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Abstract: With their significance in connecting socio-economic development and related eco-environmental
consequences, land use transitions have gradually become the focus of land change science and
sustainability science. Although various research studies have determined the ecological effects
of land use transitions and provided suggestions to regulate them, few studies have investigated
the different ecological stress of construction lands from the perspective of their spatial locations in
ecologically differentiated regions. Taking economically developed and highly urbanized southern
Jiangsu in Eastern China as an example, we developed a process-based method to indicate the
spatial heterogeneity of ecological suitability and divided southern Jiangsu into five-level ecological
zones accordingly. Considering that construction lands in ecological zones with higher ecological
suitability levels cause greater ecological stress, we evaluated the ecological stress levels of incremental
construction lands at different stages after 1990. Then, we carried out the calculation of county-level
ecological stress and county-level zoning based on both the area and ecological stress level of their
incremental construction lands. Results indicated that ecological zones with the highest to lowest
ecological suitability levels accounted for 49.85%, 25.73%, 15.56%, 6.51%, and 2.34%, respectively.
The majority of the incremental construction lands had the highest and moderately high ecological
stress levels, and they were mainly distributed in areas along the Yangtze River and around Taihu
Lake. The general ecological stress level of southern Jiangsu was at a relatively high level at each
stage, but the county-level patterns of ecological stress levels were spatially different. As determined
from the relationship between the amount of incremental construction lands and the average stress
level associated with these lands in each unit, four types of zones, i.e., H-H, H-L, L-H and L-L zones,
were identified, and targeted suggestions on land use regulations were proposed. We conclude
that the spatial distribution of incremental construction lands significantly affects their ecological
consequences from the perspective of maintaining ecosystem integrity. Both construction lands and
ecological suitability are location specific, so the location-oriented evaluations could provide an
effective approach for determining the spatial patterns of land use transitions based on spatially
differentiated ecological consequences. It is essential to propose location-specific policies to carry out
spatially precise ecological restoration and the redistribution of incremental construction lands.

Keywords: land use transitions; ecological stress; ecological process; construction lands; location;
southern Jiangsu; China

1. Introduction

Since the late 1970s, unprecedented urbanization and industrialization have taken
place in China [1,2]. According to the China Statistical Year Book in 1987 and 2016, the
scale of construction land in China was reported to be 386,000 square kilometers in 2015,
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accounting for 4.1% of the total land area, and this area has expanded by 190% since 1986.
The rapid expansion of construction lands has not only resulted in various issues, such as
social conflicts and economic polarization [3–5] but has also imposed serious challenges
associated with food deficits and ecological security [6–8]. Moreover, land use transitions
have taken place recently and have become the focus of land use research, especially in rapid
developed and urbanized China [9–11]. The ecological effects of recent land use transitions
are more diverse and complicated than traditional land use changes [12,13]. Aiming
to promote sustainable development and coordinate land development and ecological
protection, the current state of research suggests that assessing the spatial stress associated
with land use transitions and the expansion of construction lands is urgent for providing
insight into policymaking and for regulating land use transitions [14,15].

Existing published research has focused on ecological stress assessments of the ex-
pansion of construction lands from various perspectives and at different levels. In early
studies, many different indicators and metrics were designed to analyze the state of or
spatial and temporal changes in regional ecosystems, including the areas and types of
construction lands, ecosystem services, ecological vulnerability and various landscape-level
metrics [16–18]. These methods are still widely used with the help of multi-source land
use, land cover or ecological/environmental data. The abovementioned studies effectively
indicated the ecological consequences of land use transitions from certain perspectives, but
the cause of the above ecological consequences i.e., land use transitions, have not been given
sufficient attention [19]. For land use transitions, it is widely accepted that the land use
morphology includes dominant morphology and recessive morphology [20,21]. The spatial
pattern of land use types, especially the location of construction lands, is among the most
significant topics of land use transition research [9,19]. However, some direct indicators
reflecting the state or change process of land use have been proposed recently, such as
the amount and proportion of construction lands [19,22]. Some complicated metrics have
been proposed by adopting the amount or proportion of land use as an output-oriented
or input-oriented parameter [23,24]. However, the location of construction lands was
rarely considered [25,26].

Ecosystems are characterized by integrative and mutually relevant components, so the
protection of a specific ecological process is critical for improving the efficiency of ecological
protection [27–29]. However, the ecological suitability is spatially differentiated, and dif-
ferent locations in certain ecosystem are of unlikely significance in maintaining ecosystem
health [30,31]. Moreover, according to the landscape ecology theory, maintaining ecological
processes by creating continuous ecological corridors is of equal or even higher importance
than restoring some landscape patches [32,33]. Landscape structures, patterns, and pro-
cesses are highly interrelated and interactive, and protected ecological processes promote
landscape connectivity and avoid fragmentation among isolated patches [34,35] Therefore,
the spatial differentiation of ecological suitability should be considered in evaluating the
ecological consequences of construction lands [19].

