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Abstract: China’s transportation industry has made great achievements in the past 40 years of
reform and opening up. At the same time, it has gradually accumulated a series of problems.
These problems have led to closer and more complex social and economic connection within and
between regions of different scales. The existing research only carries out the characteristic analysis of
urban network spatial connection and pattern from a single perspective such as “flow space” theory,
spatial interaction model and accessibility method, and fails to accurately describe the complex
socio-economic relations between regions. Based on the big data of railway passenger flow, this
study selected weighted average travel time, railway network density, and the economic connection
model to express the urban network spatial connection and structure of China in 2016 from the
perspectives of time, space, and interaction. In 2016, the accessibility, connectivity, and total urban
external economic connection of the railway network showed a trend of declining from the east to
the west. The top 50 cities ranked by interurban economic connection were all located in the central
and eastern regions and showed “diamond shape” distribution characteristics. The four diamond-
shaped pairs were Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta, and Chengyu urban
agglomerations. This shape was basically in line with the T-shaped space that has existed for a long
time in China’s regional development. The accessibility, connectivity, and total external economic
connection of national-level urban agglomerations were greater than those of regional-level urban
agglomerations, and far greater than those of local-level urban agglomerations. The results showed
that there was a mismatch between the layout of the railway network and the population. It will
still be necessary to focus on strengthening the construction of transportation infrastructure in urban
agglomerations and densely populated areas in the future. This study enriches the “flow space”
theory, more fully describes urban network spatial connection and structure in China by considering
the three perspectives of time, space, and interaction, and can provides reasonable suggestions for
the development of national comprehensive three-dimensional transportation network planning,
regional spatial structure optimization, and sustainable development.

Keywords: big data of railway passenger flow; weighted average travel time; railway network
density; economic connection model; spatial interaction
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1. Introduction

Over the past 40 years of reform and opening up, China has made remarkable achieve-
ments in the development of transportation, and a comprehensive transportation system
was initially established [1]. In 2020, it formed a national transportation system with
expressways and high-speed railways as the framework. Between them, the high-speed
railways total 38,000 km, the expressways total 161,000 km, and both are ranked first in
the world [2]. Transportation has effectively promoted the development and protection of
territorial space, coordinated development between urban and rural areas, and also opti-
mized productivity distribution, which plays a basic, strategic, and service role in economic
and social development [3]. At the same time, the national construction of high-speed
transportation facilities has also gradually accumulated a series of problems, such as the
mismatch between the transportation layout and the population and urban layout [4], the
exacerbation of the vertical imbalance by construction of expressways and high-speed rail-
ways [5], and the unreasonable competition in the construction of regional transportation
system [6], which led to the social and economic connections among regions becoming
closer and complex. Regional differences, comprehensiveness, and spatial interaction have
always been the core content of economic geography and regional economics. Based on the
“flow space” theory, scholars at home and abroad to carry out related research on the pattern
and connection of urban network space using geographical methods such as the spatial in-
teraction model and accessibility model, which can provide theoretical and methodological
support for regional economic connection, spatial structure, and sustainable development.

1.1. Progress in the “Flow Space” Theory

Spanish sociologist Castells first mentioned the concept of “flow space” in The informa-
tional city, published in 1989, and detailed the “flow space” theory in the Information Age
Trilogy, published in 1996 to 1998 [7,8]. The “flow space” theory was applied by the more
famous GaWC and the POLYNET team. Based on the “flow space” theory and methods, the
GaWC Group has used advanced producer services (APS) metrics for network analysis in
urban regions of the world [9]. POLYNET is an international cooperation project integrating
experts and scholars from eight European research institutions, and its research on such
subjects as the network structure diversity of multi-center urban agglomeration and the
functional zoning of urban areas reflects the superiority of the “flow space” theory and
methods [10,11].

With the continuous promotion of “flow space” theory, scholars at home and abroad
have expressed increasing interest in spatial connection research at different spatial scales
and have achieved many important research results. Among them, research based on the
perspectives of traffic flow (air flow, railway flow, road flow), information flow (telephone
communication volume, Internet social platform data), capital flow (distribution of financial
institutions, network distribution of multinational enterprises or cross-regional enterprises)
has gradually become a new hot spot [12,13].

The “flow space” theory is different from the traditional “field space,” and network
location has replaced geographical location is its main feature. Therefore, the transportation
network and information network constitute the spatial network, geographical distance
becomes speed and cost, increasing the importance of network location.

