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Abstract

:

An efficient, convenient, and accurate method for monitoring the distribution characteristics of soil salinity is required to effectively control the damage of saline soil to the land environment and maintain a virtuous cycle of the ecological environment. There are still problems with single-monitoring data that cannot meet the requirements of different regional scales and accuracy, including inconsistent band reflectance between multi-source sensor data. This article proposes a monitoring method based on the multi-source data fusion of unmanned aerial vehicle (UAV) multispectral remote sensing, Sentinel-2A satellite remote sensing, and ground-measured salinity data. The research area and two experimental fields were located in the Yellow River Delta (YRD). The results show that the back-propagation neural network model (BPNN) in the comprehensive estimation model is the best prediction model for soil salinity (modeling accuracy R2 reaches 0.769, verification accuracy R2 reaches 0.774). There is a strong correlation between the satellite and UAV imagery, while the Sentinel-2A imagery after reflectivity correction has a superior estimation effect. In addition, the results of dynamic analysis show that the area of non-saline soil and mild-saline soil decreased, while the area of moderately and heavily saline soils and solonchak increased. Additionally, the average area share of different classes of saline soils distributed over the land use types varied in order, from unused land > grassland > forest land > arable land, where the area share of severe-saline soil distributed on unused land changed the most (89.142%). In this study, the results of estimation are close to the true values, which supports the feasibility of the multi-source data fusion method of UAV remote sensing satellite ground measurements. It not only achieves the estimation of soil salinity and monitoring of change patterns at different scales, but also achieve high accuracy of soil salinity prediction in ascending scale regions. It provides a theoretical scientific basis for the remediation of soil salinization, land use, and environmental protection policies in coastal areas.
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1. Introduction


As an ecological problem, soil salinization has long been paid close attention to by governments and researchers worldwide. The Yellow River Delta (YRD) region has a shallow groundwater level, high salinity, and easy accumulation of groundwater salinity on the surface. Under different driving forces such as seawater intrusion, climate change, and human farming, its surface morphology and ecological environment have undergone dramatic changes [1,2]. Soil salinization has gradually become a major soil degradation and development problem facing the YRD in China, one that seriously restricts local agricultural productivity and food security [3,4]. Therefore, it is necessary to conduct re-al-time and accurate monitoring of soil salinization and its temporal and spatial dynamic changes in the YRD, which also prevents the deterioration of salinization, improves the ecological environment, and strengthens land management [5,6].



Traditional soil salinity measurement methods are accurate but time-consuming and labor-intensive [7,8], which is not conducive to monitoring soil salinity in large-scale areas. The rapid development of remote sensing technology since the 1990s has provided new ideas and methods for quantitative monitoring of soil salinity. Satellite remote sensing, such as Landsat, High Resolution, SPOT, and Sentinel, has been widely used in the quantitative estimation of soil salinity due to its large-scale and high-efficiency advantages [9]. UAV remote sensing technology realizes intelligent and rapid acquisition, processing, and analysis of high-resolution imagery data using GPS differential positioning technology, telemetry, remote control technology, and remote sensing technology [10,11,12,13,14]. A proximal sensing method, such as EM (Effective Microorganisms), has been widely used to monitor soil salinity globally. In particular, the quasi-3D joint-inversion between multiple sources of data provides additional more accurate and efficient methods for mapping soil salinity [15,16]. Although researchers have extensively researched the comprehensive application of multi-source data for saline soil monitoring and have achieved considerable results [17,18], most data sources are a combination of optical data and radar data, including the two different satellite remote sensing data methods. However, it is relatively lacking in the combination of satellite remote sensing, UAV remote sensing, and ground soil salinity measurement data.



The necessary premise for the reasonable prevention and control of soil salinization is to quickly and accurately obtain the spatial and temporal distribution of saline soil [19,20]. Scholars at home and abroad have performed the transformation and screening of different spectral parameters and related indices based on sensitive bands [20,21,22]. Based on the spectral characteristics of soil salinity, a large number of salinity indices such as Salinity Index 1-Salinity Index 6 (SI1-SI6) and the normalized difference salinity index (NDSI) have been established [7,23,24]. The research concluded that the recognition effect of the integrated band (covering the visible-near-infrared band and the combined band in the infrared spectral range) is superior to that of the independent band, and most of the vegetation index can be used as an estimation index of soil salinity content to reflect soil salinity indirectly [25,26]. In addition, linear regression methods such as support vector machines (SVM), partial least squares regression (PLSR), and machine learning methods such as backpropagation neural network (BPNN) and random forest (RF) are used in quantitative estimation and the estimation of soil salinity results [21,27,28,29,30]. Many combined, transformative, and innovative research methods have emerged for improving the accuracy of saline soil quantitative estimation using different remote sensing data sources for saline soils from varied regions [21,27,31,32,33]. However, the soil salinity sensitivity of different indices has strong regionality. In previous studies, the methods of spectral parameter selection and comparison of soil salinity estimation models were relatively common and single. A variety of modeling methods lack the sensitivity to verify the soil salinity with different band index combinations.



The study of the dynamic changes of soil salinization is a crucial and basic work for exploring the regional soil salinity variation pattern and formulating salinization management measures [34,35]. Land use types that change with time are unstable feature types. The stability of saline soils changes with land use type migration [36], as reflected in the dynamic changes of area of different grades of saline soils and the grade transformation between different grades of saline soils. Therefore, to further explore the stability and variability trends of different degrees of saline soils, it is necessary to analyze soil salinity dynamics in conjunction with land use types [37,38,39].



In this study, the following issues are discussed. (1) Construction of a soil salinity prediction model in the YRD based on UAV multispectral remote sensing imagery. (2) Reflectance of UAV multispectral imagery and Sentinel-2A satellite imagery correction. (3) Verification and estimation of the best prediction model for soil salinity in the experimental and study areas. (4) Analysis of the dynamics of saline soils in the YRD and their relationship with different land use types. A quantitative estimation of soil salinity is used to achieve different scales in different years in the YRD region.