On the other hand, the land suitability for development is influential for the spatial
expansion of construction lands, and lands with high development suitability are usually
the optimal area for land development and the allocation of construction lands [36,37].
Construction lands might be location at zones with high development suitability before the
21st century, while the ecological suitability of those zones is neglected sometimes, causing
obvious ecological stress accordingly [38,39]. The location of construction lands should
be emphasized, as the chosen locations are critically significant in maintaining regional
ecological safety by safeguarding and controlling ecological processes [25,40]. Although
some researchers have carried out studies to indicate the effect of location on the ecological
stress associated with construction lands, in these studies, only the effects of construction
lands at certain stages were analyzed [19,26]. The expansion of construction lands reflects
the spatiotemporal patterns of land use transitions, and targeted studies are still needed to
better indicate the different ecological stress levels caused by the spatially differentiated
expansion of construction lands.
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The ecological stress effect caused by the locations of construction lands is influenced
by the spatial heterogeneity of regional ecosystems, and it is widely accepted that construc-
tion lands in regions with higher ecological suitability levels cause higher ecological stress
to regional ecological safety [26,35]. Accordingly, it is of primary importance to evaluate the
spatial heterogeneity of ecological suitability [41,42]. Early studies were mostly conducted
with the help of single-element or multifactor assessment approaches, and the importance
of ecological processes was not significantly emphasized [25,43]. To reveal the role of these
ecological processes, conservation biologists have developed various methods, including
biotelemetry, tagged release capture, mass tagged capture, and species surveys, to track
the movement of specific species and determine the dispersal processes that promote
species migration [44,45]. However, the methods listed above are often difficult and costly
at the regional scale, and high-efficiency model simulations with low data requirements
have been widely adopted, such as cellular automata (CA) models, system dynamics (SD)
models, and other spatially explicit models, (see, for example, [46–49]). Among these
models, the minimum cumulative resistance (MCR) model is one of the most widely used
simulation models. This model has its roots in the recognition of dispersal processes or
“stepping stones” and was recently widely used in ecological process simulations and
ecological network constructions [50–52]. Accordingly, spatial differences in ecological
suitability have been effectively identified from the perspective of maintaining necessary
ecological processes [19,43,53].

Overall, the ecological stress caused by construction lands differs spatially, and these
differences are caused by the spatial locations of construction lands and the location-related
differentiation of ecological suitability. The spatial conflict between ecological protection
and expansion of construction lands existed and brought challenges to regional sustainable
development. However, the spatial differentiation of ecological suitability and related
ecological stress of construction lands during different stages of land use transitions have
not been analyzed. To better solve the above-mentioned issues and promote regional
sustainable development by optimizing the spatial pattern of land development, it is
urgent to consider ecological process analyses to indicate ecosystem heterogeneity and
to consider the location effect of construction lands to assess the associated ecological
stress level [54,55].

We chose economically developed and rapidly urbanized southern Jiangsu in Eastern
China as an example and tried to answer the following questions: (1) How do we indicate
the spatial differentiation of ecological suitability, especially from the perspective of main-
taining necessary ecological process? (2) What are the spatial patterns of the expansion
of construction lands and how can we evaluate their ecological stress caused by differ-
ent locations during transitional stages? (3) What are the spatial patterns and temporal
changes of differential ecological stress of construction lands? In the following parts, we
firstly provide a brief introduction of southern Jiangsu and the adopted methodology,
examine the spatial ecological suitability pattern based on the significance of maintaining
ecological processes, and then evaluate the differentiated ecological stress levels caused
by the presence of incremental construction lands at different stages. Finally, we discuss
our potential contributions and policy implications from the perspectives of promoting
ecological processes and optimizing the spatial distribution of construction lands.

2. Methodology
2.1. Study Area

Southern Jiangsu is located in the Yangtze River Delta region (YRD) of Eastern China
covers a land area of 28,000 km2. There are five prefectural cities in southern Jiangsu
(i.e., Nanjing, Wuxi, Changzhou, Suzhou, and Zhenjiang), and these cities are further
divided into 33 county-level units (Figure 1a). It is one of the most developed regions in
China [2]. In 2015, it had 33.24 million residents and a regional gross domestic product
(GDP) of RMB 4151.87 billion, which were about 1.58 and 14.33 times those in 1990. As
population and industries have grown rapidly in this region, construction lands have ex-
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panded dramatically (Figure 1b). After 1990, the expansion of construction lands was about
4818 km2, and the total area of construction lands reached 6617 km2 by 2015, accounting for
23.45% of the total regional land area [26]. The urbanization process of southern Jiangsu has
experienced several transitional stages influenced by the interactions of industrialization,
urbanization, globalization and marketization [40,56]. Land use transitions occurred ac-
cordingly, which are represented by the changing spatial and temporal expanding patterns
of the construction lands at different stages [57,58]. However, the ecological effects and
their differences of construction lands that occur during several different transitional stages
are rarely researched, especially from the perspective of differentiated spatial location
of construction lands [19]. As the rapid expansion of construction lands has occupied a
large amount of ecologically suitable lands and brought obvious ecological destruction
and environmental degradation, it is necessary to conduct detailed research and provide
insight into the spatial and temporal ecological stress patterns caused by the expansion of
construction lands.