1.2. Progress in the Spatial Interaction Model

Spatial interaction refers to the actual movement of passengers, goods, or information
between the starting and ending points, which is the expression of transportation demand
and supply in geographical space [14]. Traditional models describing spatial interaction
mainly include the gravity model and the potential model [15–17]. Spatial interaction
model studies developed earlier in the West. In the 1880s, British demographer Ernst Georg
Ravenstein first used Newton’s gravity model in the humanities and social sciences [18].
In 1929, Reilly proposed a retail gravity model that identifies retailers controlling market
range boundaries in geographic space [19]. Later, Converse developed Reilly’s retail



Land 2022, 11, 225 3 of 18

gravity model and proposed the break-point model [20]. In 1967, Wilson derived the
maximum entropy model of the spatial interaction theory, starting from the maximum
entropy theory [21]. Based on the previous research, many scholars have also proposed
spatial interaction models for different application scenarios, such as the mouth particle
model [22] and the neural spatial interaction model [23], which have enriched spatial
interaction theory and models.

Exploring spatial interaction is an important path to study regional relations, regional
economic connection, and regional spatial structure. With the continuous development
of information technology, the research on spatial interaction has discovered a trend of
integration with GIS spatial analysis, complex network analysis, and structural equation
models. As the global urban network gradually attracts the attention of the academic
community, it will become the focus for exploring connections on the vertical level using
various attribute data, the network structure, function, and relationships among cities and
regions of different scales.

1.3. Progress in Accessibility Methods

Accessibility is used to measure the connection capability between nodes in the trans-
portation network. Nonetheless, different scholars have defined the concept of accessibility
differently. Hansen was the first to define accessibility in 1959, and in his definition, ac-
cessibility is the size of the interaction between nodes in a transportation network [24].
In 1979, Morris believed that accessibility was the means to reach a given activity site
from a certain place by way of a specific transportation system [25]. Shen developed an
employment opportunity accessibility model of a competitive relationship based on the
reachability potential model [26]. Since then, scholars have conducted numerous studies
on the accessibility of transportation, mainly adopting various related methods based on
the characteristics of geometric and topological transportation networks. The methods for
assessing transportation accessibility based on geometric networks include the distance
method [27], the cumulative opportunity method [28], and the gravity model method [29].
The methods for transportation accessibility based on topological networks have mainly
included the matrix method [30] and the space syntax method [31].

Researchers at home and abroad have expounded a variety of definitions of accessi-
bility in terms of time, space, and sociology, but there is no one recognized definition. In
general, accessibility mainly describes the transportation network capacity and evaluates
the regional spatial structure and transportation network efficiency using time, distance,
and formation.

Generally speaking, the existing research only carries out the characteristic analysis
of urban network spatial connection and pattern from a single perspective such as “flow
space” theory, spatial interaction model and accessibility method, and fails to accurately
describe the complex socio-economic relations between regions. Therefore, this study
selected the weighted average travel time, railway network density, and the economic
connection model to express the spatial connection and pattern of China’s urban network
from the perspectives of time, space, and interaction. We then explored the spatial con-
nection pattern of China’s urban agglomerations and the correlation of spatial connection
pattern and sustainable development. Among them, the weighted average travel time
reflects the transportation accessibility, the railway network density reflects the connectiv-
ity between regions, and the economic connection model reflects the economic radiation
capacity of the central cities to the surrounding areas. This study enriches the “flow
space” theory and more fully describes urban network spatial connection and structure in
China by considering the three perspectives of time, space, and interaction. This research
provides reasonable suggestions for the development of national comprehensive three-
dimensional transportation network planning, regional spatial structure optimization, and
sustainable development.

The structure of the remainder of this paper is as follows. First, the data sources,
analytical framework, and research methods are introduced. Second, the spatial and
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temporal pattern of China’s urban network is characterized, including spatial accessibility
and connectivity. Third, the spatial interaction characteristics of China’s urban network are
analyzed, including the spatial pattern of the total economic connection and interurban
economic connection. Fourth, the characteristics of the spatial connection pattern of China’s
urban agglomerations, and the correlation of the spatial connection pattern and sustainable
development are explored. The last section summarizes the conclusions and provides some
suggestions to support national comprehensive three-dimensional transportation network
planning, regional spatial structure optimization, and sustainable development based on
the research results.

2. Materials and Methods
2.1. Materials

In China, administrative divisions are divided into the provincial administrative
district, the prefecture-level administrative district, the county-level administrative district,
and the town-level administrative district. The county-level administrative district includes
the city-governed district, county-level city, county, autonomous county, flag, autonomous
flag, special zone, and forest area [32]. This study took the county-level administrative
district as the basic statistical unit and considered the city-governed districts (generally a
prefecture-level city contains several city-governed districts) as a whole. The specific data
sources are shown in Table 1, and cover: (1) land area, household registered population,
and GDP of the county-level administrative district of China in 2016 obtained from the
China County Statistical Yearbook and the China City Statistical Yearbook [33,34]; and (2) vector
data of the railway line network, railway stations, and train frequency, acquired from
the website https://www.amap.com/ (accessed on 17 November 2021) and the Railway
Customer Service Center of China using web crawler technology. Specifically, land area,
population, GDP, and train frequency data were spatialized and divided into each county-
level administrative district of China; the railway line network and railway station data
underwent error analysis and correction, format conversion, projection conversion, scale
consistency and other processing, in preparation for the subsequent county-level data
overlay analysis.