2. Materials and Methods


2.1. Study Area


The study area is located in four counties, Hekou, Kenli, Dongying, and Lijin, of Dongying City, Shandong Province (37°16′–38°00′ N, 118°06′–119°18′ E), covering an area of approximately 6000 km2 (Figure 1). The region has a warm temperate continental monsoon climate, with cold winters, hot summers, and four distinct seasons. The annual average temperature is 13.23 °C, the average annual rainfall is 530 mm, and the average annual potential evaporation is 1500 mm [40]. The overall topography of the area tends to be flat, with the topography decreasing from southwest to northeast, and the average elevation is less than 15 m. Geomorphological types include granite, gentle hills, and shallow depressions. The study area is on the typical Yellow River alluvial plain in the YRD. The main soil types are fluvisol and solonchak, and the texture of the cultivated layer is most widely distributed with sandy loam and light loam, with an area proportion of over 70%. The test areas were two test fields located in Lijin County and the Kenli District. The salinity of the saline soil in the test area covers both high and low values, which are representative to a certain extent. A sampling point distribution diagram of the test areas is shown in Figure 1.




2.2. Data Acquisition and Preprocessing


The data acquisition and pre-processing in this study focused on soil salinity data, UAV image data, Sentinel-2A image data, and land use data. The methodological scheme of this study is shown in Figure 2.



2.2.1. Soil Salinity Data


Field investigations and soil sample collection were conducted from March 25 to 28, 2019. We conducted field research and field evidence beforehand, and clarified the approximate distribution of soils with high, medium, and low salinity in the study area based on the relevant results of the research. The bare soil area (containing only some crop straw) and the bare soil–crop mixed area were selected as the test areas, following the principle of covering the high and low values of soil salinity in the test area as much as possible by laid-out sample points according to a few meters x a few meters. A total of 129 sampling points and 36 calibration control points were arranged evenly in the interior. A handheld GPS locator was used to measure the field latitude and longitude coordinates of each sampling point. At the same time, environmental information such as topography, elevation, and vegetation type of the sampling sites were also recorded. A five-point sampling method was used to collect 0–20 cm surface soil samples at each sampling point. The obtained soil samples were cleaned of roots, stones, and other debris, fully mixed, naturally air-dried, ground, and sieved. The soil conductivity value was measured with a DDS-307A conductivity meter, with 30 extracts randomly selected. The corresponding total soil salt content was calculated and the conversion relationship between the soil salt content in the study area and the conductivity value of the extract was obtained (Equation (1)):


    S t   =  2.9863  ⋅  E  C  1 : 5    −  0.1019     R 2    =   0.9813   * *  



(1)




where ** is the significance level at p < 0.01,     S t     is the total soil salt content (g·kg−1), and    E  C  1 : 5      is the conductivity of the 1:5 soil–water ratio of the soil extract (mS·cm−1), with the total salt content of the remaining soil samples without ion composition determination calculated from    E  C  1 : 5      using Equation (1). Three replicate experiments were performed for each treatment.




2.2.2. UAV Multispectral Imagery Data


The remote sensing platform used for imagery acquisition was the Matrice 600 Pro® six-rotor UAV produced by Shenzhen DJI Innovation Technology Co., Ltd., Shenzhen, China (the flight load is 5.5 kg, the hovering time is 16 min, and the maximum horizontal flight speed in a windless environment is 65 km·h−1), equipped with a Parrot Sequoia agricultural multispectral camera (containing four 1.2 million pixel narrow-band and synchronized monochromatic sensors, including four bands named Bg, Br, Breg, and Bnir) for near-ground imagery of UAVs in the test area. The acquisition time of the data was from 12:00 to 15:00 on 27 March 2019 (the weather was clear). The calibration control point (whiteboard) data were collected before takeoff, the flight height of the UAV was set to 50 m, the spatial resolution was 2.2 cm, the camera shooting time interval was 1.5 s, and three flight missions were performed.



In the later stage, Pixel Wrench2 software was used to extract, register, and synthesize the acquired imagery; Pix4D mapper software was used for imagery stitching, orthorectification, and other preprocessing; and ENVI5.3 Classic software was used to complete the data processing of ground sample collection control points, including geometric correction and georeferencing.




2.2.3. Sentinel-2A Multispectral Imagery Data


In this study, imagery of the study area in March 2019 was obtained and downloaded through the ESA Copernicus data-sharing website (https://scihub.copernicus.eu/ (accessed on 21 July 2020) for subsequent spectral reflectance correction and soil salinity estimation in the study area. Atmospheric correction and resampling were performed on the downloaded data using the Sentinel application platform SNAP software and Sen2cor plug-in, while mosaic, splicing, reflectance extraction, classification, and imagery output processing were completed using ENVI5.3 software.



The wavelength ranges of the B3-Green, B4-Red, B6-Vegetation Red Edge, and B7-Vegetation Red Edge of Sentinel-2A multispectral imagery data are consistent with those of the four bands of UAV imagery (Table 1). This can meet the need of establishing a soil-salinity prediction model. To unify the band names, in follow-up research, the four bands in the multispectral imagery of the UAV correspond to Bg, Br, Breg, and Bnir, respectively. The four bands in the Sentinel-2A satellite imagery and the UAV have the same wavelength range, corresponding to G, R, REG, and NIR, respectively.




2.2.4. Land Use Data


Based on the remote sensing monitoring data of the current land use situation in China, the land use classification of the study area in different periods (2016 and 2019) was conducted using Sentinel-2A multispectral imagery. The methods of dynamic degree analysis and area statistics were integrated to analyze the characteristics of temporal variability and spatial distribution patterns of soil salinity in the study area in different years, as well as the relationship between the distribution and variability of saline soil in different degrees and land use. To ensure that the multispectral images contain as much soil information as possible when used as a base map for estimating soil salinity content, this study removed the information from construction land and waters and mudflats, then used a combination of the maximum likelihood method in supervised classification and human–computer interactive interpretation to classify the land use types into six categories: forest land, grassland, arable land, construction land, water area (including coastal salt flats and mudflats), and unused land. Subsequently, four land types, namely, forest land, grassland, arable land, and unused land, were extracted to generate regions of interest (ROI) and the remote sensing images to be estimated were cropped.