Figure 1. Administrative divisions, topography and expansion of construction lands in southern Jiangsu.

2.2. Methodologies and Data
2.2.1. Model Description for Ecological Process Simulations

As discussed above, the ecological effects of construction lands are location specific,
and more ecologically suitable regions experience higher ecological stress levels when land
development occurs there [19]. Moreover, the spatial differentiation of ecological suitability
is affected by the importance of maintaining ecological processes. Besides the process of
species dispersal, the expansion of ecological spaces is also a typical ecological process, and
its simulation is feasible with some originally species-specific methods, including the MCR
model [48,53]. As the MCR values of the above model indicate the cumulative resistance
to the expansion of ecological spaces, zones with lower MCR values are more suitable
as potential ecological spaces [51,59]. Therefore, we first identified ecological suitability
through ecological process simulations with the MCR model. According to the studies of
Knaapen et al. [60], Yu [61] and Li et al. [59], the MCR model can be expressed as follows:

MCR = fmin ∑i=m
j=n Dij × Ri (1)

where f is a monotonically increasing function that indicates the least resistant relation
between unit i and source unit j under the restriction of a certain resistance surface, min
denotes the minimum cumulative resistance value produced in different processes from
unit i to unit j, Dij is the spatial distance between i and j, and Ri represents the resistance
of cell i on the route from unit i to j. The MCR value reflects the minimum cumulative
resistance and maximum migration accessibility or ecological spatial expansion ability of
species from the source to the target.
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Based on the MCR analysis, the most accessible paths (i.e., potential ecological pro-
cesses) between ecological sources and target patches can be identified. The MCR values of
different patches denote their resistance to or suitability for the migration of species or the ex-
pansion of ecological spaces. Patches with higher MCR values are less suitable for ecological
expansion and are accordingly defined as having lower ecological suitability levels [61].

2.2.2. Model Variables

All the aforementioned analyses were conducted with the help of a cost–distance
module in Esri’s geographical information system ArcGIS after two essential variables were
obtained. The “source” includes the input variables i and j in Equation (1) and refers to
landscape patches that have suitable habitats and provide indispensable ecosystem services;
these patches could also be targets in the MCR analysis [48,61]. Based on existing research
and public documents, the important and ecological protection lands in a major function-
oriented zoning (MFOZ) region are considered naturally protected regions with significant
natural/cultural values and biodiversity [62]. Therefore, we chose the ecological protec-
tion lands among the published MFOZ information of Jiangsu as the source; these areas
included nature reserves, forest parks, scenic spots, geo-parks, drinking water protection
areas (DWPAs), flood storage and detention basins (FSDBs), fisheries and aquatic resource
protection areas (FARPAs), and important wetlands, water-dilution channels, ecological
forests, and water conservation and reserve areas (WCRPAs) (Figure 2a). The cumulative
area of these regions is approximately 7055 km2, accounting for 25% of southern Jiangsu.

Figure 2. Ecological protection lands and resistance surface of southern Jiangsu.

The other necessary variable, i.e., the resistance surface, is designed based on the
resistance values of different land use types; these values are relative and have different
extents [51,63]. Basically, land use types with higher human disturbance levels, such as
greater economies and population agglomeration degrees, usually have greater resistance
to the dispersal of common species [48,59]. Li et al. [59] and Liu et al. [53] used the values
1–5 to indicate differences in resistance values, while Su et al. empirically assigned the
resistances of different land use types, i.e., 0 for woodlands, 10 for water bodies and
shrublands, 30 for gardens and grasslands, 100 for paddy fields, 300 for dried fields, 400 for
construction lands and 500 for highways [52]. Adriaensen et al. pointed out that larger
relative differences among various land use types are more effective in deviating further
from the default straight line between the source and target patches [48]. Based on existing
studies and aiming to magnify the different ecological disturbance levels of land use types,
we herein assigned resistance values to different land use types, i.e., 1000 for urban lands,
500 for rural settlements and independent industrial and mining land (IIMLs), 200 for dry
croplands, 100 for paddy lands and unused lands, 50 for low-coverage grasslands, 30 for
moderate-coverage grasslands, 10 for high-coverage grasslands, sparsely forested lands,
and other forestlands, 5 for shrublands, and 1 for woodlands and water bodies. Based on
land use data collected in 1990, the resistance surface was obtained (Figure 2b).
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2.2.3. Recognition of Construction Lands with Different Ecological Stress Levels