Table 1. The data base of this study.

Name Time Source Method

Land area, Population, GDP 2016 China County Statistical Yearbook,
China City Statistical Yearbook Spatial visualization

Railway line network, Railway stations,
Train frequency 2016 AMAP, Railway Customer Service

Center of China Web crawler technology

Based on the above data, there were a total of 60,297 railway passenger shifts per day
in China and a total of 3293 interurban railway passenger shift pairs per day. Figure 1
reflects the spatial distribution pattern of the train network in China. At the county level,
train frequency presented typical regional characteristics: the train frequency in the eastern
region was significantly greater than that in the western region, 65.17% of the daily train
frequency of contact between counties was 1–10, 20.01% of the daily contact frequency
between counties was 10–25, and only 1.52% of the daily contact frequency between
counties was more than 100. The areas with more frequent train contact were mainly
distributed in the Beijing-Tianjin-Hebei region (such as Beijing-Tianjin), the Yangtze River
Delta urban agglomeration (such as Suzhou-Wuxi-Changzhou), and the Pearl River Delta
urban agglomeration (such as Shenzhen-Dongguan, Guangzhou-Dongguan).

https://www.amap.com/
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Figure 1. Spatial distribution of China’s train network in 2016.

2.2. Methods

In order to analyze the urban network spatial connection and pattern in China more
comprehensively, based on the above theory, methods, and data, the specific technical
framework of the study is shown in Figure 2. Specifically, (1) We combed the relevant
theories and methods of studying the connection and structure of urban network and
selected the theories and models that could be used for this study, such as “flow space”
theory, the spatial interaction model, and the accessibility method. (2) Based on pre-
processed data, the weighted average travel time that integrated the impact of urban scale
and urban development level on accessibility was used to depict the time characteristics of
urban network spatial connection and structure, which suggested the time from a certain
county to each economic center. Railway network density, population-based railway
network density, and economy-based railway network density were used to analyze the
space characteristics of the urban network spatial connection and structure, which reflected
the connectivity of the interurban network. The economic connection model characterized
the interaction of urban network connection and structure that reflected the degree of
spatial interaction and economic connection strength between counties. (3) Based on the
above methods, we analyzed the spatial and temporal pattern and the spatial interaction
of the urban network in China and explored the spatial connection pattern of the urban
agglomerations and its correlation to sustainable development.
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Figure 2. Technical framework for this study.

In researching the urban network spatial connection and structure in China based on
big data of railway passenger flow, the specific analysis methods were as follows:

2.2.1. Weighted Average Travel Time

The weighted average travel time that integrated the impact of urban scale and
urban development level on accessibility was used to depict the time characteristics of
urban network spatial connection and structure. Weighted average travel time evaluates
the proximity of a city to other cities, mainly determined by the urban location, and
comprehensively considers the economy, society, and transportation facilities of other cities
connected with the city. The smaller the weighted average travel time, the greater the
accessibility of the city, and the more convenient the external connection to the city, and
vice versa. The model is widely used in transportation accessibility studies [35,36]:

Ai =
∑n

j=1 (Tij ×Mj)

∑n
j=1 Mj

(1)

where Ai indicates the accessibility of county i. Tij indicates the shortest railway time from
county i to county j. Mj is the flow of some socioeconomic element of county j, namely, the
economic strength of county j, and GDP, population, or social commodity sales can be used.
Total GDP was used in this study. n is the total number of counties except county i.

2.2.2. Railway Network Density

Railway network density, population-based railway network density, and economy-
based railway network density were used to analyze the space characteristics of the urban
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network spatial connection and structure, which reflected the connectivity of the interurban
network.

Regional connectivity is reflected by railway network density. The railway network
density is a positive index; the greater the value, the denser the railway network, and the
better the regional traffic conditions [4]. The railway network density of county i is Ci, the
railway length of county i is Li, Bi is the land area. The railway network density is then
calculated as:

Ci =
Li
Bi

i = (1, 2, 3 . . . n) (2)

To better express the coordination between connectivity, population, and economy,
the population-based railway network density Cpi and economy-based railway network
density Cei are analyzed simultaneously, in which POPi is the population of county i and
GDPi is the GDP of county i:

Cpi =
Li

POPiBi
i = (1, 2, 3 . . . n), (3)

Cei =
Li

GDPiBi
i = (1, 2, 3 . . . n). (4)

2.2.3. Economic Connection Model

The economic connection model characterized the interaction of urban network connec-
tion and structure that reflected the degree of spatial interaction and economic connection
strength between counties.

