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Abstract: The soil–environmental relationship identified and standardised over the years has expe-
dited the growth of digital soil-mapping techniques; hence, various machine learning algorithms
are involved in predicting soil attributes. Therefore, comparing the different machine learning algo-
rithms is essential to provide insights into the performance of the different algorithms in predicting
soil information for Indian landscapes. In this study, we compared a suite of six machine learning
algorithms to predict quantitative (Cubist, decision tree, k-NN, multiple linear regression, random
forest, support vector regression) and qualitative (C5.0, k-NN, multinomial logistic regression, naïve
Bayes, random forest, support vector machine) soil information separately at a regional level. The
soil information, including the quantitative (pH, OC, and CEC) and qualitative (order, suborder,
and great group) attributes, were extracted from the legacy soil maps using stratified random sam-
pling procedures. A total of 4479 soil observations sampled were non-spatially partitioned and
intersected with 39 environmental covariate parameters. The predicted maps depicted the complex
soil–environmental relationships for the study area at a 30 m spatial resolution. The comparison was
facilitated based on the evaluation metrics derived from the test datasets and visual interpretations
of the predicted maps. Permutation feature importance analysis was utilised as the model-agnostic
interpretation tool to determine the contribution of the covariate parameters to the model’s cali-
bration. The R2 values for the pH, OC, and CEC ranged from 0.19 to 0.38; 0.04 to 0.13; and 0.14 to
0.40, whereas the RMSE values ranged from 0.75 to 0.86; 0.25 to 0.26; and 8.84 to 10.49, respectively.
Irrespective of the algorithms, the overall accuracy percentages for the soil order, suborder, and
great group class ranged from 31 to 67; 26 to 65; and 27 to 65, respectively. The tree-based ensemble
random forest and rule-based tree models’ (Cubist and C5.0) algorithms efficiently predicted the
soil properties spatially. However, the efficiency of the other models can be substantially increased
by advocating additional parameterisation measures. The range and scale of the quantitative soil
attributes, in addition to the sampling frequency and design, greatly influenced the model’s output.
The comprehensive comparison of the algorithms can be utilised to support model selection and
mapping at a varied scale. The derived digital soil maps will help farmers and policy makers to adopt
precision information for making decisions at the farm level leading to productivity enhancements
through the optimal use of nutrients and the sustainability of the agricultural ecosystem, ensuring
food security.

Keywords: digital soil mapping; SCORPAN; soil spatial predictions; machine learning; model
comparison
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1. Introduction

Conventional methods for soil surveys involve delineating soil polygons based on the
subjective decisions made by the surveyors and are usually presented in printed reports or
chart format. The lack of digital forms of soil information can limit the efficiency of several
applications, in addition to the inefficiency of the traditional methods in representing the
within-class variability and current variability of the respective soil attributes [1,2]. In
the last few decades, there has been an evident shift in soil surveys from soil surveyor-
based qualitative soil delineation to data-driven quantitative assessment of the soils [3].
The transformation was accelerated mainly due to the increasing need for soil resource
information for selecting suitable crops, the area and yield estimation of crops, determining
the predominant soil types, delineating the management zones and drainage classes,
adopting appropriate land use plans, and identifying potential carbon sequestration zones,
among others [4]. With the technical advancements in remote sensing, geographical
information systems, and data analysis, a cumulative collection of mapping procedures
has been implemented and evolved to increase the accuracy of the methodology and the
generated maps. In addition to the soil spectral information, extensive spatial coverage and
temporal consistency from remote sensing data can help with the mapping of inaccessible
locations [5].

Digital soil mapping aims to link the soil responses to environmental variables through
the implication of inference and numerical models. DSM can be defined as “the creation,
and population of spatial soil information systems (SSINFOS) by the use of field and labo-
ratory observational methods, coupled with spatial and non-spatial soil inference models”.
Further, the need for a self-updating generic framework for spatial soil inference systems
(SSINFERS) has been espoused to derive the data requested by users [6]. The processes
included in the digital soil-mapping procedures include (1) Generating soil databases for
the particular soil attribute of interest; (2) Deriving and selecting the soil environmental
covariates based on the SCORPAN factors that better depict the soil attributes; (3) Model
calibration, validation, and parameter tuning; (4) Spatial prediction based on the model
calibrated; (5) Interpolation or extrapolation of the prediction function if required; and
(6) Accuracy assessment based on the independent datasets.

Conventional soil mapping procedures for characterising soil attributes involve de-
structive soil sampling, aerial photo interpretation, surveying based on vegetation and
topography maps, and associated laboratory analyses. These procedures are highly time
consuming and expensive when the mapping is performed at national or regional levels
in addition to being based on the surveyor’s conceptual or mental model [7,8]. Some
of the machine learning techniques that have been adopted so far based on a literature
survey that included comparative studies are multiple linear regression (MLR); regression
kriging (RK); random forest (RF); quantile regression forest (QRF); support vector machine
(SVM); Bayesian networks; neural networks, e.g., artificial neural networks (ANN) and
convolutional neural networks; the generalized additive model (GAM); logistic regression;
distance-based learners, e.g., k-nearest neighbour (kNN); decision trees, e.g., Cubist (CB);
classification and regression tree (CART); C5.0; principal component regression (PCR); par-
tial least square regression (PLSR); extreme learning machines (ELM); boosted regression
trees; and ensemble machine learning (EML) [9–30].

The model’s predictive ability also depends on the quantity and quality of soil samples,
especially when derived from multiple resources. The soil samples can be biased as the sur-
veyor collects the data from areas with better accessibility. Moreover, the associated spatial
bias can degrade the statistical relationship between the soil samples and covariates gener-
ated, which can impede DSM accuracy. Therefore, attention must be focused on improving
the predictive ability of the calibrated DSM model by optimising the sampling procedures,
hyperparameter settings, nature of the target and covariate attributes, associated spatial
supports, and selected covariate selection procedure [31].