Based on the MCR analysis results, regions with lower MCR values are widely ac-
cepted to be more suitable for the expansion of ecological spaces and hence, have higher
ecological suitability levels [26,53]. To quantitatively evaluate the ecological stress levels
of construction lands, it is essential to define the levels of ecological suitability. There
were no widely accepted quantitative criteria for determining it. Although more levels
could indicate the spatial differentiation of ecological suitability more precisely, it would
bring higher complexity accordingly. The recognition of five level suitability was widely
accepted, as it is both robust in indicating spatial differentiation and feasible in quantitative
calculation [19,53]. Moreover, it was enough to reflect the differences of the ecological stress
of construction lands. Therefore, we chose to identify five ecological zones with differ-
ent ecological suitability levels, i.e., we differentiated zones with highest, moderate-high,
moderate, moderate-low, and lowest levels. The zone with the highest MCR value had the
lowest ecological suitability, as greater disturbances were caused to ecological processes
in this region, and vice versa. Reclassification by the natural breaks (Jenks) method was
adopted to divide the whole region into subregions with different ecological suitability
levels, as this method could minimize differences within groups and maximize differences
among groups.

As mentioned above, the ecological stress associated with construction lands is affected
by the spatial distribution of the construction lands and the spatial heterogeneity of the
ecological suitability level. Basically, construction lands distributed in ecological zones with
higher ecological suitability levels cause greater ecological stress. To quantitatively calculate
their ecological stress levels, the construction lands in the five designated ecological zones
were assigned corresponding stress values, i.e., 5, 4, 3, 2 and 1 for lands in ecological
zones with the highest, moderate-high, moderate, moderate-low, and lowest ecological
suitability levels.

In this part, maps of both MCR values and zones with different ecological suitability
levels were obtained. The assigned ecological stress induced by the presence of construction
lands at different stages was also identified.

2.2.4. Calculation of County-Level Ecological Stress

As administrative districts, especially counties, are the basic units applied for land use
regulation and the implementation of related policies, we calculated the general ecological
stress levels corresponding to different units. The above analysis allowed the ecological
stress associated with construction lands and the amount of construction lands correspond-
ing to each unit in the five established ecological zones (i.e., zones with different ecological
stress levels) to be recognized with the help of ArcGIS software. For each unit, as the
amounts or proportions of construction lands with different ecological stress levels are
quite diverse, their general ecological stress level also differs. The general stress value can
be calculated with the following equation:

ESi =
∑m

j=1 Aij × sj

∑m
j=1 Aij

(2)

where ESi is the general ecological stress of unit i induced by the presence of construction
lands; Akj is the area of construction lands associated with ecological stress value j; Sj is the
ecological stress value of the abovementioned construction lands; and j is the stress level,
which varies from 1 to m, and m = 5, as five levels are identified in this research. Similarly,
the general ecological stress value of southern Jiangsu was also obtained.

As all construction lands were assigned ecological stress values from 1 to 5, the general
stress values of the 33 units and the whole of the southern Jiangsu region theoretically
ranges from 1 to 5. However, as construction lands are spatially concentrated in reality, the
general stress value might also have a specific extent. In this research, the obtained general
ecological stress ranged from 1.99 to 4.92, except in the city proper of Suzhou between
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2010 and 2015, when there were no incremental construction lands present. We designed
a unified classification standard to indicate the spatial differentiation of the county-level
ecological stress according to the results calculated for the 33 units at different stages (from
1.88 to 4.92), i.e., <2.00, 2.00–2.75, 2.75–3.50, 3.50–4.25, and 4.25–5.00.

2.2.5. County-Level Zoning Based on Both the Area and Ecological Stress Level of
Incremental Construction Lands

Both the amount of and ecological stress associated with incremental construction
lands are influential for the future land use regulation of a certain unit. Therefore, we
carried out county-level zoning after comparing these metrics in a given unit to the regional
average. To simplify this process and compare the results, the whole stage from 1990 to 2015
was chosen as the target phase. With 33 units as the input, the average area of incremental
construction lands and ecological stress level of southern Jiangsu were 146.04 km2 and 3.81,
respectively. Therefore, units with both greater construction land areas and higher stress
levels were defined as H-H zones. Similarly, H-L, L-H, and L-L zones were also identified.

2.2.6. Data Source and Processing

In this research, we aimed to quantitatively evaluate the ecological stress associated
with construction lands and indicate the process and spatial pattern of land use transi-
tions; to this end, land use data representing 1990, 1995, 2000, 2005, 2010 and 2015 were
adopted. These data were provided by the Data Center for Resources and Environmental
Sciences (RESDC) at the Chinese Academy of Sciences (http://www.resdc.cn, accessed on
22 May 2021) and were interpreted based on Landsat-Thematic Mapper (TM) images at
high precision. With land use data from 1990 to 2015, the expansion and spatial distribution
of incremental construction lands were obtained in five stages, i.e., 1990–1995, 1995–2000,
2000–2005, 2005–2010 and 2010–2015. Additionally, administrative division data were also
provided by RESDC. The sources input into the MCR model, i.e., the ecological protection
lands, were obtained from published MFOZ data representing Jiangsu.

