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Abstract: Understanding land use change patterns of rural town settlements (RTSs) is crucial for
rural and small-town planning; however, few studies have explored pattern mining approaches to
RTS trajectory analysis. In this study, we adopted a novel method by building sequence alignment
method (SAM) to detect representative trajectory clusters of land use change of 1158 RTSs in seven
waves from 1980 to 2015 in Guangdong, China. The results suggest that there are 10 clusters of RTSs
with varying trajectories of land use change, implying their differences in the development processes
and underlying socioeconomic, demographical, and institutional factors. A spatial distribution map
of RTSs shows that stable cultivated ecological and stable ecologically dominant RTSs are distributed
in the northern, eastern, and western parts of Guangdong, whereas stable rural construction and
stable mixed construction RTSs are mostly located around the provincial boundary. Notably, 73% of
the RTSs that have undergone changes in land use types are located in the Pearl River Delta (PRD),
including urbanized and agricultural upgraded RTSs. The analysis presented here summarizes the
driving forces of the spatial evolution of RTSs, including the location, landforms, industries, and
policy factors. This study provides dynamic policy implications to understand longitudinal and
sequential spatial restructuring and regional coordinated development in the fast-growing PRD area.

Keywords: rural town settlements (RTSs); land use; spatial evolution; sequence alignment method (SAM)

1. Introduction

Land use change is an important clue that indicates the development pattern of
a region [1] and has long been the analytical focus in the fields of geography, natural
resource, and urban and rural planning. Understanding a region’s development pattern
is critical in tracing the pathway of spatial restructuring that results from socioeconomic
transformation. This helps planners and decision-makers diagnose the growth or decline
issues of specific regions, designate optimal development paths, and formulate plans for
sustainable regional development [2]. Although an increasing number of empirical studies
have tracked urban neighborhood-level land use changes in urban areas [3–5], only a few
of them have investigated the trajectories of land use changes in rural town settlements
(RTSs), particularly in China. In general, the term “rural town settlement” refers to the
broad concept of township settlements in rural areas, excluding those in urban areas.
Currently, China is at a transitional stage of promoting urban–rural integration under the
context of rapid urbanization, with the urbanization rates sharply growing from 19.39%
in 1980 to 63.89% in 2020 [6]. Hence, developing or revitalizing RTSs has become one of
the most important national development agendas. Therefore, more studies are needed to
investigate the land use change patterns of RTSs.

In general, major challenge of such studies is the lack of longitudinal data in finer-grain
space–time resolutions and methods for pattern mining among land use trajectories [7].
Most of the current studies on land use changes focus on the macro scale, including
research at the global [8–10], national [11–14], regional [15–19], and city scales [20–23]. At
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the global scale, most studies focus on the change of cultivated land and forest, as well as
the environmental consequence of land use change [8–10]. Recent studies have also shown
that land use change exhibits regional features, including deforestation and agricultural
expansion in tropics and reforestation or afforestation in temperate regions [10]. Meanwhile,
some national studies have investigated land use changes across the country over several
decades. In these studies, the authors summarized land use changes by region and found
that built-up lands expand rapidly [11,14,24]. In contrast, some studies have compared
land use changes among variant cities. For example, Kleemann et al. [25] compared the
patterns of urban land use in Takoradi and Bolgatanga, Ghana, between 2007 and 2013 and
found different patterns of urban development with small-scale scattered settlement units
in Bolgatanga and large-scale settlement units in Takoradi.

It should be noted, however, that only a limited number of studies have focused on
specific land use changes at smaller scales than the rural/city level, particularly those in
rural or small-town areas [26]. Most of these studies relied only on case studies by using
one or several specific villages as cases to recover their land use history and underlying
driving forces. For example, Liu et al. [27] surveyed the rural land use changes of several
villages from 1967 to 2008 in Yuncheng, Shandong, and found that many arable lands
were converted into rural settlements, facilities lands and unusual lands. Moreover, taking
the village of Fengzhuang as an example, Yin et al. [26] used remote sensing images and
participatory rural evaluation methods to analyze the process of rural land use change
since the 1990s. They found that many villagers transformed non-construction land into
industrial land to produce furniture and that the area of construction land increased
approximately five times. While previous studies have tracked the development trajectory
or pattern of land use changes in specific cases of Chinese villages, a few of them have
quantitatively compared the trajectories of a set of RTSs and categorized the patterns of
their land use changes.