The land use dynamic degree was calculated (Equation (2)):


   D    R   i   =     S    i b        S    i a      ×   1   T   ×  100 %   



(2)




where    D    R   i     represents the land dynamic degree of different land use types, i represents a certain feature type,     S    i b      refers to the area after the change of a certain feature type,     S    i a      is the area before the change of a certain feature type, and   T   is the time interval when the change occurred [41]. Similarly, the area dynamic degree of different degrees of saline soils can be calculated and expressed by K [35] (Wang et al., 2017).





2.3. Selection of Sensitive Bands and Spectral Parameters of Soil Salinity


Using the correlation coefficient method and the Grey Correlation analysis method, three different types of spectral parameters, namely, the triangle vegetation index (TVI), salinity index (SI), and brightness index (BI), were selected to correlate with the soil salt content (Table 2). For the correlation analysis, the sensitive bands and spectral parameters suitable for soil salinity estimation in the study area were screened according to the Grey Correlation degree and correlation coefficient [42].




2.4. Construction and Verification of Estimation Model for Soil Salinity


The construction and verification of the estimation model for soil salinity were conducted based on UAV images (test area) and satellite images (study area). In this study, the soil sample modeling and validation sets were divided by the K–S (Kennard–Stone) algorithm [49]. The sample division results were automatically obtained using MATLAB R2019 software. After removing outliers, the 126 samples were divided into two groups: 90 samples in the training set and 36 samples in the validation set. After the screening of sensitive spectral parameters was completed, the ratio mean method (a correction method for digital processing of multi-band remote sensing imagery) was used to calculate the correction coefficients of the reflectance of each band of the UAV and Sentinel-2A satellite imagery, and reflectance correction processing was performed on the two. For example, B3-Green/B1-Green takes the mean of all ratios as the reflectance correction coefficient for each band of the Sentinel-2A satellite imagery. This study used four modeling methods: BPNN, SVM, PLSR, and multiple linear regression (MLR). Three soil salinity prediction models based on the band reflectivity, different vegetation index, and soil salinity index, respectively, were constructed. On this basis, band and index screening were performed by Pearson correlation coefficient and Grey Correlation index, two different criteria of correlation analysis index. The waveband, vegetation index, and salinity index combinations with high sensitivity to soil salinity in the study area were selected as sensitive spectral parameters and combined with the above four modeling methods in turn to construct a comprehensive soil salinity inversion model. Finally, the best modeling method and the best estimation model for soil salinity prediction in the test and research areas were verified and selected by comparing the accuracy of the four estimation models for the subsequent estimation of soil salinity in the experimental and research areas. The evaluation index consists of three main indices, namely, the coefficient of determination (R2), root mean square error (RMSE), and relative percent deviation (RPD). Among them, when the value of R2 is similar to 1, it can indicate that the inverse model has strong stability and high fit. When the value of RMSE is smaller, the estimation ability of the model is superior. Larger values of RPD equate to higher predictive power of the model, though it should be emphasized that the model starts to have some predictive power only when the RPD ≥ 1.4 [13].



The accuracy of screening sensitive bands can be improved by calculating the diagnostic index Pi for different bands. The formula for calculating the band diagnostic index is as follows (Equation (3)) [50]:


   P i  =  R i  ×  σ i   



(3)




where    R i    is the correlation coefficient between the reflectance value in each band and the soil salt content,    σ i    is the standard deviation of the reflectance value of all soil sampling points in band  i , and  i  in this study was 126 (unit: piece).



The concordance correlation coefficient (CCC,    ρ c   ) is used for calculating Lin’s concordance of the calibration and validation sets (Equation (4)) [51,52]:


   ρ c  =   2  σ  12      σ 1 2  +  σ 2 2  +      μ 1  −  μ 2     2     



(4)




where    ρ c    represent the concordance correlation coefficient,    μ 1    and    μ 2    represent the mean for the first and second variable,    σ 1 2    and    σ 2 2    represent the variance for the first and second variable, and    σ  12     is the covariance for the first and second variable.



The above process was completed using MATLAB R2019a, ENVI5.3, ArcGIS10.2.2, and SPSS21.0.





3. Results and Analysis


3.1. Construction of Soil Salinity Prediction Model Based on UAV Multispectral Imagery


The descriptive statistics of the soil samples are presented in Table 3. There were three outliers among the 129 collected samples in the study area. After excluding the outliers, the soil salt content of the 126 samples ranged from 0.254 to 20.64 g·kg−1, with a mean value of 7.581 g·kg−1 and a standard deviation of 5.736 g·kg−1, which clearly showed that the overall soil salt content in the study area was high. The modeling and validation set both showed similar statistical results to the mean and standard deviation of the entire soil sample set, which can reduce or avoid the bias of the later model construction and validation and ensure the reliability of the modeling.



3.1.1. Salt-Sensitive Spectral Parameters of UAV


For the same band or spectral index, the Grey Correlation coefficients were higher than the Pearson correlation coefficients [21,53]. The sensitive bands for soil salinity were Bg and Br by combining the two correlation analyses [53]. Finally, the bands with higher Grey Correlation (p > 0.01), TVI, and SI were selected as the main sensitive spectral parameters for the construction of the quantitative estimation model (Table 4 and Figure 3).




3.1.2. Construction of Soil Salt Prediction Model


	(1)

	
Construction of estimation model based on band reflectivity







Table 5 and Figure 4a show the spectral parameters and accuracy statistics, respectively, of the band-reflectance estimation model. Overall, the BPNN model had the highest modeling and verification accuracies, with R2 values of 0.613 and 0.622, respectively. The MLR model exhibited the lowest modeling and verification accuracy. Only the BPNN model had a relative percent deviation (RPD) > 1.4. According to the model verification ability evaluation standard [20], the best band reflectance model is only a rough estimate.