3. Results
3.1. Spatial Distribution of Zones with Different Ecological Suitability Levels

The spatial distribution of MCR values was similar to the irregular spread of contour
lines. Basically, regions close to cities had higher MRCs, as more construction lands were
distributed in these regions, while water bodies and mountains/hills had lower MCR values
(Figure 3a). After reclassification, the five ecological zones with different MCR values and
ecological suitability levels accounted for 49.85%, 25.73%, 15.56%, 6.51%, and 2.34% of the
zones with the highest to lowest ecological suitability levels, respectively. The most suitable
zones (with the highest ecological suitability levels and lowest MCR values) were mainly
concentrated in areas surrounding Taihu Lake and the Yangtze River as well as in the
Yixing-Liyang and Mao mountainous regions, which are closer to ecological lands and have
low anthropogenic disturbance levels (Figure 3b). The ecological zones with the lowest
suitability levels were concentrated in urbanized areas, including in the cities of Nanjing,
Suzhou, Wuxi, and Changzhou and in eastern regions close to the Shanghai metropolitan
area (Figure 3b). These regions are characterized by widely distributed construction lands,
dense populations and industrial agglomerations.

3.2. Spatial Distribution of Incremental Construction Lands

After 1990, construction lands in southern Jiangsu expanded drastically, but showed
an obvious difference among different growth stages. The expansion of construction
lands was 974.65, 456.49, 767.18, 2123.28 and 496.55 at stages from 1990 to 1995, from
1995 to 2000, from 2000 to 2005, from 2005 to 2010, and from 2010 to 2015, respectively.
The period from 2005 to 2010 had the fastest growth, when the boost of export-oriented
economy caused rapid industrial development and the inflow of floating population as
China entered WTO. Hereafter, the expansion decreased obviously as some restrictive

http://www.resdc.cn
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policies on land development were proposed under the background of high land use
intensity. Basically, the expansion of construction lands at early stages was basically
promoted by the socioeconomic development, while the slowdown in recent years was led
by the restriction of land development and the protection of ecological lands and crop lands.

Figure 3. MCR values and zones with different ecological suitability levels in southern Jiangsu.

Among the five prefectural cites, Suzhou experienced the fastest construction land
growth, reaching 1892 km2. It accounted for 39.29% of the total increment in southern
Jiangsu. This is basically consistent with its proportion of economy and population, i.e.,
40.58% and 35.22%, respectively. Suzhou is closest to Shanghai in southern Jiangsu and is
also among the most developed cities in China, causing greater demand for construction
lands. In terms of county-level units, the cities and surrounding units of Nanjing, Suzhou,
Wuxi and Changzhou, as well as Jiangyin, Zhangjiagang, Taicang and Kunshan along the
Yangtze River, had greater expansion than other units (Figure 4). The expansion of Kunshan
was the largest, at approximately 13 times that of the city proper of Wuxi, the unit with the
lowest expansion. The expansion of the cities of Jiangning in Nanjing, Changshu, Wujiang
and Zhangjiagang in Suzhou, Jiangyin and Yixing in Wuxi and Wujin in Changzhou were
also great, with expansion amounts over 200 km2. In contrast, the expansion of Gaochun in
Nanjing and the cities of Suzhou and Wuxi were smaller, with expansion amounts less than
50 km2. In general, the units around Taihu Lake and along the Yangtze River dominated
the expansion of construction lands in southern Jiangsu after 1990. This is also consistent
with the pattern of population agglomeration and industrial development.

Figure 4. The expansion of construction lands in different units from 1990 to 2015.
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3.3. Spatial Differentiation of Incremental Construction Lands with Different Ecological
Stress Levels

In total, our overlay analysis of ecological zones and construction lands indicated
that the construction lands with the lowest, moderate-low, moderate, moderate-high, and
highest (from level 1 to 5) ecological stress values (i.e., those distributed in ecological
zones with ecological suitability levels of 1 to 5) were 153.52, 433.51, 1007.22, 1792.62,
and 1431.29 km2, respectively. The majority of these areas had highest and moderate-
high ecological stress levels, while areas with the lowest ecological stress made up the
smallest fraction.

The ecological stress associated with incremental construction lands showed similar
patterns in each stage (Figure 5). There were more lands with highest or moderate-high
stress levels than the other categories, while lands with the lowest stress levels made
up the smallest fraction. However, there were still slight differences among different
stages. From 1990 to 1995, the area of construction lands with moderate-high stress levels
was greater than the areas of construction lands with highest and moderate stress levels,
but construction lands with the highest stress levels were slightly larger than those with
moderate-high stress levels from 1995 to 2000. From 2000 to 2005 and from 2005 to 2010,
the area of lands with moderate-high stress levels again became dominant. From 2010
to 2015, the largest fraction was again replaced by lands with the highest stress level. In
general, construction lands with highest and high stress levels alternately dominated the
incremental construction lands, indicating that the ecological stress caused by incremental
construction lands remained at a high level in each stage.

Figure 5. Areas of incremental construction lands associated with different ecological stress levels.