Most land use change analyses depend on cross-sectional data across multiple
years [11,14,16]. For example, most of the current approaches adopt remote sensing im-
age data and GIS-based spatial analysis technologies, combined with land use dynamic
degrees [28,29], transfer matrix [30,31] and landscape metrics [15,21,32], to analyze spatial
variations and structural changes in land use distribution. These approaches can reveal
the quantitative characteristics of regional land use change or describe the morphological
differentiation characteristics of land use. In general, applying multi-year cross-sectional
data to land use dynamic degrees allows researchers to estimate the quantitative scale of
land use change and characterize the structure of land use change over a time period. In ad-
dition, the land use transfer matrix can reveal the size of transfer between different land use
types and reflect the transfer trend of land use change within a region. Chanhda et al. [30]
applied the land use dynamic degrees and land use transfer matrix to assess land use
changes in the Nam Ha National Biodiversity Conservation Areas from 1992 to 2002.They
found that the area of forested land was significantly reduced and that the reduced forested
land was mainly converted into urban land and unstocked forest. Overall, the results of
such studies have important implications for promoting land use planning and sustain-
able economic development. Some studies [15,21,32] have expanded the area of focus to
the morphological differentiation characteristics of land use landscape space in different
periods. Generally, landscape metrics have increasingly been used to analyze the shape,
scale, and growth rate of land cover changes within regions, as well as for the dynamic
analysis of spatial and temporal patterns of land use change. These studies show that the
structure and scale of construction land expand rapidly, and that the degree of land use
agglomeration increases during the period of rapid urbanization.

However, some studies have treated longitudinal land use trajectories of settlements
(e.g., RTSs) as analytical units, thus failing to cluster settlement units into groups and
failing to detect similarities within and dissimilarities between groups. This finding calls
for new approaches for trajectory pattern mining. In reality, an increasing number of trajec-
tory pattern mining approaches have been applied in neighborhood change studies [3,5].
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Generally, there are different types of trajectory mining approaches, including hierarchical
cluster analyses [33], k-means [34–36], and sequence alignment method (SAM) [3,5,37].
Delmelle [3] examined the longitudinal trajectories of neighborhood change in Chicago
and Los Angeles from 1970 to 2010. She applied SAM to mine patterns in the evolution of
neighborhood types and found that the two cities exhibit different processes of neighbor-
hood upgrading. Overall, she found 10 patterns in Chicago and 9 patterns in Los Angeles.
Patterns in Chicago are marked by a process of center city revitalization, whereas neighbor-
hood upgrading occurred in the form of suburban improvement in Los Angeles. Although
SAM have been increasingly applied in urban neighborhood change studies, they are less
used in analyzing land use change patterns of RTSs. Urban neighborhood SAM studies
often focus on spatial evolutionary patterns of neighborhoods’ socioeconomic components,
such as ethnicity and poverty [34,38], whereas the RTS analysis emphasizes land use change
patterns. The aim of this study was, therefore, to fill this gap, with a particular focus on
identifying the varying development patterns in rural town areas in China.

In this study, we adopted long-term remote sensing data from 1980 to 2015 (seven waves)
to extract the land use types of 1158 RTSs in Guangdong, China, and then constructed a
seven-wave sequence of land use trajectories for each individual RTS. Relying on these
trajectory data, we adopted a SAM based on progressive alignment to cluster RTSs with
similar land use trajectories into groups. The aim of these analyses is to answer the
following research questions: (1) How many types of development patterns can be extracted
from the trajectory mining of RTS land use sequences? (2) What are these development
patterns of land use changes and the underlying socioeconomic and institutional factors
resulting in such patterns?

This study contributes to the literature in two ways. First, the results obtained in this
study can enrich the development pattern-mining studies of RTSs while focusing on settle-
ments’ land use changes. This can help researchers and practitioners better understand
the different types of evolution processes of spatial restructuring of RTSs in Guangdong,
China. Given that RTSs are under-researched, it is important to comprehend their develop-
ment patterns before formulating national or regional policies to revitalize their growth
and moderate village declines, according to the local development conditions. Second,
unlike most of the current studies only highlighting urban neighborhood changes, this
study is considered one of the first studies applying the SAM approach to detect patterns
of RTS changes. Given that the development of RTSs has become increasingly critical
worldwide, particularly in rapid-urbanization countries, such as China, the novel SAM
approach provides a dynamic perspective to understand longitudinal and sequential spatial
restructuring and regional coordinated development.

The rest of the paper is organized as follows: The next section describes the data for
the analysis and introduces the method. An analysis of the pattern mining results comes
next. Discussions and conclusions are offered in the final section.

2. Materials and Methods
2.1. Data

In this study, the measures of land use changes rely on a large set of remote sensing
image data extracted from Landsat TM imagery in terms of manual visual interpretation
by the Data Center for Resources and Environmental Sciences of the Chinese Academy of
Sciences. The dataset contains seven waves of land use data from 1980, 1990, 1995, 2000,
2005, 2010, and 2015, with a spatial resolution of 30 m. Overall, six primary types of land
use exist, that is, cultivated land, forest land, grassland, water, residential land, and unused
land, as well as 25 secondary types. Because this study increasingly focuses on the land
use changes that result from the socioeconomic development of RTSs affected by human
activities, instead of natural land cover change, we aggregated land parcels for ecological
uses (including forest land, grassland, water, and unused land) into one type as ecological
land. At the same time, to more accurately observe the impact of urban and rural activities
on land use, we divided residential land into three categories: urban residential land, rural
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residential land, and nonresidential construction land. Finally, we considered five types of
land use in this study: cultivated land, urban land, rural residential land, nonresidential
construction land, and ecological land. The study used the areal size of these five land use
types as input variables.