Based on the spectral parameters of the band reflectance model, the spectral index with a higher Grey Correlation is selected from the 103 spectral parameters based on the band and its mathematical transformation. The mean statistics are calculated according to the band classification and modeling accuracy R2 (those belonging to the same band have undergone a mathematical transformation, with the spectral parameters counted as one class). The statistical results were uniformly represented by Bg, Br, Breg, and Bnir (Figure 5). All subsequent estimation models used this method for the statistical analysis. The results show that the R2 of Bnir was the highest at 0.53. The estimation effect of the spectral parameters containing the Breg band is the worst. Therefore, the three bands of Bg, Br, and Bnir were more suitable for predicting the soil salinity content in the experimental area.



	(2)

	
Construction of estimation model based on vegetation index







From Table 5 and Figure 4b, the modeling and verification accuracy of the four modeling methods are in the same order from high to low, with BPNN > PLSR > SVM > MLR; the modeling accuracy and verification accuracy of the other three models, except the MLR model, were greater than 0.6 and RPD was greater than 1.4, indicating that the vegetation index has a certain ability to invert soil salinity.



From Figure 5, it can be seen that the prediction model constructed by NDVI, DVI, and GNDVI and soil salinity in the study area among the six vegetation indices and their mathematical transformations performed the best [45,49], with R2 values of 0.534, 0.513, and 0.522, respectively. The estimation performance of the NDVI-reg is second only to these three vegetation indices, while it also shows high estimation accuracy; an accurate salinity estimation could not be achieved with SAVI and RVI [21,54,55]. Therefore, NDVI, DVI, and GNDVI are suitable sensitive vegetation indices for building soil salinity estimation models [26].



	(3)

	
Construction of estimation model based on soil salinity index







Table 5 shows the spectral parameters of the estimation model based on the soil salinity index. Combined with Figure 4c, the fitting effect between the soil salinity in the study area and the soil salinity index (including relevant parameters after mathematical transformation) is relative to the fitting effect between the soil salinity and the estimation model of the vegetation index. This may be because the vegetation coverage in the study area was low in March, and the soil began to accumulate on the surface under the action of evaporation, so the sensitivity of the salinity index was higher at this time. In addition, the modeling accuracy and verification accuracy of the four modeling methods are greater than 0.6, among which the RPD of the BPNN model is greater than 2.0, which means that it has a superior soil salinity estimation ability. The MLR model is still at a prediction disadvantage among the four models [5,21,22,56].



Figure 5 shows that the soil salinity estimation model constructed based on NDSI performs the best (R2 = 0.556). In addition, the estimation accuracy of NDSI, SI-T, and SI1 salinity index (including mathematical transformation) is superior to that of SI, SI3, and SI7 [57]. The index is superior, the fitting effect is superior, and it can be used as a sensitive parameter for soil salinity estimation.



	(4)

	
Construction of a comprehensive estimation model for soil salinity







The results showed that the standard deviation σi and diagnostic index Pi (0.472, 0.456) of the Bg and Br bands were higher and the Ri, σi, and Pi values of Breg were much lower than those of Bg, Br, and Bnir. In other words, the Bg and Br bands are the most suitable and sensitive for soil salinity estimation in the study area, while the Bnir band is the more relatively sensitive (Table 6).



Therefore, two sensitive bands and one more relatively sensitive band (green light, red light, and near-red band), three sensitive vegetation indices (NDVI, DVI, GNDVI), and three sensitive salinity indices (SI-T, SI1, NDSI) were used to perform addition and subtraction, multiplication and division, logarithm, cubic function, square root, and other mathematical operations (Table 7) to construct a comprehensive estimation model of soil salinity (Figure 4d).



In summary, the best estimation model of soil salinity in the study area was the BPNN in the comprehensive estimation model of soil salinity [22,58]. Its R2 and RMSE for the modeling set were 0.769 and 2.342, respectively; the R2, RMSE, and RPD for the validation set were 0.774, 1.475, and 1.799, respectively. The modeling and validation accuracy scatter plots of the best prediction model are shown in Figure 6a, while a comparison chart of the soil salinity prediction results in the validation set is shown in Figure 6b. The scatter plot results show that most soil samples are distributed on both sides of the 1:1 line with no obvious offset. The concordance correlation coefficients were calculated to be 0.817 and 0.836 for the calibration and validation sets, respectively. The overall linear relationship between the measured and predicted values shows that the model has high accuracy.





3.2. Reflectance Correction of Sentinel-2A Multispectral Imagery


It is clear from the chart that the reflectivity of each band of the UAV multispectral imagery was slightly higher than that of the Sentinel-2A satellite imagery (Figure 7). The reflectivities of the two bands of Bnir/NIR and Breg/REG were generally higher. However, the reflectance values of the Bg/G, Bnir/NIR, Breg/REG, and Br/R bands showed the same trend. In addition, the order of the correlation coefficients of the reflectance of the two bands before the correction was Bnir/NIR (0.897) > Breg/REG (0.863) > Br/R (0.821) > Bg/G (0.736), with all greater than 0.7 (p > 0.01). From the above results, it can be observed that there is a strong correlation between the various bands of the UAV multispectral imagery and Sentinel-2A satellite imagery, and it is highly feasible for them to perform reflectance correction and estimation.



Therefore, the ratio mean method was used to correct the reflectivity of the two. The reflectivity correction coefficients of each band of Sentinel-2A satellite imagery, calculated based on the reflectivity of the UAV multispectral imagery, are shown in Table 8. The results show that the waveband reflectance correction coefficients of the imagery were all between 0.60 and 0.75. After correction processing, the correlation coefficients between the UAV multispectral imagery and their corresponding band reflectances were greater than 0.8. It has been proven that the combination of satellite–aircraft multi-source remote sensing data for reflectivity correction is beneficial for guaranteeing the accuracy of subsequent soil salinity estimation, and it has the feasibility of estimation.




3.3. Verification and Estimation of the Best Prediction Model of Soil Salinity


3.3.1. Verification of the Best Prediction Model


The optimal prediction model for soil salinity based on UAV multispectral imagery was applied to Sentinel-2A satellite imagery before and after reflectance correction. The comparison results of the model and verification accuracy are shown in Table 9. There are two cases: (1) The best prediction model for soil salinity was applied to Sentinel-2A satellite imagery without reflectivity correction. (2) The best prediction model for soil salinity was applied to Sentinel-2A satellite imagery after reflectivity correction.