Spatially, the construction lands with the highest ecological stress levels were mainly
distributed in areas along the Yangtze River and around Taihu Lake (Figure 6a). Wujiang,
Wuzhong and Binhu around Taihu Lake and Jiangyin, Zhangjiagang, and the cities of Zhen-
jiang and Nanjing along the Yangtze River had more lands with the highest stress levels.
Moreover, some county-level units with high proportions of waters, hills or mountains
also had large land areas with the highest stress levels, including Suzhou Industrial Park,
Lishui, Kunshan, Pukou, Jiangning and Yixing. In contrast, the lowest-stress construction
lands were mainly distributed in the surrounding units of cities, such as around the city
proper of Changzhou and the adjacent Xinbei, the city proper of Wuxi and the adjacent
Xishan, Xinwu, and Taicang, and Changshu and Kunshan in the eastern part of southern
Jiangsu. There were fewer ecological lands and with lower ecological suitability, and the
lower ecological stress was caused by construction lands.
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Figure 6. Spatial distribution of construction lands associated with different ecological stress levels in
each stage.

The spatial differentiation of construction lands associated with different ecological
stress levels showed similar patterns in each stage (Figure 6b). Areas associated with high
ecological stress levels were mainly concentrated at the units along the Yangtze River,
around Taihu Lake and in mountainous areas, while construction lands associated with
relatively low stress levels were basically distributed at cities or in some counties with
low ecological suitability levels, including in southern Taicang, eastern Changshu and
northwestern Kunshan.

3.4. Patterns of Units with Different Ecological Stress Levels

From 1990 to 2015, the general ecological stress level associated with incremental
construction lands was 3.81, characterizing a relatively high level. This is because the
majority of construction lands were of highest and moderately high ecological stress
levels. As this value is affected by the spatial differentiation of incremental construction
lands associated with different ecological stress levels, the average ecological stress level
associated with each unit differed significantly (Figure 7a). Among the units, the ecological
stress of the city proper of Changzhou was low (i.e., 2.38), while that of Binhu of Wuxi was
highest (i.e., 4.67) and was approximately 1.96 times that of the city proper of Changzhou.
Based on the reclassification results, eight units had ecological stress levels higher than 4.25,
and these units were mainly distributed around Taihu Lake and along the Yangtze River,
including Binhu and Yixing of Wuxi, Wuzhong and Wujiang of Suzhou, Dantu, Yangzhong
and the city proper of Zhenjiang, and Lishui of Nanjing. Conversely, there were no units
with stress levels lower than 2.00. The stress levels of 3 units were between 2.00 and 2.75,
and these units were mainly distributed along the Yangtze River, including Taicang of
Suzhou, Xinbei, and the city proper of Changzhou. Units with stress levels between 3.50
and 4.25 dominated the whole region, and the total number of units falling within this
range was 17, further indicating that the ecological stress associated with incremental
construction lands was at a relatively high level.
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Figure 7. Spatial distributions of units with different ecological stress levels in each stage.

Since 1990, the general ecological stress levels determined at each stage were 3.62, 4.04,
3.70, 3.88 and 3.86, showing a fluctuation trend of “increasing-decreasing-increasing”. The
spatial pattern of each stage showed similar characteristics to that of the whole stage, i.e.,
units with moderate-high stress levels dominated southern Jiangsu, followed by those with
the highest and moderate-low stress levels (Table 1; Figure 7b). Moreover, few units had
ecological stress levels below 2.00, including the city proper of Changzhou from 2000 to
2005 and Xinbei in Changzhou from 2010 to 2015. Specifically, as the construction lands in
the city proper of Suzhou remained stable from 2010 to 2015, the ecological stress level of
this unit was 0.

Table 1. Numbers of units with different ecological stress levels in each stage.

Stage Lowest
<2.00

Moderate-Low
2.00~2.75

Moderate
2.75~3.50

Moderate-High
3.50~4.25

Highest
4.25~5.00

1990–1995 0 4 6 14 9
1995–2000 0 3 4 15 11
2000–2005 1 4 5 15 8
2005–2010 0 3 6 14 10
2010–2015 2 1 6 14 10

Total 0 3 6 16 8

3.5. Zones with Different Amounts of and Ecological Stress Levels Associated with Incremental
Construction Lands

As determined from the relationship between the amount of incremental construction
lands and the average stress level associated with these lands in each unit, Moran’s I
value obtained from the local indicators of spatial association (LISA) analysis was −0.1531,
indicating that units with greater expansion areas had lower average stress values at the
county scale. The more construction lands expanded from 1990 to 2015 in a unit, the
lower the ecological stress level of that unit. According to the relationship between the
expansion amount of each unit and its average ecological stress level, four types of zones
were identified further (Figure 8).
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Figure 8. Zones with different construction land expansion extents and their corresponding ecological
stress levels.