We selected the Guangdong Province, China as our research area. Guangdong is a
fast-developing megaregion with widely distributed rural areas. Although many rural
areas have developed into urban areas during the rapid urbanization phase, there are still
many villages and towns at the urban fringes. Given the uneven development processes of
different cities and regions, the trajectories of land use change in Guangdong are expected
to be complicated and diverse. Thus, Guangdong is regarded as a representative case for
development pattern mining analysis. Guangdong contains 21 cities, in which there are
1158 RTSs in the rural areas and 310 neighborhood subdistricts in the urban areas, according
to the 2008 official census. Because the boundaries of several administrative RTSs have
changed over time, to perform a consistent comparison, we used the official boundary data
of 2008 as a reference and computed the land use shares of all seven waves according to
this boundary reference. Unlike the case in urban neighborhoods, this study focuses more
on RTSs. Hence, we selected 1158 RTSs as analytical units.

2.2. Methods

We applied a SAM to cluster sequences of land use change in RTSs into groups
and visualized and extracted varying development patterns of RTSs in Guangdong from
1980 to 2015. Generally, the SAM approach was sourced from the Needleman–Wunsch
algorithm, which was proposed by Needleman and Wunsch in 1970 and used in the field of
bioinformatics [39]. This method was first used to compare the similarity among protein or
DNA sequences and detect the homology between the different sequences. Notably, early
SAM algorithms were only able to compare two DNA sequences, but then they gradually
became capable of multiple sequence alignments [40]. In the 1980s, SAM was introduced
into the realm of social science [41], first in the field of sociology [42] and then in geography,
to analyze neighborhood socioeconomic changes, trip-chain pattern mining, and behavioral
trajectory patterns [3,42,43].

SAM is essentially a string editing technique that calculates the similarity between
two sequences as a function of the number of steps required to completely convert one
sequence into another. The editing operations of the algorithm are deletion, insertion, and
substitution. The larger the number of steps followed to make two sequences equal, the
greater the difference between the two. The Needleman–Wunsch algorithm is a classical
dynamic programming algorithm used for globally aligning of two sequences. Most
of the existing pattern clustering techniques are performed based on numerical values
or individual distances [43,44]. SAM is able to capture RTS with similar evolutionary
trajectories, not only in terms of type or value, but also considering the chronological order
of RTS evolution [45,46].

SAM first needs to define the similarity between two sequences by adopting an
alignment and matching method. As shown in Table 1, given the land use sequences (X and
Y) of two RTSs, the analytical difficulty lies in how to quantitatively calculate the similarity
between these two sequences. It is assumed that the elements (i.e., land use type in each
wave) in the two sequences compose the trajectory of land use change.

Table 1. Land use sequence X and Y.

Land Use Sequence Land Use Type in
Wave 1

Land Use Type in
Wave 2

Land Use Type in
Wave 3

X of RTS1 E R U
Y of RTS2 E E R

E: Ecologically dominant RTSs, R: Rural construction RTSs, U: Urban construction RTSs.
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SAM then computes the similarity score on the basis of an alignment process between
the two sequences. As an example, the Needleman–Wunsch algorithm consists of three
computational steps, outlined as follows.

(a) The first step is to initialize the score matrix, construct a two-dimensional score matrix
F, and initialize the score matrix according to the scoring rules. In this study, we set
several constants as scoring rules as follows:

s
(
xi, yj

)
=


2, if xi = yj
−5, if xi 6= yj

−5, if xi =
′ −′, or yj =

′ −′
(1)

where s
(

xi, yj
)

is the substitution score for letters i and j. When the elements xi and
yj match, the score is 2, whereas when they do not match, the score is −5. Here, the
symbol ′−′ denotes a gap. When aligning sequences, introducing gaps in the sequences
can allow an alignment algorithm to match more terms than a gap-less alignment can.
In this case, we set the gap penalty as −5.

(b) The second step is to compute the scores and fill in the matrix. The similarity score of
each cell F(i, j) of the scoring matrix is calculated using the scoring rule and calculation
formula as follows (Figure 1):

F(i, j) = max


F(i− 1, j− 1) + s

(
xi, yj

)
F(i− 1, j) + s

(′−′, yj
)

F(i, j− 1) + s(xi,′−′)
(2)

where s
(

xi, yj
)

is the substitution score for letters i and j, s
(′−′, yj

)
is the gap penalty

obtained by F(i− 1, j) in the vertical direction, and s(xi,′−′) is the gap penalty ob-
tained by F(i, j− 1) in the horizontal direction.
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The score matrix F(i, j) is filled in using the process of recursive computation, the
three paths for computing F(i, j) can be observed in Equation (2). As can be observed from
Figure 1, the maximum of the three paths is required to obtain the score of F(i, j).

