, only a few areas in the north, east, and southeast remained as
a small-scale EAPS. From 2005 to 2020, the centroid of EAPS was concentrated in
the middle and north, and the long axis of the standard deviation ellipse was in the
northwest-southeast direction. Specifically, from 2005 to 2010, the centroid and ellipse
moved to the southeast, and the ratio of the long and short axis decreased. Thereafter,
the centroid and ellipse moved to the east, indicating that the reduction of EAPS in
the study area had a trend of extending from west to east to the outskirts of the city.

(4) LAPS shrank from a patchy distribution to almost disappearing. In 2005, LAPS in
the study area was scattered in patches, and the scale was relatively large, exceeding
the ES. With the expansion of LNPS, LAPS, carrying the rural life function, shrunk.
By 2020, only a small amount of LAPS remained in the southern region, indicating
that there was still some rural residential areas that had not yet been urbanized.
From 2005 to 2020, the expansion direction of LAPS followed an evident law, in
which the centroid continued to move southward, the long axis of standard deviation
ellipse gradually changed from south–north to northeast–southwest, and the ellipse
continued to shrink. In 2005, the distribution of LAPS was relatively uniform, and the
centroid was located in the middle of the study area. Since then, the scale of LAPS has
been shrinking, and the speed of shrinking in the north has been significantly faster
than in the south. By 2020, LAPS in the north had basically disappeared.

(5) LNPS expanded rapidly in the spatial order of the point-line-plane, and from near-
to-far from the city center. In 2005, LNPS in the study area was concentrated in the
central and northern areas near the urban center, with a spotty distribution. From
2005 to 2010, LNPS was extended and expanded in two directions: East and northeast,
leading to the sub-center of Beijing (Tongzhou District) and the Capital Airport,
respectively. Since then, LNPS has gradually expanded from inside to outside, and by
2020, it had become the largest space type in the study area. From 2005 to 2020, the
centroid of LNPS moved to the northeast first, then to the southeast, and finally to the
south. The long axis of the standard deviation ellipse mainly showed a northwest-
southeast direction, and the ellipse continued to expand. Specifically, from 2005
to 2010, LNPS expanded to the northeast, and the ratio of the long and short axis
increased. Thereafter, LNPS continued to expand eastward, with a more balanced
spatial distribution on the whole.

5.2. What Drives the Conversion?
5.2.1. PS Conversion

Based on the spatial econometric analysis results (Table 5), from 2005 to 2020, PS→LNPS
(space-v1) was the main conversion direction, accounting for 24.98% of the total conversion
area. Its positive driving factors included the “urbanization rate, GDP, collective economic
income, and per capita fixed asset investment”. “Proportion of secondary industry and
distance from urban center” had a significant negative driving force on space conversion,
indicating that the lower the proportion of the secondary industry output value or the closer
the distance to the city center, the easier it was for PS to turn into LNPS. The conversion
of “PS→ES” (space-v4) was 1316.20 hm2, accounting for 7.05% of the total conversion area.
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The positive driving factors were “Pilot Township of greenbelt and distance from urban
center”, and “population density, collective economic income, and proportion of secondary
industry” were significant negative driving forces.

Table 5. Analysis results of driving factors of PLES pattern evolution.

Dependent Variable Space-v1 Space-v2 Space-v3 Space-v4

Model SLM SLM SEM SEM

CONSTANT −22.325 ** −37.912 ** −19.273 * −47.872 **
urban-rat 8.298 *** 3.531 ***

pop-density 1.681 * 3.572 * −2.585 **
GDP 7.921 *** 8.586 ** 11.688 ***

income-CE 4.859 ** 3.924 *** 1.269 ** −5.672 ***
share-SI −1.472 ** −1.073 * −1.218 **
per-FI 2.384 **
per-PI 6.839 ** 2.236 ** 0.941 *

greenbelt 4.855 ** 4.574 **
distance −5.467 *** 8.546 *** −7.073 *** 8.962 **Space

coefficient

λ 0.982 *** 0.807 ***
ρ 0.816 *** 0.736 ***

R2 0.902 0.856 0.793 0.725
Log-L −58.745 −49.626 −47.748 −43.595
AIC 178.279 156.662 136.727 118.229
SC 183.687 177.574 129.471 130.552

Notes: * Statistically significant at the 0.1 level; ** statistically significant at the 0.05 level; *** statistically significant
at the 0.01 level.