(1) H-H zones. These zones included units with both greater construction land expan-
sion amounts and higher ecological stress levels than the corresponding regional averages,
comprising Jiangning of Nanjing, Jiangyin and Yixing of Wuxi, and Suzhou Industrial
Park, Wuzhong and Wujiang of Suzhou. These units were rapidly developing areas with
significant populations and industry agglomerations after 1990, causing the remarkable
expansion of construction lands. As they were also zones with higher ecological suitability,
the ecological stress caused by construction lands was at a high level. Taking the city proper
of Nanjing as an example, from 1990 to 2015, its population increased from 2.32 million
to 5.26 million, and its GDP increased from RMB 12.34 billion to 444.58 billion. However,
as water bodies and mountains are also widely distributed in this unit, they contributed
a higher ecological suitability level. Therefore, the rapid expansion of construction lands
brought more serious disturbances to ecological safety, and a higher ecological stress level
was caused accordingly.

(2) H-L zones. These zones comprised units with both less construction land expan-
sion and lower ecological stress levels than the corresponding regional averages, including
Danyang of Zhenjiang, Wujin of Changzhou, and Kunshan, Taicang, Changshu and Zhangji-
agang of Suzhou. These units contain developed areas with rapidly growing populations
and industry agglomeration after 1990, causing significant construction land expansion.
Kunshan was a typical case; in this city, the population increased from 0.56 million to
1.65 million and the GDP increased from RMB 1.86 billion to 308.00 billion. As the above
regions were also less ecologically suitable, the growth of a large amount of construction
lands did not cause high ecological stress levels.

(3) L-H zones. These zones included units with less of construction land expansion
but higher ecological stress levels than the regional averages. There were 13 units in this
category in total, accounting for 40% of all units, mainly including units surrounding
cities or in ecologically suitable regions. Although the expansion construction lands were
relatively small in these units, the ecological stress levels were higher than the regional
average. The construction lands of the city proper of Zhenjiang increased by approximately
106 km2, as its proportion of construction lands was high before 1990 and expansion of
construction lands was restricted accordingly. However, as this city is located along the
Yangtze River with a high ecological suitability level, its ecological stress level was 4.41,
much higher than the regional average (i.e., 3.81).
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(4) L-L zones. This category included units with both less construction land expansion
and lower ecological stress levels than the corresponding regional averages and comprised
Luhe of Nanjing, the city proper of Xinbei of Changzhou, the city proper of Suzhou, and the
cities of Xinwu and Xishan of Wuxi. This category mainly included cities or their adjacent
units. As mentioned above, these areas already had very high proportions of construction
lands before 1990, as they were urban centers with significant populations and industry
agglomeration in the early stage. With the increasing area of incremental construction
lands located in suburban areas, land development was limited. Meanwhile, early land
development reduced the ecological suitability level, so the subsequent expansion of
construction lands did not contribute to extensive ecological stress. Taking the city proper
of Suzhou as an example, the construction lands in this city expanded by merely 31 km2,
while the ecological stress level was 2.96, almost the lowest value determined among
all units.

4. Discussion

Rapid, intensive urbanization and the spatial expansion of construction lands intro-
duce significant ecological stress to regional eco-safety and sustainable development in
various ways [64,65]. It is among the topics of focus for academics to indicate the processes
and patterns of land use transitions by evaluating the ecological stress levels associated
with land use changes, especially with the expansion of construction lands [19]. Although
different attributes of construction lands influence the resulting ecological stress levels,
including the amount, proportion, detailed type and concentration degrees of industries
and populations, the location effect is receiving the most attention [66,67]. Aiming to deter-
mine the pattern of land use transitions based on the ecological stress levels related to the
spatial distribution of construction lands, we proposed an improved approach to evaluate
the ecological stress level from the perspective of the spatial distribution of incremental
construction lands. Taking the economically developed and densely populated southern
Jiangsu as the case, we carried out ecological process simulations to determine the spatial
differentiation of ecological suitability, identified the spatially variable ecological stress
levels associated with incremental construction lands based on their distributions, and
recognized different zones by comparing the incremental construction land areas and the
associated ecological stress levels.