(c) The third step is to search for the optimal alignment from the matrix and to estimate
the optimal alignment by tracing backward from the diagonal element to the previous
highest value. In this example, sequences X and Y represent the spatial evolution
sequences of two RTSs. The sequence alignment results obtained by path backtracking
are shown in Figure 2. According to the sequence alignment results, the final score
is −6.

In this research, we studied the spatial evolution sequence of multiple RTSs, and
therefore we needed to use a technique for multiple sequence alignment. We analyzed the
evolutionary process of RTSs using progressive alignment. The main steps of progressive
alignment are as follows: (1) pairwise align all sequences and calculate the distance matrix
on the basis of the results of pairwise sequence alignment; (2) construct a guide tree to
reflect the evolutionary relationships between sequences according to the distance matrix;
(3) guide the two sequences with the closest evolutionary relationship to be aligned using
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the global dynamic programming algorithm; and (4) progressively add the other sequences
in pairwise sequence alignment. After all sequences are added to the alignment, the
multiple sequence alignment is considered to be completed.
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We applied the unweighted pair-group method using arithmetic averages (UPGMA)
to construct a guide tree. UPGMA is a cluster analysis method, proposed by Michener and
Sokal in 1957 [47], that adapts arithmetic averages. This method first constructs a distance
matrix M of pairs of distances of sequences according to the results of pairwise sequence
alignment. Next, the minimum distance value Dqp is sought in the distance matrix, the
two sequences q, p are clustered into a new class r, and the distances between r and other
sequences are calculated. This is then followed by finding the sequence with the closest
distance for one more clustering until all sequences are clustered into one class, and then
constructing a phylogenetic tree on the basis of the clustering results.

We used the sequence alignment and phylogenetic analysis module in MATLAB to
run SAM. Specifically, the following steps were used to analyze land use changes in this
study. (1) We standardized land use data to reduce the impact of land parcel size on the
data analysis. (2) We used the k-means algorithm to cluster the land use data of 1158 RTSs
in the seven waves and classify RTSs with different land use spatial structures. (3) We
constructed a DNA sequence of the spatial evolution trajectory of each RTS, calculated the
distance between two sequences, constructed a distance matrix of all sequences, and on the
basis of the distance matrix, established a phylogenetic tree for multiple sequences. (4) We
compared the DNA sequences of the spatial evolution trajectory of RTSs through a SAM,
and compared the similarities, differences, and trajectory trends among the sequences to
explore the spatial evolution patterns of RTSs in Guangdong.

3. Results
3.1. Clustering Rural Town Settlements by Land Use Patterns

In this study, we first used the k-means clustering approach to partition RTSs in
Guangdong into groups according to their land use compositions for all seven waves from
1980 to 2015. The variables selected for the clustering analysis were the standardized areal
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size of five land use types in RTSs: cultivated land, urban residential land, rural residential
land, nonresidential construction land, and ecological land. Several indices were used
to determine the number of clusters k. The Calinski–Harabasz index (CH index) is the
ratio of between-group dispersion to within-group dispersion, and the score is calculated
by evaluating the between-class variance and within-class variance. A higher value of
this score indicates a better clustering result [48]. The silhouette coefficient is another
widely-used index of evaluating the effectiveness of clustering [49]. It combines two factors,
inertia and separation: The closer the evaluation result is to 1, the better the clustering effect
is. The inertia index can be considered as a measure of intra-class aggregation. The smaller
the inertia value, the better the partition is. We then computed the CH index, silhouette
coefficient, and inertia index to identify the optimal number of clusters as 5, as shown in
Figure 3. Thus, the five types of RTSs detected by the k-means analysis can be defined by
their features of land use composition (Table 2) as follows:
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Table 2. Average areas and proportions of five land use types of RTSs.

Typology
Symbol Used
in Land Use
Sequences

Cultivated
Land (km2)

Urban
Residential
Land (km2)

Rural
Residential
Land (km2)

Nonresidential
Construction
Land (km2)

Ecological
Land (km2)

Average Land
Area (km2)

Type-1:
Cultivated
ecological

C 28.56
(28.4%)

0.47
(0.47%)

2.30
(2.3%)

0.50
(0.50%)

68.72
(68.72%) 100.55

Type-2:
Ecologically

dominant
E 43.16

(14.40%)
0.28

(0.09%)
2.25

(0.75%)
0.43

(0.14%)
253.52

(84.61%) 299.64

Type-3: Rural
construction R 60.95

(47.53%)
1.20

(0.94%)
12.39

(9.66%)
1.21

(0.94%)
52.48

(40.93%) 128.23

Type-4: Mixed
construction M 47.86

(33.63%)
2.68

(1.88%)
6.41

(4.50%)
11.88

(8.35%)
73.50

(51.64%) 142.33

Type-5: Urban
construction U 22.60

(22.09%)
38.87

(37.98%)
4.95

(4.84%)
3.28

(3.21%)
32.63

(31.89%) 102.33

Note: Nonresidential construction land refers to land used in factories and mines, large industrial areas, oil fields,
saltworks, quarries, along with special land for transportation infrastructure. Ecological land includes forest land,
grassland, water, and unused land.