The results show that the modeling and verification accuracy of model (2) is superior, while the satellite–machine combination is feasible and conducive to large-scale soil salinity estimation in the subsequent study area.




3.3.2. Estimation of Soil Salinity


	(1)

	
Estimation of soil salinity in test area based on UAV multispectral imagery







The estimation results for the soil salinity content in the experimental area are shown in Figure 8. The estimation results were classified according to the classification standard of coastal saline soil with chloride-dominated soil soluble salts in a semi-humid area of China, with the area proportion calculated [3,21,53,59].



The results showed that the estimation value of soil salinity in the experimental area ranged from 0.194 to 21.04 g·kg−1, with an average value of 7.76 g·kg−1 and a standard deviation of 5.81 g·kg−1, which is consistent with the descriptive statistical results of the study area. In addition, the estimation results showed that the percentage of soil salinity content was either extremely high (SC > 20 g·kg−1) or extremely low pixel value (SC < −2 g·kg−1) and was controlled within 10%. Overall, the five grades of saline soil were distributed in the test area. The area of severe-saline soil and solonchak was the largest, reaching 30.67% and 39.19%, respectively, while the proportion of non-saline soil was the lowest (1.56%). Additionally, the proportion of saline soil in the test area for mild-saline soil and moderate-saline soil was 9.35% and 19.23%, respectively. Specifically, the soil salinity content of test area 1 was relatively high, while the heavily salinized soil and saline soil were the most widely distributed, showing a high distribution in the east, low in the west, high in the north, and low in the south. The overall soil salinity in test area 2 was lower than that of test area 1. The distribution of different grades of saline soil was relatively scattered, with the salt content in the middle relatively high, mainly in severely saline and saline soils. The soil salinity estimation in the experimental area showed good results, consistent with the actual situation obtained during the field investigation.



	(2)

	
Retrieval of soil salinity in the study area based on Sentinel-2A satellite imagery







Based on the Sentinel-2A satellite imagery after reflectance correction and the best estimation model, a spatial distribution map of the soil salinity content in the study area in 2019 was obtained (Figure 9a). The ENVI pixel statistics showed that the percentages of extremely low (SC < −2 g·kg−1) or extremely high (SC > 20 g·kg−1) pixel values in the soil salinity estimation results in 2019 were all within 15%, indicating that these results were basically reliable.



From a spatial point of view, the overall distribution trend of soil salinity in the study area in 2019 gradually decreased from northeast to southwest, with moderately and severely salinized soils and saline soils dominating, and very little distribution of non-salinized soils. The overall salinization phenomenon was comparatively serious. The overall soil salinity in the study area is relatively high, and the problem of salinization is correspondingly serious, indicating that the area of moderately saline soil accounted for the highest (43.33%) and the area of non-saline soil accounted for the lowest (2.82%). The proportion of saline soil in the test area for mild-saline soil, severe-saline soil, and solonchak was 15.17%, 28.48%, and 10.2%, respectively. These results are similar to the actual situation in the study area and that described in previous studies [6,60,61].





3.4. Soil Salinity Dynamics in the YRD


3.4.1. Temporal Variation of Soil Salinity


The best salinity prediction model was applied to the reflectance-corrected Sentinel-2A multispectral imagery of March 2016 in the study area (Figure 9b). Based on the pixel statistics in the ENVI software, it is clear that the percentages of extremely low values (SC < −2 g·kg−1) or extremely high values (SC > 20 g·kg−1) that appear in the estimation results of soil salinity in the study area were within 15%. Although the predicted values of severe-saline soils may be low, the results are basically within the normal range. Some of the high salinity areas (mainly in the eastern coastal areas) still showed a trend of increasing salinity, while some of the low salinity areas (mainly located along the Yellow River with richer irrigation water and near the ancient Yellow River ancient road) showed a trend of decreasing salinity content. Overall, the soil salinity in the study area was severe, but the soil salinity coefficients of variation were 0.51 and 0.78 in the study area in 2016 and 2019, respectively, which were less than 1.0. To sum up, the interannual variation of soil salinity was not strong (0.27) and was classified as a medium degree of variation.



Table 10 shows that the degree of change of saline soil area in the study area during 2016–2019 was from mild-saline soil > moderate-saline soil > severe-saline soil > non-saline soil > solonchak, where the stability of mild and moderate saline soil was the weakest and easily transformed with other types of saline soil. Meanwhile, the overall trend of soil salinity in the study area was slightly increasing. Spatially, compared with 2016, the distribution of both severe-saline soil and solonchak within different counties of the study area increased in 2019. Although soil salinity began to accumulate in the areas on both sides of the inlet, the overall change in salinity coverage area was minuscule. The results of different levels of DRi showed that the non-saline soil, mild-saline soil, and solonchak in the study area changed at the fastest rate during 2016–2019, while both moderately and severely saline soil showed a lower degree of expansion (DRi = 0.278 and 0.352, respectively).




3.4.2. The Ground Feature Stability of Saline Soil


As can be seen from Figure 10, the area of arable land in the study area was most widely distributed in both 2016 and 2019, followed by water area mainly in the eastern coastal area and the northern region. Due to the influence of topography, construction land was mainly distributed in the southeastern and northeastern regions of the YRD area. Unused land was mainly distributed near the water area and arable land, and mostly concentrated in the north and east of the study area. The distribution of forest land and grassland occupied a relatively tiny area.



In addition, the dynamics degree in land use motility in the study area from 2016 to 2019 had varying degrees of variation (Table 11), with only 0.152 and 0.058 in construction land and arable land, respectively. While it has a faster rate of change in forest land and grassland, there is an increasing trend of unused land in the eastern coastal region (K of 0.847).