There are many theoretical models of urban spatial interaction, among them, the
Reilly model, Converse model, gravity model, and potential model have great influence
and more application [37]. Currently, the gravity model is widely used in studies of
regional economics, economic geography, and international trade. In the study of economic
geography, the gravity model is generally used to predict the economic connection strength
among regions, so it is also called the economic connection model. The economic connection
model reflects the radiation capacity of the economic center toward the surrounding
areas [18,29]. The specific calculation formula is as follows:

Lij =

√
Pi ×Vi ×

√
Pj ×Vj

T2
ij

. (5)

Lij indicates the intensity of economic connection between the two cities; Pi and Pj
indicate the total population of county i and county j, respectively, and this study used the
registered population of the study region; Vi and Vj represent the economic aggregate of
county i and county j, respectively, and this study used the total amount of GDP of the
study region; Tij indicates the shortest railway travel time between the two cities.

The total amount of urban external economic connection indicates the sum of the
spatial interaction between each city and all other cities, showing the sum of all the external
“flow” of a certain city and reflecting the status of a certain city in the national urban spatial
interaction network. The specific formula is as follows:

Li =
n

∑
j = 1
j 6= i

Lij. (6)
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3. Results
3.1. Spatiotemporal Distribution Pattern of the Urban Network
3.1.1. Railway Network Accessibility in China

The accessibility of a railway network can be expressed by weighted average travel
time, as shown in Figure 3. At the national level, the accessibility of a railway network
represents the strip distribution and reflects the significant differences between eastern
and western regions. The accessibility of the railway network in the eastern region was
higher than that of the western region. The weighted average travel time was less than
7 h, which indicated the highest accessibility in these regions and was mainly distributed
in the Beijing-Tianjin-Hebei urban agglomeration, Central Plains, Yangtze River Delta,
Wuhan metropolitan area, Pearl River Delta and Harbin-Changchun urban agglomeration.
This indicated that they had good railway locations and could effectively support regional
economic and social development. A weighted average travel time of 7–10 h indicated
higher accessibility of the railway network in these regions, which were mainly distributed
in the northeast, central, and southeast areas of China. This indicated that they had rela-
tively good railway locations, and that these played a certain role in promoting regional
economic and social development. A weighted average travel time of 10–14 h indicated
moderate accessibility of the railway network in these regions, which were mainly dis-
tributed along the northeast edge and in major western provincial capitals of China. This
indicated that the railway locations of these areas were weak and that they had difficulty
supporting the economic and social development when only relying on the railway. A
weighted average travel time of more than 14 h indicated the lowest accessibility of the
railway network in these regions, which was mainly distributed in large western regions
and railway-free counties. This indicated that they had the weakest railway locations and
that other transportation infrastructure, such as roads and aviation, must compensate for
the role of geographical location to promote the coordinated development of these regions.

3.1.2. Connectivity of the Railway Network in China

Connectivity of the railway network is expressed through the railway network density,
as shown in Figure 4a–c. At the national level, the railway network density presents regional
differences. The railway network density in the eastern region was much greater than that
in the western region. Areas with great railway network density were mainly concentrated
in the urban agglomerations of Beijing-Tianjin-Hebei, Central Plains, Yangtze River Delta,
Jianghuai, and the Triangle of Central China. A railway network density of greater than
0.05 km/km2 reflected the highest connectivity in these regions, which mainly comprised
the national railway transportation hub. A railway network density of 0.03–0.05 km/km2

reflected a high connectivity in these regions, which were mainly the important node cities
along the railway. A railway network density of 0.01–0.03 km/km2 reflected medium
connectivity in these regions, which were mainly the cities with stations along the railway
line. A total of 44.79% of China’s counties had no railway access, reflecting that these areas
relied mainly on other modes of transportation and were mainly distributed in large areas
of western China.

The distribution pattern of population-based railway network density and economy-
based railway network density differed significantly from the traditional railway network
density. The population-based railway network density and economy-based railway net-
work density were the largest in the northeast region, Inner Mongolia, Qinghai, and parts
of Tibet in China, while the central and eastern regions with large population density had
smaller population-based railway network density and economy-based railway network
density. Studies by Li (2018) and others showed that 12% of China’s land carries 60% of pop-
ulation and 76% of GDP, and the Beijing-Tianjin-Hebei, Shandong Peninsula, Yangtze River
Delta and Central Plains urban agglomerations have the highest population density [38].
The above analysis indicates that there is some mismatch between Chinese railway network
layout and population and urban layout. Therefore, we need to improve the railway net-
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work construction in central and eastern regions with large population densities, especially
Beijing-Tianjin-Hebei, Yangtze River Delta, and other key urban agglomerations.

Figure 3. Distribution pattern of railway network accessibility.