(a) Type-1: Cultivated ecological RTSs (C). The land use types of the RTSs identified as
Type-1 comprise a relatively large share of cultivated land (28.40%) and ecological
land (68.34%) compared to other RTS types, whereas the share of construction land is
relatively small (0.47% urban residential land, 2.29% rural residential land, and 0.50%
nonresidential land). Type-1 RTSs also have relatively smaller areas, with an average
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of 100.55 km2. This type of RTS primarily represents the traditional primitive rural
areas, serving agricultural production.

(b) Type-2: Ecologically dominant RTSs (E). The land use proportions of Type-2 RTSs
are often large and dominated by ecological land, with an average share of 84.61%
among all types of land. Here, ecological land includes forest land, grassland, water,
and unused land. In these RTSs, cultivated land is the second largest land use type,
averaging around 14.40%. This implies that Type-2 RTSs are typical rural town areas
for ecological reservation.

(c) Type-3: Rural construction RTSs (R). In this type of settlement, the average area of
rural residential land is the largest, at 12.39 km2, whereas the areas of urban residential
land and nonresidential construction land are relatively trivial. The area of cultivated
land in this type of RTS is also the largest, but that of ecological land is relatively small.
This demonstrates that Type-3 RTSs are the agricultural upgrade and development
RTSs, which promote the expansion of rural residential land.

(d) Type-4: Mixed construction RTSs (M). The proportion of nonresidential construction
land of in this type of RTS is much higher than in others, with an average of 8.35%.
The areal sizes of urban and rural residential land also rank among the top. This type
of RTS also has a relatively high proportion of cultivated and ecological land, and it
contains a mixture of construction land types, indicating that it is a transformational
development rural town area.

(e) Type-5: Urban construction RTSs (U). These RTSs contain the highest proportion
of urban construction land (37.98%) compared to other types, whereas the share of
cultivated land is relatively low. The proportion of ecological land is the lowest
compared to other RTSs, at 31.89%. A large amount of ecological and agricultural land
is transformed into urban construction land. This is a typical urbanized rural town
area that is often located near the fringes of urban areas.

3.2. Clustering Land Use Change Patterns of Rural Town Settlements by Land Use Trajectories
3.2.1. Description of the Land Use Trajectories of Rural Town Settlements

According to the clustering results of RTSs, we can obtain the land use category of
an RTS in each year and construct its land use change trajectory from 1980 to 2015 (with
seven waves). For example, by analyzing the trajectories of 138 urban construction (Type-5)
and mixed construction (Type-4) RTSs in 2015 (Figure 4), we can observe that in 1980,
most of these 138 RTSs were categorized into Type-1 or Type-3. This demonstrates the
rapid urbanization process in RTS areas where most urbanized RTSs have been evolved
from traditional rural and agricultural areas. Such an evolutionary process shows the
transformation of land use functions from mainly agricultural land and rural construction
land eventually to urban construction land.

Specifically, Figure 4a shows the change of land use types of 138 RTSs over seven waves.
Before 2005, only a small number of RTSs were observed, with a significant change in land
use types to urbanized types (i.e., Type-4 and Type-5). However, immediately after 2005,
significant RTSs evolution was witnessed, with most of the RTSs shifting from Type-1
and Type-3 to Type-4 or Type-5. Since 2000, the expansion of urban residential land
and nonresidential construction land has entered an accelerated period. The amount of
cultivated land declined rapidly, and even the areas of rural residential land started to
decrease. It can also be observed that a certain amount of agricultural and ecological land
was converted into the construction land from 2000 to 2015. In addition, Figure 4b shows
the development process of 104 rural construction (Type-3) RTSs in 2015. Unlike urbanized
RTSs, 89% of the rural upgraded RTSs became rural construction RTSs before 2005. This
indicates that the rural residential land expanded rapidly from 1980 to 2005, and a large
amount of cultivated and ecological land was converted into rural residential land for
agricultural production and housing.
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3.2.2. Extracting the Land Use Change Patterns of Rural Town Settlements with Sequence
Alignment Methods

In this study, we applied the SAM approach to partition the land use sequences of
1158 RTSs in Guangdong into groups by calculating the similarity in the change trend
of land use among the sequences. The modeling results revealed 10 types of land use
sequences of RTSs (i.e., 10 types of ‘DNA’ of RTSs). Figure 5 shows these 10 types of RTSs
relying on the sequential similarity of land use change. In general, these 10 types of RTS
sequences can be divided into two categories: RTSs of stable land use patterns (or stable
RTSs thereafter) and RTSs of changing land use patterns (or changing RTSs thereafter).