Statistical analysis of the area of different classes of saline soils was based on the feature types in the study area (Table 12). From 2016 to 2019, the area shares of non-saline soil and mild-saline soil distributed on the four feature types showed a negative trend, while the area share of moderately saline soil, severely saline soil, and solonchak showed a positive trend, which was more serious and consistent with the trend in Table 10. In addition, the average area share of different classes of saline soils distributed on four land use types changed from unused land > grassland > forest land > arable land in descending order, where the area share of severe-saline soil distributed on unused land changed the most (89.142%) and the area share of non-saline soil distributed on grassland changed the least (−12.149%). Although the degree of change in the area share of saline soil in arable land was the lowest among the four types of land (19.421%), the change in the area share of moderate-saline soil was the highest (66.914%). The above results indicate that unreasonable tillage has the risk of increasing soil salinization.






4. Discussion


4.1. Estimation Method and Accuracy Verification of Soil Salinity


Using multi-source data for soil salinity estimation, especially after data from different sensors are added to estimation research and analysis, improving spectral consistency is the key to the efficient and accurate monitoring of soil salinity. In this study, the reflectivity of the Sentinel-2A satellite imagery band was slightly lower than that of the UAV multispectral imagery, but the changes in reflectivity in each band of the two methods were consistent. After the reflectivity correction of the two, they show an ideal correlation. They can realize large-scale soil salinity estimation in the study area based on the combination of satellite–computer data and, at the same time, ensure the consistency of soil salinity estimation results with the actual situation.



Soil salinity prediction models exhibit a certain degree of uncertainty. Firstly, the input variables of the soil salinity prediction model were the spectral parameters calculated by the UAV near-ground imagery after the conversion of different bands and various vegetation and salinity indices. The modeling prediction variables are the soil samples measured after drying, grinding, and sieving. The salinity content obtained by the conversion of the conductivity of the formula is different from the actual situation, so the model established based on this has a certain modeling error [36,42,62]. Secondly, although the imagery imaging time should be as close to the sample collection time as possible, there is still a time difference of 5–20 days, which will increase the error of soil salinity monitoring to a certain extent. The percentages of extremely low or extremely high pixel values in the estimation of the experimental area and the study area in different periods were less than 10% and 15%, respectively. The results showed that the estimation was normal, although the high degree of salinized soil content may have been underestimated. This will affect the absolute value of soil salinity but has little effect on the analysis of the multi-year temporal and spatial variation trends and spatial distribution patterns of soil salinity in the entire study area.



Combined with the analysis of the elevation map of the study area (Figure 1), the central and eastern parts of the YRD region are prone to soil salinization due to their low elevation, flat terrain, and slight inclination toward the coast. The overall elevation in the southwest is higher, some mountainous areas are distributed, and the phenomenon of salt accumulation is weaker than that in the central and eastern regions. One of the key characteristics of soil salinization is that it is stable and stubborn, while the activity of nutrients is low and it is generally not easy to change without obvious external forces [35,53]. Combined with the estimation results, the sampling period in this study was in the middle of the ecological water replenishment period of the Yellow River basin in March. Although moderately salinized, severely salinized, and saline soils were distributed in the southwestern part of the study area, the estuary and banks of the Yellow River were all distributed. The soil salinity in this region was not high [53]. Therefore, targeted flow management of the Yellow River is of great significance in improving soil salinization in the YRD.




4.2. Soil Salinity Dynamics and Its Relationship with Land Use


Due to the differences in regional land use, physical stability, and human activities, the salt content of the surface soil in the YRD showed interannual fluctuations of different degrees. The central–eastern part of the YRD region is prone to soil salinization due to its low elevation and flat topography, which makes it easy for salinity to accumulate on the surface and makes the ecological environment extremely fragile. In the southwestern part, the overall elevation is higher and there is some mountainous distribution, so the salinity aggregation phenomenon is relatively weak (Figure 1). The salinity estimation results showed that saline soils in the YRD are widely distributed, with salinization still expanding overall. However, the reason that the salinization phenomenon did not significantly intensify in 2019 compared with 2016 is that one of the key characteristics of soil salinization is its stability and stubbornness, with low activity of nutrients. Consequently, it is generally not easy to change under conditions without obvious external forces. In addition, the sampling period of this research was in March, which was in the middle stage of the ecological recharge period of the Yellow River basin. Although there was an increasing trend of soil salt content in the southwestern part of the study area, the soil salt content in the estuary and the riparian area of the Yellow River was not high [53]. Therefore, targeted flow management of the Yellow River is crucial for improving soil salinity in the YRD.



The year-to-year variation of the area share of different classes of saline soils distributed in different land types was significant. However, the field survey proved that the construction of the Yellow River Estuary Nature Reserve provided a better guarantee to stifle soil salinization and maintain biodiversity in the YRD region. In addition, as the land use type with the largest area share in the study area, the area share of moderate-saline soil on cultivated land varied as high as 53.334% from 2016 to 2019. The results overall indicate that irrational tillage has the risk of increasing soil salinization. Therefore, the protection and ecological development of the soil and land in the YRD cannot be delayed.



The YRD region is affected by its own land formation time conditions as well as unreasonable land use and development, resulting in the overall poor soil quality in the study area. Therefore, the land suitability development model should be further strengthened and land use should be reasonably planned. In addition, in recent years, the arable land in the YRD has increased significantly. In pursuit of high output, there is much unreasonable farming and excessive application of chemical fertilizers, which have led to different degrees of increase in soil salinity in the existing arable land. Therefore, in order to prevent the aggravation of salinization, it is necessary to insist on both saline land management and optimization of agricultural production methods. The measures to balance agricultural development and ecological environmental protection include reasonable tillage and irrigation, promotion of soil formula fertilization, organic and chemical fertilizer application, and adjustment of planting structure.