3.2. Spatial Interaction Distribution Pattern of Urban Network
3.2.1. Spatial Distribution Pattern of Total Economic Connection in China

The total amount of urban external economic connection reflects the sum of all the
“external flows” of a certain city, which better reflect the status of a certain city in the
national urban spatial interaction network. This concept represents the impact of rail-
way construction on the changes of “gravity” in a certain city [22]. The spatial pattern
of the total external economic connection in China is shown in Figure 5. At the national
level, the total external economic connection in China showed a decreasing trend from
the east to the west; the total in the eastern region was significantly higher than that of
the central region, and much higher than that of the western region. The cities where
the external economic connection was more than 30 (100 million·10 thousand/h2) had
the highest status within the national urban spatial interaction network and were mainly
the eastern megalopolis and central provincial capitals. The top 10 cities with the highest
urban external economic connection were Beijing, Chongqing, Tianjin, Shanghai, Shenzhen,
Hangzhou, Guangzhou, Xi’an, Foshan, and Wuhan. The cities where the external economic
connection was 20–30 (100 million·10 thousand/h2) had high positions within the national
urban spatial interaction network and were mainly distributed around the cities with the
highest external economic connection. The cities where the external economic connection
was 5–20 (100 million·10 thousand/h2) had a medium status in the national urban spa-
tial interaction network, and they were mainly small and medium-sized cities along the
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railway. The cities where the external economic connection linkages were fewer than 5
(100 million·10 thousand/h2) had the lowest status in the national urban spatial interaction
network and were mainly distributed in counties with poor economic development along
the railway.

Figure 4. Distribution pattern of railway network density. (a) Distribution pattern of traditional
railway network density; (b) distribution pattern of population-based railway network density;
(c) distribution pattern of economy-based railway network density.

Figure 5. Spatial distribution of total economic connection in China.
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3.2.2. Spatial Distribution of the Top 50 Cities Ranked by Interurban Economic Connection

The interurban economic connection reflects the concept of “flow”, which measures
the impact of railway construction on the interaction among cities. Spatial distribution of
the top 50 cities ranked by interurban economic connection is shown in Figure 6. The top
50 cities ranked by interurban economic connection showed “diamond shape” distribution
characteristics. Wuhan was located in the center of the “diamond” distribution. The four
diamond-shaped pairs were the Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River
Delta, and Chengyu urban agglomerations. The results indicated that the railway network
strengthened the economic connection among the regional central cities. The strongest
economic connection between Beijing and Shanghai reflected the close connection between
the political and economic centers of China. The top five city pairs ranked by interurban
economic connection were Beijing-Shanghai, Chongqing-Shanghai, Beijing-Chongqing,
Tianjin-Shanghai, and Shanghai-Guangzhou. Chengdu and Chongqing were the important
cities in the western region, and the economic connection between Chongqing and other
cities was much greater than Chengdu.

Figure 6. Spatial distribution of the top 50 cities ranked by interurban economic connection in China.

Based on mobile signal and OD data from China Unicom in 2018, we characterized the
urban network spatial connection and structure using the gravity model [39]. The spatial
characteristics also conformed to the “diamond” distribution and were consistent with the
conclusion of this study (Figure 7). Therefore, the research results of various data sources
have shown that the characteristics of urban network spatial connection and structure in
China are not limited by data selection, revealing that China’s urbanization has entered the
era of urban agglomeration and metropolitan circle. Promoting the development of urban
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agglomerations and cultivating modern metropolitan areas have become key tasks in the
new type of urbanization in China. In recent years, China has launched the Coordinated
Development of the Beijing-Tianjin-Hebei Region, Guangdong-Hong Kong-Macao Greater
Bay Area strategy, and the strategy for integrated development of the Yangtze River Delta
are all committed to building a world-class urban agglomeration, the Greater Bay area
and the metropolitan area, so as to drive high-quality urbanization and participate in
international competition and cooperation at a higher level.

Figure 7. Spatial distribution of the top 200 cities ranked by interurban economic gravity.

4. Discussion
4.1. Spatial Connection and Structure of Urban Agglomerations

There are many distribution structures of urban agglomerations according to different
criteria and principles. In China, the main structures of urban agglomerations are Shimou
Yao’s “6 + 7” plan [40], Chaolin Gu’s “3 + 3 + 7 + 17” plan [41], and Chuanglin Fang’s
”5 + 9 + 6” plan [42]. In this paper, we selected Chuanglin Fang’s “5 + 9 + 6” plan to
frame the spatial connection and structure in regard to urban agglomeration because this
plan considered China’s major function-oriented zoning [43] and national urban system
planning of 2005–2020 [44] and can describe urban agglomeration comprehensively. The
distribution structure of urban agglomeration according to the “5 + 9 + 6” plan is shown in
Figure 8, in which pink areas represent five national-level urban agglomerations, yellow
areas represent nine regional-level urban agglomerations, and green areas represent six
local-level urban agglomerations.
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Figure 8. Distribution structure of urban agglomeration following the “5 + 9 + 6” plan in China.