To indicate the spatial differentiation of the ecological stress contributed by construc-
tion lands, it is essential to analyze the ecological suitability levels of different regions. In
regions with higher ecological suitability levels, the presence of construction lands generally
induces higher ecological stress levels [26,68]. Although various methods have been widely
adopted to evaluate ecological suitability, we chose to study suitability from the perspective
of maintaining the integrity of ecological processes, as unbroken ecological processes are of
the utmost importance for the conservation of biodiversity and ecosystem services [27,33].
With the support of the GIS spatial analysis function, we constructed ecological process
simulations with the help of the MCR model due to its superiority in combining GIS spatial
analyses with map making and operability in the data preparation process [48]. Based on
the identification of the sources and resistance surface, the potential ecological processes
and zones with different ecological suitability levels in southern Jiangsu were revealed.
The results indicated that the spatial differentiation of the indicated ecological suitability
was basically consistent with the physical geography and ecosystem features. The spaces
surrounding certain sources/targets were of higher ecological suitability levels, while the
built-up areas of cities were less suitable. Suitable ecological zones appeared not only
as patches, but also as corridors along suitable landscape patches, especially along some
continuous rivers. The importance of these indicated corridors in maintaining regional
ecological safety was revealed, as these corridors could increase the connectivity of patched
ecological spaces [69,70].
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The spatial expansion of construction lands was dramatic and showed significant
spatiotemporal differences from the perspective of their amount and spatial locations.
This result was consistent with the economic development and population inflows in
terms of the analyzed stages, and the period from 2005 to 2010, when the construction
lands expanded the most, was also the period with the fastest economic growth and
greatest population agglomeration. Spatially, the relationship between construction land
expansion and socioeconomic development was also highly positive. From the perspective
of the associated ecological stress, construction lands in zones with higher ecological
suitability levels brought more significant disturbances to the ecological processes and
hence, contributed to higher ecological stress levels. Basically, the incremental construction
lands corresponded to high ecological stress levels, and the average stress value was 3.81
with a maximum of 5.00, indicating that the spatial expansion of construction lands was
not ecologically friendly on the whole. From a quantitative perspective, only a limited area
of incremental construction lands was associated with low ecological stress levels. It is
suggested that the spatial expansion of construction lands should be restricted in southern
Jiangsu [71,72]. However, as the spatial location of incremental construction lands affected
the ecological stress value, these regulations should be spatially variable. In this study,
incremental construction lands associated with high ecological stress levels were widely
distributed and were mostly concentrated in some regions along Taihu Lake and the Yangtze
River. As strong interference with ecological processes occurs, construction concessions and
ecological restoration should be conducted in these regions [73]. However, such regions
were also the preferred areas for land development and industrial growth [36,74]. To
balance the relationship between ecological protection and land development, construction
lands should be expanded while trying to control the occupation of areas with the highest
ecological suitability levels, especially those that form ecological corridors [73,75]. Existing
construction lands with high ecological stress levels should be ecologically restored as they
occupy strategic points or potential corridors of regional ecological processes [25,27].

As counties are the basic units of governmental regulation regarding land development
in China, we further derived ecological stress results at the county level. Although the
spatial differentiation of county-level units with different ecological stress levels was slightly
variable among each stage, units with moderate-high and highest stress levels dominated
the study. As confirmed by the above results, a large amount of incremental construction
lands is associated with high ecological stress levels. Basically, units with high ecological
stress levels were concentrated around Taihu Lake and along the Yangtze River, where the
ecological suitability was higher than that in other regions [19]. As both the expansion
amount and spatial distribution of construction lands were related to different ecological
stress levels, we identified four types of zones by comparing their expansion areas and
ecological stress levels with the corresponding regional average values obtained for the
whole study area. The H-H zones had both greater construction land areas and higher
stress values; thus, it is suggested that the expansion of construction lands in these zones
be strictly controlled to decrease ecological disturbances. Moreover, this is also the focus
of ecological restoration, as the presence of a large amount of incremental construction
lands induces greater ecological stress. For the H-L zones, although the land development
was also fast, the resulting ecological stress was relatively low. Therefore, further land
development should be encouraged through supportive land policies. The L-H zones
caused high ecological stress with limited incremental construction lands, so further land
development in these zones should be moved to regions with low ecological suitability
levels [68,76]. Although the ecological stress level of the L-L zones was also low, land
development should also be restricted in these regions because they already have high
proportions of construction lands. Further land development in these regions is highly
likely to occupy ecologically suitable spaces and destroy regional ecological safety.
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5. Conclusions

The ecological protection and expansion of construction land are both location related,
and there are spatial conflicts between them. The ecological stress caused by construction
lands differs spatially, and these differences are caused by both the spatial locations of
construction lands and the location-related differentiation of ecological suitability. Aiming
to promote sustainable development and coordinate the relationship between land devel-
opment and ecological protection, with the help of the MCR model and ecological process
simulations, we identified the spatial differentiation of ecological suitability levels. Then,
we evaluated the ecological stress levels of incremental construction lands and county-level
zoning regions based on the amount of and ecological stress level associated with local
incremental construction lands during different stages of land use transitions. We con-
clude that the location of incremental construction lands significantly affects the ecological
consequences associated with the spatial differentiation of ecological suitability. Basically,
incremental construction lands located in ecologically suitable zones cause high ecological
stress. As the indicated ecological suitability level is obtained through an ecological process
analysis, the location-specific ecological stress level has an obvious influence on regional
ecological safety from the perspective of maintaining ecosystem integrity. Both construction
lands and ecological suitability are location specific, and we believe that location-oriented
evaluations could provide an effective approach for determining the spatial patterns of
land use transitions based on spatially differentiated ecological consequences. According
to these results, location-specific suggestions regarding land use regulations could also be
proposed, including suggestions for spatially precise ecological restoration and the spatial
redistribution of incremental construction lands.
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