5. Conclusions


In this research, multi-source field measurement data of soil salinity, UAV, and Sentinel-2A multispectral imagery were fused to construct estimation models of soil salinity at different scales in the YRD. The correction process of reflectance between different images was conducted using the ratio mean method, and finally the inversion of soil salinity in the test and study areas was achieved. In addition, the characteristics of spatial and temporal dynamic variability of soil salinity and its relationship with land use in the Yellow River Delta region from 2016 to 2019 were explored and analyzed. Finally, both high-precision inversion and dynamic analysis of soil salinity based on multi-source data were realized. The main conclusions are as follows:




	(1)

	
Among the different spectral indices, some single bands, vegetation indices, and salinity indices, which are more sensitive to soil salinity, were screened. The BPNN modeling method (R2 = 0.769, RMSE = 2.342 for the modelling set; R2 = 0.774, RMSE = 2.475, RPD = 1.799 for the validation set) and the comprehensive estimation model had the best predicting effect of soil salinity in the Yellow River Delta region.




	(2)

	
Sentinel-2A satellite imagery and UAV imagery reflectance correction can solve the problem of band reflectance and correlation in multi-source data fusion.




	(3)

	
The anomalous values of the estimation results were within 10% and 15% in the test area and study area during 2016–2019, which was consistent with the actual situation. Meanwhile, it shows that the best prediction model of this study can, to a certain extent, realize large-scale estimation of satellite imagery of different periods after reflectance correction.









Because the resolutions of the UAV and Sentinel-2A imagery are to a certain extent different, the spectral fusion problem caused by this difference can be further studied. In addition, there was a strong correlation between soil moisture and salinity in the YRD region. The advantages of satellite–aircraft multi-source remote sensing data can further achieve high-precision extraction and estimation of regional water and salt information while ensuring the spectral characteristics of the two, which is conducive to providing new ideas for the comprehensive improvement of saline–alkali land and optimization of the ecological environment in the YRD region.
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Figure 1. Sketch map of the research area based on elevation and distribution map of sampling points in the test areas. 
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Figure 2. Methodological scheme of this study. 
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Figure 3. Correlation coefficient between soil salinity and spectral indices. 
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Figure 4. Accuracy statistics of (a) band reflectivity estimation model, (b) vegetation index estimation model, (c) soil salinity index estimation model, and (d) comprehensive estimation model in different modeling methods. 
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Figure 5. Statistics of reflectivity and modeling accuracy for different bands and spectral parameters. 
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Figure 6. (a) Scatter plot for accuracy verification based on the best estimation model of soil salinity according to UAV multispectral imagery. (b) Comparison of the prediction results of soil salinity in the validation set. 
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Figure 7. (a) Comparison of reflectivity between UAV multispectral imagery and Sentinel-2A satellite imagery. (b) Correlation between UAV multispectral imagery and reflectivity of Sentinel-2A imagery before and after correction. 
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Figure 8. Estimation map of soil salt content in the test area. 
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Figure 9. (a) Spatial distribution of soil salt content in the study area in 2019. (b) Spatial distribution of soil salt content in the study area in 2016. 






Figure 9. (a) Spatial distribution of soil salt content in the study area in 2019. (b) Spatial distribution of soil salt content in the study area in 2016.



[image: Land 11 02307 g009]







[image: Land 11 02307 g010 550] 





Figure 10. (a) Map of land use types in the study area in 2016. (b) Map of land use types in the study area in 2019. 
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Table 1. The corresponding relationship of data between Sentinel-2A imagery and UAV imagery.
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Band Name

	
UAV Imagery Data

(Equipped with Sequoia Agricultural Multispectral Camera)

	
Sentinel-2A Imagery Data




	

	
Band

	
Center Wavelength (nm)

	
FWHM

	
Band

	
Center Wavelength (nm)






	
Bg

	
B1-Green

	
550

	
20

	
B3-Green

	
560




	
Br

	
B2-Red

	
660

	
20

	
B4-Red

	
665




	
Breg1

	
-

	
-

	
-

	
B5-Vegetation Red Edge

	
705




	
Breg2

	
B3-Red Edge

	
735

	
5

	
B6-Vegetation Red Edge

	
740




	
Bnir

	
B4-Near IR

	
790

	
20

	
B7-Vegetation Red Edge

	
783
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Table 2. Spectral indexes and related formulas.
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Index Type

	
Spectral Index

	
Expression

	
References






	
Triangle Vegetation Index (TVI)

	
Normalized Vegetation Index (NDVI)

	
     N I R   −   R   N I R   +   R     

	
[24]




	
Difference Vegetation Index (DVI)

	
   N I R   −   R   

	
[24]




	
Soil Adjusted Vegetation Index (SAVI)

	
       1   +   L     N I R   −   R     N I R   +   R   +   L     L = 0.5     

	
[43]




	
Ratio Vegetation Index (RVI)

	
     N I R  R    

	
[43]




	
Green Light Normalized Difference Vegetation Index (GNDVI)

	
     N I R   −   G   N I R   +   G     

	
[44]




	
Red Edge Normalized Vegetation Index

(NDVI-reg)

	
     N I R   −   R E G   N I R   −   R E G     

	
[44]




	
Salinity Index (SI)

	
Salinity Index (SI-T)

	
    R  NIR    × 100    

	
[45]




	
Salinity Index 1 (SI1)

	
          G × R          

	
[25]




	
Salinity Index 2 (SI2)

	
          G 2  +  R 2  +  NIR 2          

	
[46]




	
Salinity Index 3 (SI3)

	
          G 2     + R   2            

	
[46]




	
Salinity Index 7 (SI7)

	
        R   ×   NIR     G    

	
[47]




	
Normalized Difference Salinity Index (NDSI)

	
      ( R   −   NIR )     ( R   +   NIR )      

	
[48]




	
Salinization Remote Sensing Index (SRSI)

	
          NDVI   −   1     2     + SI 1   2      

	
[43]




	
Brightness Index (BI)

	
Brightness Index (BI)

	
      R 2     + NIR   2      

	
[48]








Note: NIR, R, REG, and G in the formulas represent the reflectance values of near-infrared band, red band, red edge band, and green band, respectively.
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Table 3. Descriptive statistics of soil samples.
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	Sample Type
	Minimum

(g·kg−1)
	Maximum

(g·kg−1)
	Average

(g·kg−1)
	Standard Deviation

(g·kg−1)





	All samples
	0.254
	20.640
	7.581
	5.736



	Modeling set
	0.267
	20.640
	7.572
	5.725



	Validation set
	0.254
	20.230
	7.621
	5.804
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Table 4. Correlation coefficient between soil salinity and UAV’s band.