According to this division principle, the weighted average travel time of each urban
agglomeration is shown in Figure 9. In general, the accessibility of national-level urban
agglomerations was greater than that of regional-level urban agglomerations, and far
greater than that of local-level urban agglomerations. Central Plains urban agglomeration
had the shortest weighted average travel time, followed by the Pearl River Delta urban
agglomeration and Jianghuai urban agglomeration. Because of the influence of geographi-
cal location, terrain, and other restrictive factors, the accessibility of the Chengyu urban
agglomeration on a national level was relatively low; thus, other modes of transportation
such as the expressway and aviation should contribute to strengthening its connection with
the outside population, economy, and industry.

The differences in total economic connection of the 20 urban agglomerations is shown
in Figure 10. In general, the total economic connection of national-level urban agglomera-
tions was greater than that of regional-level urban agglomerations, and far greater than that
of local-level urban agglomerations. The Pearl River Delta urban agglomeration had the
highest total economic connection, followed by the Yangtze River Delta urban agglomera-
tion and Beijing-Tianjin-Hebei urban agglomeration, and the total economic connection of
these three urban agglomerations accounted for 46% of all urban agglomerations. The Pearl
River Delta urban agglomeration held the highest position in the urban spatial interaction
network, with the closest external connection and the strongest external radiation capacity.
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Figure 9. Weighted average travel time in 20 urban agglomerations.

Figure 10. Total economic connection in 20 urban agglomerations.

According to the National Comprehensive Three-dimensional Transportation Network
Planning document issued on 24 February 2021, the Beijing-Tianjin-Hebei region, Yangtze
River Delta, Guangdong-Hong Kong-Macao Greater Bay Area, and Chengyu economic cir-
cle are considered to be the main axes; the Triangle of Central China, Shandong Peninsula,
West Side of the Straits, Central Plains, Harbin-Changchun, Liaozhongnan, Beibu Gulf, and
Guanzhong Plain serve as corridors; Hubaoeyu, Qianzhong, Dianzhong, central Shanxi,
Tianshan north slope, Lanxi, Ningxia along the Yellow River, Lhasa and Kashgar are the
channels building the main backbone of the national comprehensive three-dimensional
transportation network based on the transportation connection intensity [3]. This plan
is consistent with the procedures revealed by the accessibility and the total economic
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connection of urban agglomerations. The result will better support the national compre-
hensive three-dimensional transportation network planning and verify the rationality of
the planning.

4.2. Characteristics of Spatial Connection Pattern and Sustainable Development

The role of transport in sustainable development was first recognized at the 1992
United Nation’s Earth Summit and reinforced in its outcome document—Agenda 21.
Sustainable transportation can enhance economic growth and improve accessibility. In the
2030 Agenda for Sustainable Development, sustainable transport is mainstreamed across
several SDGs and targets, especially those related to food security, health, energy, economic
growth, infrastructure, and cities and human settlements [45]. SDG 9.1 recommends
developing quality, reliable, sustainable, and resilient infrastructure, including regional
and transborder infrastructure, to support economic development and human well-being,
with a focus on affordable and equitable access for all. Based on the characteristics of the
spatial connection pattern of this study and the sustainable development target 9.1, we
analyzed the correlation between the total economic connection and GDP, and the railway
passenger volumes and GDP, as shown in Figure 11. The analysis indicated that the total
economic connection and railway passenger volume are positively correlated with GDP,
with correlation coefficients of 0.74 and 0.67, respectively.

Figure 11. Characteristics of spatial connection pattern and sustainable development. (a) The correla-
tion between total economic connection and GDP; (b) The correlation between railway passenger
volumes and GDP.

According to the national comprehensive three-dimensional transportation network
planning, by 2035 the railway network, which is the backbone of the national compre-
hensive transportation network, will reach around 200,000 km, and of these, high-speed
railway will be 70,000 km and ordinary railway will be 130,000 km. This will effectively
promote the more sustainable development of transportation and social economy.

4.3. Contributions and Future Improvements

The spatial pattern of the top 50 cities ranked by interurban economic connection
based on the big data of railway passenger flow appeared as a “diamond shape”. The
four vertices of the diamond were the Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl
River Delta, and Chengyu urban agglomerations. This diamond pattern was basically
consistent with the T-shaped space that has outlined China’s regional development for a
long time. Relevant research results based on railway passengers, aviation passenger flow,
and Tencent migration data have also proved the universality of this law [5,46,47].

The weighted average travel time, railway network density, and economic connection
model used in this study are typical methods for describing the spatial connection and
pattern and better reflect the characteristics of spatial connection and pattern. This study
enriches the “flow space” theory and more fully describes urban network spatial connection
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and structure in China by considering the three perspectives of time, space, and interaction.
The results showed that there was a mismatch between the layout of the railway network
and the population. It will still be necessary to focus on strengthening the construction
of transportation infrastructure in urban agglomerations and densely populated areas in
the future.