The conversion of PS to LNPS is an important symbol of urbanization driven by indus-
trialization, which needs to be driven by economic growth and industrial transformation
and upgrading [50]. In previous studies, the urbanization rate, GDP, and per capita fixed
asset investment had significant positive driving effects on the reduction of agricultural
land or expansion of construction land [51]. This study further confirmed that the above
factors further drove PS to LNPS. Beijing has a typical “Concentric Circle” spatial structure.
The study area is located in the east of the city center, which was mainly used for the
development of agriculture and light industry around 2005. Since then, as the city center
has spread outward, Beijing has continuously reduced the proportion of industrial produc-
tion in the city’s economy, eliminated inefficient and highly polluting industrial projects,
developed tertiary industries, and increased economic growth and the urbanization rate.
These factors drove the conversion of PS in the rural–urban fringe to LNPS.

The conversion of PS to ES is an important symbol of deindustrialization. The farther
away from the city center, the greater the driving force for space conversion. The driving
effect of “distance from urban center” on the conversion of PS to LNPS and ES was opposite
to this. Since 2014, the Beijing Municipal government has systematically engaged in
“Relocation of Non-Capital Functions”, eliminated backward industries in the rural–urban
fringe, and dispersed the unskilled floating population living there. The lower the income of
the collective economy, the more favorable it was for PS to turn into ES. This was due to the
fact that in the process of “Relocation of Non-Capital Functions”, rural collective industries
with small enterprises and low economic benefits would be preferentially eliminated, then
the industrial land was used for greening. In this context, the policy of “Pilot Township of
Greenbelt” was aimed at promoting complete urbanization in the rural–urban fringe, and
at the same time promoting the regional economic development and expanding the scale
of green land. The analysis results also confirmed that this policy significantly drove the
conversion of PS to ES.

5.2.2. EAPS Conversion

EAPS was mainly converted to ES and LNPS, with conversion areas of 1988.84 and
1739.52 hm2, respectively. For EAPS→ES (space-v2), the positive driving factors included
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“GDP, collective economic income, per capita labor income of farmers, Pilot Township
of greenbelt, and distance from urban center”. For EAPS→LNPS (space-v3), the positive
driving factors included the “urbanization rate, GDP, income-CE, and per capita labor
income of farmers”, and “distance from urban center” had a significant negative driving
force on space conversion.

The essence of EAPS→ES is the conversion of agricultural land to ecological land,
such as grassland and forest land, which is an important embodiment of regional ecolog-
ical construction and is conducive to the protection and improvement of the ecological
environment [52]. This kind of space conversion was related to the regional economic
strength, especially for the rural–urban fringe, where there was a mixed urban economy
and rural economy. The higher the collective economic income and farmers’ income, the
more conducive driving this space conversion was, thus promoting the expansion of ES.
The policy of “Pilot Township of greenbelt” showed a significant driving force as well,
which was similar to the policy effect of the conversion of PS to ES. The closer it was to the
city center, the more favorable it was for this space conversion to occur, which was in line
with the spatial characteristics of Beijing city expanding from inside to outside.

EAPS→LNPS is the conversion of agricultural land, such as cultivated land and
garden land, to urban residential land, which is an important embodiment of urbanization.
In previous studies, the urbanization rate, GDP, and other factors had significant positive
driving effects on construction land expansion [53], and this was further confirmed in this
study. Collective economic income and per capita labor income of farmers had a positive
driving effect on this space conversion, since in the rural–urban fringe, most of the farmers
hope to improve their living environment through urbanization. In addition, villages with
high collective economic income are better able to achieve farmers’ goals. The farther
away from the central city, the more conducive conditions were to space conversion. From
the perspective of land cost, expansion of ES in the rural–urban fringe usually required
the government to expropriate agricultural land for greening. Within a certain range, the
farther away from the central city, the lower the cost of land, and the more beneficial it was
to increase ES.

6. Conclusions

The introduction of the PLES research perspective, exploring the law of land use
changes in the rural–urban fringe, and analyzing the driving factors of the evolution of
PLES, has been helpful in using spatial planning to optimize the allocation of land resources,
strengthen urban border controls, clear regional development pathways, and improve
spatial governance in the rural–urban fringe. This paper took the Chaoyang District of
Beijing as an example, and the research period was 2005–2020. Based on the identification
and characterization of PLES evolution, this paper optimized the spatial econometric model
to analyze the driving factors of space conversion. The main conclusions are:

1. Stage characteristics of PLES conversion: From 2005 to 2010, the conversion scale of
PLES was the largest. From 2005 to 2020, PS→LNPS was the primary direction of
PLES conversion. LNPS continued to receive a large inflow and gradually increased as
the largest PLES type in the study area. EAPS and LAPS were in a state of net outflow,
and their area was shrinking. Since 2010, the scale of ES had gradually expanded,
mainly to obtain EAPS and PS inflow.