Stable RTSs mostly have unchanged land use categories from 1980 to 2015, or perhaps
only slight changes in one or two occasional time slots. There are four types of stable RTSs
Type-1 (cultivated ecological), Type-2 (ecologically dominant), Type-3 (rural construction),
and Type-4 (mixed construction). Interestingly, we found no stable Type-5 RTSs. In other
words, we found that not many rural town areas have been constantly dominated by urban
construction land types since 1980. This is reasonable because immediately after 1980, at
the beginning of the open-up and reform policies, most rural town areas in Guangdong
and most of the regions in China were dominated by cultivated land. Thus, most of the
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urbanized RTSs in 2015 evolved from traditional rural areas, along with significant land
use changes.
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On the other hand, changing RTSs represent some rural town areas with significant
land use changes from 1980 to 2015, including six changing patterns from Type-1 (cultivated
ecological) to Type-3 (rural construction), from Type-1 to Type-4 (mixed construction), from
Type-1 to Type-5 (urban construction), from Type-2 (ecologically dominant) to Type-4, from
Type-3 to Type-4, and from Type-4 to Type-5. These changes demonstrate the general
development patterns of land use of RTSs along more than a period of 30 years.

Most RTSs in Guangdong have stable land use patterns, accounting for 88% of all
RTSs. Stable RTSs are also widely distributed in the eastern, northern, and western parts of
Guangdong, outside the Pearl River Delta (PRD) area (Figure 6). Thus, most stable RTSs
are from less wealthy regions, whereas the changing RTSs are mainly distributed in the
well-developed PRD region. Hence, because of the rapid urbanization in the PRD area,
the region has experienced a significant increase in the proportion of construction land,
resulting in a dramatic change in the land use patterns in RTSs, in addition to some RTSs
outside the PRD area that have also undergone a transformation in their land use structure,
as shown in Figure 6.
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Overall, the 10 types of RTSs by sequence, as shown in Figure 5, were found to
exhibit varying evolution features from 1980 to 2015. Figure 6b shows the specific spatial
distribution of these 10 types of RTSs. The land use change details and geographical
distribution characteristics of these 10 types of RTSs are summarized as follows:

(a) DNA-1 (stable Type-1 RTSs): This type of RTS has a stable sequence of a Type-1 land
use structure from 1980 to 2015 without much change. This type has 701 RTSs (61%)
and is the largest group among the 10 partitions of RTS DNA. This group is mostly
distributed outside the PRD region, mainly in the cities of Shantou, Shanwei, Jieyang,
Chaozhou, and Meizhou in Eastern Guangdong, as well as the cities of Jiangmen,
Yunfu, Zhaoqing, Yangjiang, and Maoming on the west side of the Pearl River;

(b) DNA-2 (stable Type-2 RTSs): The DNA sequences of this type of RTS were stable from
1980 to 2015 and were the second largest type, accounting for 19% of the total. In terms
of spatial distribution, these RTSs resemble a ring around the periphery of the PRD,
mostly in Shaoguan, Qingyuan, and Heyuan in Northern Guangdong. In the PRD,
some RTSs in the outer suburbs of Guangzhou, Huizhou, Zhaoqing, and Jiangmen
also belong to this pattern;

(c) DNA-3 (stable Type-3 RTSs): The longitudinal sequence of stable Type-3 refers to the
RTSs that have remained as Type-3 for most of the 35 years of the study. A total of
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82 RTSs (7%) belong to this type, which have their own characteristic rural industries
and, therefore, contain the largest area of rural residential land. The RTSs of this
pattern are mainly concentrated in Zhanjiang and Maoming in Western Guangdong,
with some scattered in other areas, such as Xiegang town in Dongguan and Caitang
town in Chaozhou;

(d) DNA-4 (stable Type-4 RTSs): A total of 15 RTSs are assigned to this group, represent-
ing their long-term maintenance in Type-4. These RTSs have a high percentage of
nonresidential construction land, around 8%. They are also mainly distributed in the
border areas of Guangdong, including the coastal and provincial border;

(e) DNA-5 (changing from Type-1 to Type-3): In total, 26 RTSs comprise this category in
the study area, indicating that they have experienced a significant increase in rural
residential land use. This is reflected in the RTS DNA, which changed from Type-1 at
the beginning to Type-3 later on. Such RTSs are mainly located in the coastal cities of
Guangdong, most of them in Shantou;

(f) DNA-6 (changing from Type-1 to Type-4): This type of RTS has a changing sequence
from Type-1 to Type-4, representing an expansion of nonresidential land from 1980 to
2015. This type has 47 RTSs (4%) and is mostly located outside the non-core areas of the
PRD, such as Pingtan Town in the suburbs of Huizhou. Pingtan is a large agricultural
RTS and also a satellite town in Huizhou. It contains several industrial parks, which
attract enterprises to settle in the town, causing the gradual conversion of cultivated
land into construction land and the change of the DNA sequence;