With the increasing maturity of big data (such as RS, GPS, LBS, LSS), new data
and methods have started to appear. Because of the high accuracy, large samples of
mobile phone data, and the synthesis of various spatial flow information, the study of
population flow and spatial connection pattern based on mobile phone data has increasingly
become a hot spot that explores the geographical boundaries of human flow, human
individual flow mode, travel behavior, and the urban spatial structure [48–51]. In the
future, mobile signal and OD data from China Unicom will be used to accurately depict
and dynamically simulate the urban spatial connection in China, which can provide a new
research perspective and method reference for spatial interaction research.

5. Conclusions

Based on the big data of railway passenger flow, the weighted average travel time,
railway network density, and the economic connection model were selected to analyze the
spatial connection and pattern of China’s urban network in 2016 from the three perspectives
of time, space, and interaction, respectively, in order to provide guidance and suggestions
for the development of national comprehensive three-dimensional transportation network
planning, regional spatial structure optimization, and sustainable development. The
specific conclusions are as follows:

(1) The accessibility of the railway network presents strip distribution characteristics
and reflects significant differences between east and west, and the accessibility of the
railway network in the eastern region is higher than that in the western region. The ac-
cessibility of national-level urban agglomerations is greater than that of regional-level
urban agglomerations, and far greater than that of local-level urban agglomerations.

(2) The railway network density presents regional differences. The railway network
density in the eastern region is much greater than that in the western region. Areas
with large railway network density are mainly concentrated in the urban agglomera-
tions of Beijing-Tianjin-Hebei, Central Plains, Yangtze River Delta, Jianghuai, and the
Triangle of Central China. There is some mismatch between China’s railway network
layout and population and urban layout. We must strengthen the railway network
construction in central and eastern regions with large population densities, especially
the Beijing-Tianjin-Hebei, Yangtze River Delta, and other key urban agglomerations.

(3) The total external economic connection in China shows a decreasing trend from the
east to the west, as the eastern region is significantly higher than the central region,
and much higher than the western region. The total economic connection of national-
level urban agglomerations is greater than that of regional-level urban agglomerations,
and far greater than that of local-level urban agglomerations. The Pearl River Delta
urban agglomeration had the highest total economic connection. The top 50 cities
ranked by interurban economic connection showed a “diamond shape” distribution.
The four diamond-shaped pairs were Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl
River Delta, and Chengyu urban agglomerations.

Traditional research focuses on regional space and urban organizations in the geo-
graphical sense, and we should respond positively to the impact of factors such as informa-
tion technology flow and technological innovation in virtual space. With the emergence
of the global urban network, it will be important to explore the vertical connection with
the help of various attribute data, and the study of the network structure, function, and
relationships among cities and regions at different scales will become a new focus.



Land 2022, 11, 225 17 of 18

Author Contributions: Conceptualization, M.L. and B.H.; methodology, X.L. and W.L.; software, B.H.;
validation, Y.F.; formal analysis, M.L. and W.G.; investigation, M.L.; resources, M.L.; data curation,
M.L.; writing—original draft preparation, M.L.; writing—review and editing, M.L.; visualization,
M.L. and W.G.; supervision, W.G. and R.G.; project administration, Z.L.; funding acquisition, M.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Humanity and Social Science Youth Foundation of the
Ministry of Education of China, grant number 19YJCZH081, and the Open Fund of the Key Laboratory
of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, grant numbers
KF-2020-05-013 and KF-2020-05-035.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for the “Evaluation method and optimization strategy
of transportation network connection value based on breaking points model” and “Research on
Dynamic Connection of Guangdong-Hong Kong-Macao Greater Bay Area Based on Big Data of
Traffic Flow” projects of Shenzhen University. We also would like to thank Jian Sun, who works at
Jilin University and gave many suggestions for improving this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, D. About the “14th Five-Year Plan”: Fields and Understanding. Sci. Geogr. Sin. 2020, 40, 1–5.
2. Ministry of Transport of the People’s Republic of China. Statistical Bulletin on the Development of the Transportation In-

dustry 2020. Available online: https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html (accessed on
17 November 2021).

3. Ministry of Transport of the People’s Republic of China. The Central Committee of the Communist Party of China and the State
Council issued the “National Comprehensive Three-dimensional Transportation Network Planning Outline”. Available online:
http://www.mot.gov.cn/2021zhengcejd/zongheltjtwghtj/xiangguanzhengce/202102/t20210225_3527771.html (accessed on
17 November 2021).