Table 4. Correlation coefficient between soil salinity and UAV’s band.





	Band
	Grey Correlation Index
	Pearson Correlation Index





	Bg
	0.597 **
	0.561 **



	Br
	0.599 **
	0.554 **



	Breg
	0.580 *
	0.579 *



	Bnir
	0.630 **
	0.547 **







* Significant at 0.05 level. ** Significant at 0.01 level.
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Table 5. Spectral parameters of the band reflectance, vegetation index, and salinity estimation model.
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Model Type

	
Serial Number

	
Spectral Parameters

	
Serial Number

	
Spectral Parameters






	
Band reflectance

	
1

	
Bg

	
7

	
   sin Breg   




	
2

	
Br

	
8

	
     log  2  Bnir   




	
3

	
Breg

	
9

	
       Bg  2  +  5 2      




	
4

	
Bnir

	
10

	
     Breg + 1     Breg − 1     




	
5

	
       Bg  2      

	
11

	
   ln Br   




	
6

	
     Br + 2   /   2 − Br     

	
12

	
   Bnir × 3   




	
Vegetation index

	
1

	
NDVI

	
9

	
   NDVI × 3   




	
2

	
DVI

	
10

	
     log  2  GNDVI   




	
3

	
SAVI

	
11

	
   SAVI + ln 2   




	
4

	
RVI

	
12

	
   ln SAVI   




	
5

	
GNDVI

	
13

	
     log  3  RVI   




	
6

	
NDVI-reg

	
14

	
       Bg  2  +  5 2      




	
7

	
     3 +   NDVI  2      

	
15

	
       NDVI   reg   + 1       NDVI   reg   − 1     




	
8

	
     DVI + 5     2 − DVI     

	
16

	
   sin DVI + cos DVI   




	
Salinity index

	
1

	
SI-T

	
10

	
     SI  1 2  +  3 2      




	
2

	
SI

	
11

	
     log  2    SI 3   / 2   




	
3

	
SI1

	
12

	
   SI 7 + ln 2   




	
4

	
SI3

	
13

	
   ln SI 7   




	
5

	
SI7

	
14

	
     log  3  NDSI   




	
6

	
NDSI

	
15

	
     SI  3 2  +  5 2      




	
7

	
     log  2  SI   

	
16

	
     NDSI + 1   ×   1 − NDSI     




	
8

	
   3 ×   SI − T   + 1   

	
10

	
   sin SI 1   
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Table 6. Diagnostic index of each band in UAV imagery.
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	Bg
	Br
	Breg
	Bnir





	Ri
	0.597 **
	0.599 **
	0.580 *
	0.630 **



	σi
	0.791
	0.761
	0.470
	0.532



	Pi
	0.472
	0.456
	0.273
	0.335







* Significant at 0.05 level. ** Significant at 0.01 level.
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Table 7. Spectral parameters of comprehensive estimation model of soil salinity.
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	Serial Number
	Spectral Parameters
	Serial Number
	Spectral Parameters





	1
	Bg
	10
	       Bg  2  +  5 2      



	2
	Br
	11
	     Br + 2   /   2 − Br     



	3
	Bnir
	12
	   Bnir × 3 ×   Bnir + 1     



	4
	NDVI
	13
	   3 × NDVI   



	5
	DVI
	14
	     DVI + 5     2 − DVI     



	6
	GNDVI
	15
	     log  2  GNDVI   



	7
	SI-T
	16
	   3 ×   SI − T   + 1   



	8
	SI1
	17
	   sin SI 1   



	9
	NDSI
	18
	     NDSI + 1   ×   1 − NDSI     
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Table 8. Sentinel-2A satellite imagery reflectance correction coefficient for each band.
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	Band Name
	G
	R
	REG
	NIR





	Coefficient of reflectance correction
	0.614
	0.631
	0.726
	0.741
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Table 9. Comparison of the accuracy of different models before and after reflectivity correction.
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Model

	
Modeling Accuracy

	
Verification Accuracy




	
R2

	
RMSE

	
R2

	
RMSE

	
RPD






	
(1)

	
0.421

	
4.05

	
0.399

	
4.36

	
1.43




	
(2)

	
0.637

	
3.52

	
0.594

	
3.90

	
1.69











[image: Table] 





Table 10. Statistical table of dynamic changes of different types of saline soil.
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Types of Saline Soil

	
Area(km2)

	
Area Change

(km2)

	
DRi

(%)




	
2016

	
2019






	
Non-saline soil

	
203.257

	
110.440

	
−92.817

	
−1.370




	
Mild-saline soil

	
851.014

	
594.104

	
−256.910

	
−0.906




	
Moderate-saline soil

	
1552.817

	
1696.937

	
144.120

	
0.278




	
Severe-saline soil

	
998.268

	
1115.365

	
117.097

	
0.352




	
Solonchak

	
310.955

	
399.465

	
88.510

	
0.854
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Table 11. The dynamics degree of land use in the study area from 2016 to 2019 (unit: hectares).
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	Land Use
	K (%)
	Land Use
	K (%)





	Grassland
	0.188
	Forest land
	1.484



	Arable land
	0.058
	Water area
	1.148



	Construction land
	0.152
	Unused land
	0.847
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Table 12. Changes in different grades of saline soil based on land use types in the study area from 2016 to 2019 (unit: %).
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Types of Saline Soil

	
Area Change (%)




	
Grassland

	
Arable Land

	
Forest Land

	
Unused Land






	
Non-saline soil

	
−12.149

	
−15.701

	
−19.630

	
−21.710




	
Mild-saline soil

	
−38.306

	
−23.968

	
−13.134

	
−50.139




	
Moderate-saline soil

	
46.438

	
66.914

	
38.020

	
34.104




	
Severe-saline soil

	
74.240

	
53.334

	
69.083

	
89.142




	
Solonchak

	
29.777

	
19.421

	
25.661

	
48.603
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