(g) DNA-7 (changing from Type-1 to Type-5): This seventh group of longitudinal trajec-
tories constitutes RTSs that have followed a DNA sequence from Type-1 to Type-5,
signaling an upgrading process from 1980 to 2015. Spatially, the 17 RTSs in this group
are all located in the core cities of the PRD, including Guangzhou, Dongguan, Foshan,
and Zhongshan. The well-developed Chang’an Town in Dongguan belongs to this
category. During the process of reform and opening up, Chang’an realized rural indus-
trialization and gradually developed into an urban area, with much of the cultivated
and ecological land changing to construction land;

(h) DNA-8 (changing from Type-2 to Type-4): The DNA sequences of this group changed
from Type-2 (ecologically dominant) in 1980 to Type-4 (mixed construction) in 2015.
Only 14 RTSs (1%) constitute this type, the fewest of all RTS DNA sequences. They
are scattered in the central part of Guangdong, including a small number of RTSs
in the PRD and Northern Guangdong. A typical example of this pattern is Genghe
Town in Foshan, which has achieved rapid expansion of construction land through
the optimization of industrial structure and investment attraction;

(i) DNA-9 (changing from Type-3 to Type-4): These 15 RTSs, constituting 1% of the RTSs
in the study area, follow a DNA sequence transition from Type-3 (rural construction)
to Type-4 (mixed construction) in the time period. The spatial distribution map of this
type of RTSs shows that most of them (93%) are located in the core cities of the PRD,
including Guangzhou, Foshan, Dongguan, and Huizhou;

(j) DNA-10 (changing from Type-3 to Type-5): Overall, the 19 RTSs (2%) in this group
exhibit a changing DNA sequence over the 35 years of the study, and they represent
RTSs that follow an expansion trend of urban residential land. Located at the core
spatial extent of the PRD, these RTSs have a superior location (e.g., Xintang town in
Guangzhou and Humen town in Dongguan). Both of these towns received spillover
industries from urban areas, resulting in land use changes.

3.3. Discussion: Driving Forces Formulating Land Use Sequences of Rural Town Settlements

In general, the analysis of the driving force is an important reference for formulating
the development strategy of backward RTSs. The analysis results of the spatial evolution
patterns depict the distribution of various evolution patterns in space, combined with the
internal and external conditions of the RTSs (Table 3), and discuss the driving factors of the
spatial evolution patterns.
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Table 3. Potential driving forces leading to 10 types of land use sequences of RTSs.

Land Use DNAs
Location in
Guangdong

Province
Landforms Location Related

to Cities Industries Land Use Policies

Stable Primitive
Agriculture northern mountainous area remote mountainous

area
traditional
agriculture

Household
Responsibility System

Stable Agriculture eastern and western mountainous
area, hill remote area traditional

agriculture
Household

Responsibility System

Stable Rural
Construction western plain, hill outer suburb traditional

agriculture
Household

Responsibility System

Stable Mixed
Construction Border area plain urban fringe agriculture and

fisheries
Household

Responsibility System

Primitive Agriculture
to Mixed

Construction
central mountainous area,

plain urban fringe rural industry Household
Responsibility System

Agriculture to Rural
Construction eastern plain urban fringe rural industry Household

Responsibility System

Agriculture to Mixed
Construction

urban suburbs
in PRD plain outer suburb industrial

agglomeration
Economic Reform and

opening up

Agriculture to Urban
Construction

Dongguan,
Zhongshan plain suburb

foreign investment,
industrial

agglomeration

Economic Reform and
opening up

Rural Construction to
Mixed Construction Guangzhou, Foshan plain outer suburb industrial

agglomeration

Economic Reform and
opening up,

Urban renewal

Rural Construction to
Urban Construction Dongguan plain suburb

foreign investment,
industrial

agglomeration

Economic Reform and
opening up,

Urban renewal

Most of the stable Type-2 RTSs are located in Northern Guangdong, which is a moun-
tainous area. Because of the influence of topographical and geomorphological factors, it is
difficult to convert cultivated land into construction land, which limits the spatial evolution
process of these RTSs. Generally, RTSs in plain areas can rely on topographic advantages
to expand the construction land. For example, in the PRD plains, the processes of rural
industrialization driven by rural and urban expansion, urbanization with immigrations
from inside and outside the Guangdong Province, and regional urban–rural integration are
rapid, and a large number of rural areas have developed into urban areas.

Location is also an important driving force. On the one hand, RTSs adjacent to the city
center can be influenced by the city planning. Not only do they have easy access to the
city’s basic services, but they can also receive industries that have moved away from the
city. Therefore, RTSs close to the city center are well developed. In addition, RTSs located
on the borders of two cities can be developed with the help of transportation roads between
the cities by provincial or regional transportation planning schemes. On the other hand,
RTSs in remote mountainous areas are difficult to develop because of their remote location
and poor transportation services.

As the driving force of urban development, industries have also played an important
role in spatial evolution. For RTSs of stable land use patterns, their economic development
relies on agriculture, lacking endogenous dynamics and external driving forces to promote
their development. RTSs of changing land use patterns are guided by industrialization.
Meanwhile, some RTSs have better landforms and location conditions, attracting foreign
investments and the construction of large-scale industrial parks, which are also guided by
dynamic city master plans.