4. Li, M.; Guo, R.; Li, Y.; He, B.; Chen, Y.; Fan, Y. Distribution characteristics of the transportation network in China at the county
level. IEEE Access 2019, 7, 49251–49261. [CrossRef]

5. Li, M.; Guo, R.; Li, Y.; He, B.; Fan, Y. The Distribution Pattern of the Railway Network in China at the County Level. ISPRS Int. J.
Geo-Inf. 2019, 8, 336. [CrossRef]

6. Li, M. The Study on Spatial Structure Evolution of Three Major Urban Agglomerations in China; Jilin University Press: Changchun,
China, 2018.

7. Castells, M. The Informational City: Information Technology, Economic Restructuring, and the Urban-Regional Process; Basil Blackwell:
Oxford, UK, 1989.

8. Castells, M. End of Millennium: The Information Age: Economy, Society and Culture; Basil Blackwell: Oxford, UK, 1998.
9. Parnham, R. To What Extent Has Research Conducted by the GaWC Research Network Aided Our Understanding of Large EU

Law Firm Geography? University of Westminster: London, UK, 2016.
10. Yarwood, J.; Egeraat, C.; Sokol, M. POLYNET Action 1.1: Commuting and the Definition of Functional Urban Regions, Greater Dublin;

Pulmonary function testing: Saunders, UK, 2005.
11. Zhang, X.; Li, Z.; Change Loy, C.; Lin, D. Polynet: A pursuit of structural diversity in very deep networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 718–726.
12. Yin, P.; Lin, Z.; Prideaux, B. The impact of high-speed railway on tourism spatial structures between two adjoining metropolitan

cities in China: Beijing and Tianjin. J. Transp. Geogr. 2019, 80, 102495. [CrossRef] [PubMed]
13. Louail, T.; Lenormand, M.; Picornell, M.; Barthelemy, M. Uncovering the spatial structure of mobility networks. Nat. Commun.

2015, 6, 6007. [CrossRef]
14. Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge: New York, NY, USA, 2009.
15. Thompson, C.A.; Saxberg, K.; Lega, J.; Tong, D.; Brown, H.E. A cumulative gravity model for inter-urban spatial interaction at

different scales. J. Transp. Geogr. 2019, 79, 102461. [CrossRef]
16. Yan, X.Y.; Zhou, T. Destination choice game: A spatial interaction theory on human mobility. Sci. Rep. 2019, 9, 9466. [CrossRef]
17. Rong, P.; Zheng, Z.; Kwan, M.P.; Qin, Y. Evaluation of the spatial equity of medical facilities based on improved potential model

and map service API: A case study in Zhengzhou, China. Appl. Geogr. 2020, 119, 102192. [CrossRef]
18. Griffith, D.A. Spatial Autocorrelation in Spatial Interaction; Springer: Berlin, Germany, 2009.
19. Reilly, W.J. Methods for the Study of Retail Relationships; University of Texas: Austin, TX, USA, 1929.
20. Converse, P.D. New laws of retail gravitation. J. Mark. 1949, 14, 379–384. [CrossRef]

https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html
http://www.mot.gov.cn/2021zhengcejd/zongheltjtwghtj/xiangguanzhengce/202102/t20210225_3527771.html
http://doi.org/10.1109/ACCESS.2019.2910299
http://doi.org/10.3390/ijgi8080336
http://doi.org/10.1016/j.jtrangeo.2019.102495
http://www.ncbi.nlm.nih.gov/pubmed/32288379
http://doi.org/10.1038/ncomms7007
http://doi.org/10.1016/j.jtrangeo.2019.102461
http://doi.org/10.1038/s41598-019-46026-w
http://doi.org/10.1016/j.apgeog.2020.102192
http://doi.org/10.1177/002224295001400303


Land 2022, 11, 225 18 of 18

21. Wilson, A.G. A statistical theory of spatial distribution models. Transp. Res. 1967, 1, 253–269. [CrossRef]
22. Guo, D.; Chen, L. Prediction of the Spatial Structure of Cruise Market Based on Spatial Gravity Model—A Case Study of Shanghai

Cruise Port. In Proceedings of the 2020 International Conference on Power, Energy, Electrical and Environmental Science,
Chengdu, China, 29–30 June 2020.

23. Yeghikyan, G.; Opolka, F.L.; Nanni, M.; Lepri, B.; Lio, P. Learning Mobility Flows from Urban Features with Spatial Interaction
Models and Neural Networks. In Proceedings of the 2020 IEEE International Conference on Smart Computing, Bologna, Italy,
22–25 June 2020.

24. Hansen, W.G. How accessibility shapes land use. J. Am. Plan. Assoc. 1959, 25, 73–76. [CrossRef]
25. Morris, J.M.; Dumble, P.L.; Wigan, M.R. Accessibility indicators for transport planning. Transp. Res. Part A Gen. 1979, 13, 91–109.

[CrossRef]
26. Shen, Q. Spatial technologies, accessibility, and the social construction of urban space. Comput. Environ. Urban Syst. 1998, 22,

447–464. [CrossRef]
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