2. On the evolution of PLES: From 2005 to 2020, PS showed a trend of location offshoring,
spatial aggregation, and scale reduction. The scale of ES decreased first and then
increased, forming a green ecological landscape belt on the periphery of Beijing. EAPS
was rapidly reduced in the spatial order from near-to-far from the city center. LAPS
shrank from a patchy distribution until it almost disappeared. LNPS expanded rapidly
in the spatial order of the point-line-plane, and from near-to-far from the city center.

3. Driving factors of PLES evolution: From 2005 to 2020, the conversion of PS→LNPS
was an important symbol of industrialization-driven urbanization, which needed to
be jointly driven by economic growth and industrial transformation and upgrading.
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The conversion of PS→ES was an important symbol of deindustrialization. Affected
by population density and the industrial structure, the driving effect of distance on
the conversion of PS to LNPS and ES was the opposite. The conversion of EAPS→ES
was an important reflection of regional ecological construction, which was conducive
to the protection of the ecological environment. Driven by rural economic strength,
the driving effect of the “Pilot Township of greenbelt” policy was significant, which
was similar to the policy effect of the conversion of PS→ES. EAPS→LNPS was an
important indicator of urbanization construction. Driven by the urbanization rate
and economic strength, distance had a significant negative driving force on these two
types of space conversions.

7. Discussion

Land use is closely related to regional development. PLES, based on the PLEF of the
land use type, can reflect regional development characteristics to a certain extent. Accord-
ing to the analysis results of the evolution of PLES, from 2005 to 2020, EAPS and LAPS in
Beijing’s rural–urban fringe decreased, while LNPS expanded significantly, representing
the process of rapid urbanization. In addition, the urbanization pathway of this region
showed the evolution process of “LAPS/EAPS→PS→LNPS”, which has the characteristic
of industrialization driving urbanization development. This is similar to some developing
countries, since under the development strategy of high economic growth and environmen-
tal protection, it is necessary to sacrifice rural land in the rural–urban fringe [54], such as
Vietnam and the Philippines [55]. However, in developed countries, due to strict planning
restrictions, land use in the rural–urban fringe changes slowly and is difficult to be used for
industrial construction [56].

In previous studies, factors such as economic growth and industrial transformation
and upgrading had a significant driving effect on the reduction of agricultural land or
expansion of construction land. This paper confirmed that relevant factors will further
drive the conversion of PS to LNPS, and realize industrialization to drive urbanization.
We found that the collective economy had a significant impact on land use change in the
rural–urban fringe, and a similar phenomenon exists in Israel and Vietnam [55,57], since
their rural mode of production has a certain collectivity. “Pilot Township of greenbelt” is
an important policy for Beijing to adjust its urban development strategy and restore the
ecological landscape in the rural–urban fringe. This study confirmed that, in the PLES
evolution process, this policy has a significant driving effect on the conversion of PS/EAPS
to ES. In London and other European cities, greenbelt also has a significant impact on land
use change in the rural–urban fringe [58]. Beijing has a typical “Concentric Circle” spatial
structure, and “distance from urban center” has an important impact on the evolution of
PLES in the rural–urban fringe. Studies have proven that the closer the distance to the city
center, the more conducive the conversion of other PLESs to LNPS, and the further the
distance from the city center, the more conducive the conversion of other PLESs to ES. Most
of the cities in China are marginal expansion patterns, and land use in the rural–urban
fringe is affected by the central city to varying degrees [59]. The “Concentric Circle” spatial
structure of Beijing may make this driving effect more significant.

There are also some limitations in this paper. The scientific definition of PLEF and the
standard of PLES division need to be discussed more fully, and the regularity summary of
the spatial pattern evolution needs to be strengthened. The central city has an important
influence on the land use in the rural–urban fringe. Considering the spatial structure of
Beijing, this paper only set the distance variable and verified the distance effect, and there
may be other more complex driving mechanisms. In addition, due to space limitations, this
paper analyzed the driving factors of four main types of space conversions. However, the
driving factors of other types of space conversions need to be further studied.
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Abbreviations
The following table shows the abbreviations used in this article.

PLES Production–Living–Ecological Space
PS Production Space
LS Living Space
ES Ecological Space
GTWR Geographically and Temporally Weighted Regression
SLM Spatial Lag Model
LM Lagrange Multiplier
AIC Akaike Information Criterion
PLEF Production–Living–Ecological Function
LAPS Living-Agricultural Production Space
LNPS Living-Non-Farm Production Space
EAPS Eco-Agricultural Production Space
GWR Geographically Weighted Regression
SEM Spatial Error Model
Log-L Log Likelihood
SC Schwartz Criterion
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