During the spatial evolution of the RTSs in Guangdong, policies have driven land use
changes in rural areas [50]. The emergence of the Household Responsibility System has
liberated labor in RTSs and helped rural residents realize rural industrialization. A large
number of rural laborers moved to the large cities, causing an exodus from remote rural
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areas and resulting in the land use structure of RTSs being stable for a long time. Finally, it
is worth noting that the development of rural areas in the PRD relies on economic reform
and opening up in order to attract foreign investments and invest in factories and selling
products through foreign trade, in addition to the population influx.

In summary, the study found that RTSs of Guangdong Province have diverse land
use evolutionary patterns and are highly polarized in terms of spatial distribution, with
a large difference in land use sequences between the PRD and non-PRD regions. These
findings are consistent with some existing findings [51]. For example, Ye [52] revealed
the differences in land use structure within Guangdong Province, and Cao [53] confirmed
the differences in economic aspects among the four regions of Guangdong Province. In
addition, the evolution of the spatial structure of land use in the RTS varies with driving
forces. The driving forces should be contextually variant in different countries. As found in
Lambin’s [54] study on land management, agriculture, and forestry in developing countries,
economic globalization, land use regulations, and policies can help developing countries
achieve sustainable land use transition. Uisso [55] also analyzed the changes in the amount
of arable land in Tanzania and their influencing factors, and found that the economic and
demographic factors play more important roles in land use changes. Thus, the findings
in this study can enrich the worldwide research on land development trajectories in rural
town areas by adding China’s development experiences.

4. Conclusions

In this study, we investigated the spatial evolution process of RTSs from the perspective
of long time series longitudinal land use changes. We also applied a SAM to mine the spatial
evolution patterns of the RTSs in Guangdong Province and then analyze the influence of
basic socio-economic attributes and policy factors. This study helps fill the gap in the study
of the vertical and continuous spatial evolution of RTSs. We also applied the new method
of neighborhood development pattern mining to the study of rural areas. The results show
that, according to the spatial structure of land use, the RTSs in Guangdong can be clustered
into five types. Moreover, 10 development patterns of RTSs were observed in Guangdong,
which can be divided into RTSs of stable land use patterns and RTSs of changing land
use patterns. Notably, most of the RTSs with changing land use patterns (around 73%)
are located in the PRD. These findings emphasize the importance of the longitudinal data
analysis of RTSs and pattern mining studies of land use trajectories. As shown here, if the
land use development patterns of RTSs are not scrutinized, the development of backward
areas may be overlooked, exacerbating the problem of polarization between rural areas in
the PRD and those in other regions.

We also found that the location, landforms, industries, and policy factors influence
the spatial evolution patterns of RTSs. In other words, RTSs located in plains and close
to developed cities are more likely to develop rapidly and transform into other types of
RTSs. These findings coincide with several recent studies performed in the PRD [56–59].
However, these studies mostly focused on the PRD region and used cross-sectional data.
Therefore, we believe that it is more necessary to focus on the development process of
backward regions outside the PRD region while using longitudinal data combined with
pattern mining methods in order to coordinate regional development and revitalize the
development of rural areas.

In addition, the results of spatial evolution patterns can help guide rural town area
planning for rural revitalization. This study reveals the significance of the analysis based
on the town scale and its spatial evolution trajectories. In particular, it provides a method
for comparing the similarities and differences of the spatial evolution process and patterns
of RTSs.

The empirical analysis also reflects many advantages of the SAM applied to spatial
evolution pattern mining, such as the high efficiency of the algorithm, consideration of the
time series factors, and long time series pattern mining. However, the algorithm has some
shortcomings. First, progressive SAM is a greedy algorithm, the result of the sequence
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alignment is an approximate solution, and it is difficult to obtain an optimal solution. Sec-
ond, multiple sequence alignment is a nondeterministic polynomial (NP) problem [60]. The
evaluation of the result of sequence alignment temporarily lacks a perfect objective function,
and none of the present objective functions can cover all aspects of the problem. Hence,
converting sequence alignment into network-related data and using complex network
analysis algorithms for clustering is considered a potential solution [61–64].

Some other shortcomings also require further exploration. For example, studying
the spatial evolution pattern mining of RTSs is based on the spatial structure of land use.
Different spatial structure types of land use help constitute evolutionary sequences and
enable evolutionary pattern mining. Therefore, future studies should consider other spatial
elements, such as the road network structure, spatial pattern of RTSs, and settlement
structure. In addition, the multiple driving factors that promote spatial evolution and
spatial differentiation are worthy of an in-depth study. Future sequence alignment studies
should also consider both driving factors and multiple spatial evolution sequences to
explore the mapping model of multiple driving force and the spatial evolution patterns of
RTSs so as to realize a coupling analysis of multiple driving forces and spatial patterns in
rural areas.
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