With the advent of many specialized machine learning algorithms, comparison and
validation of the algorithms are essential to screen for models that provide unreliable and
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redundant results when the predictions are further upscaled to the state level. Additionally,
the problem inherent with most machine learning algorithms is their lack of detailed
interpretability. In such cases, explicit quantification of the covariate information using
the global agnostic tools was implemented in several studies including the permutation
feature importance analysis. The PFI analysis was considered for its computation efficiency
and limited parameterisation [32]. The objectives of this study are (1) to generate digital
soil class and attribute maps using a suite of six machine learning algorithms; and (2) to
compare and validate the digital soil maps based on the visual interpretation and evaluation
metrics derived.

2. Materials and Methods
2.1. Study Area

The study area included four districts of Eastern Tamil Nadu, India: Ariyalur, Cud-
dalore, Mayiladuthurai, and Perambalur. The districts were selected because of their
unpredictable climate conditions with greatly varied geomorphological and hydrologi-
cal characteristics. Given the extremities of the associated factors, the current study also
indirectly assessed the potential of the digital soil-mapping procedures to mitigate the
shortcomings of mapping regional-level landscapes and delineating the soil attributes. The
study area extended geographically from 11◦53′22′′ to 10◦53′15′′ N latitude and 78◦38′5′′ to
79◦51′28′′ E longitude, collectively covering an area of 8569.21 square km (Figure 1).

The extent of the study area is covered adjacently by the various districts of Tamil
Nadu, with coastal regions adjoining the Cuddalore and Mayiladuthurai districts. Ariyalur
and Perambalur are considered the inland districts of Tamil Nadu, with nlack and red
loam soil as the predominant soil types and a semi-arid climate. In particular, the lands of
Ariyalur are characterised by the presence of limestone and ferruginous red loam. At the
same time, the Cuddalore and Mayiladuthurai districts have tropical climates with alluvial,
sandy loam, and sandy clay loam as the predominant soil textural classes. The study area
experiences an annual temperature that varies from 26.81 to 28.01 ◦C.

Similarly, the annual precipitation of the study area varies from 1351 to 1737 mm
from west to east, most of which is contributed by the northeast monsoon downpour.
Considering the rain-fed irrigation prevalence of Ariyalur and Perambalur, maize and
cotton are the most cultivated crops. In contrast, the Cuddalore and Mayiladuthurai
districts are situated in the Cauvery River basin, where the major crops are paddy, pearl
millet, maize, and pulses.

2.2. Soil Data

The soil data were extracted from the legacy soil map obtained from the National
Resource Information System of NNRMS [33]. A stratified random sampling procedure
was used to derive the sampling sites with soil series as a distinctive stratum. A cumulative
fraction of each of the 4479 soil observations was sampled, and around 521 sample points
corresponding to the habitation, water bodies, and miscellaneous landform elements were
included for the soil class delineation. The organic carbon (OC), pH, and cation exchange
capacity (CEC) were the continuous soil attributes considered for the digital soil mapping.
Similarly, the categorical soil attributes utilised for the delineation were the soil order,
suborder, and great group.

2.3. Environmental Covariates

A total of 39 environmental covariates representing the climate, relief, organisms,
and parent material were derived from remote sensing and DEM products. Spatially
interpolated annual mean temperature and annual rainfall data (global cover) available
from WorldClim 2.1 (https://www.worldclim.org/data/worldclim21.html, accessed on
16 March 2021) were downloaded at 30 arc seconds with a temporal range of 1970–2000.
Satellite data products with their associated NDVI products in addition to the land use
and land cover products were essentially considered the parameters that reflected the

https://www.worldclim.org/data/worldclim21.html
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organisms’ covariates. The Landsat-8 product (‘LANDSAT/LC08/C01/T1_SR’) depicts
the surface reflectance of the study area downloaded from the Google Earth Engine. The
data collection was limited to the period from March to May for better delineation of soil
properties. A 3-month composite with a median filter was adopted to reduce the effects of
cloud cover and shadow effects.
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Figure 1. (a,b) Locational information of the study area in Tamil Nadu; (c) Study area map; (d) Digital
elevation model (DEM); (e) Geomorphology.

A total of 22 secondary terrain attributes were derived from the Shuttle Radar Topogra-
phy Mission (SRTM) exclusively through the hydro geomorphometric indexes of the SAGA
GIS software. In the case of the parent material covariate, the spectral indices that depict the
mineralogy of the study area were derived from the Landsat-8 images. Further, existing soil
maps indicating the land use and land cover (organisms) [34], physiography (terrain), and
geomorphology (parent material) [35] were obtained from the National Remote Sensing
Centre at a 1:50,000 scale and were implemented as the covariate layers. Finally, the derived
covariate spatial layers were resampled and reprojected to a 30 m spatial resolution using
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the ArcGIS 10.6 software. The environmental covariates implemented for the soil attribute
delineation are depicted in Table 1.

Table 1. List of environmental covariates.

Covariate Parameter Scale Type

Climate
Mean Annual Temperature ◦C/30 s N

Mean Annual Rainfall mm/30 s N

Organisms

Land Use and Land Cover Map 1:50,000 scale C

Landsat 8: Band 1 30 m N

Landsat 8: Band 2 30 m N

Landsat 8: Band 3 30 m N

Landsat 8: Band 4 30 m N

Landsat 8: Band 5 30 m N

Normalised Difference Vegetation Index 30 m N

Relief

Elevation (SRTM DEM) 30 m N

Slope Gradient 30 m N

Profile Curvature 30 m N

Tangential Curvature 30 m N

Convergence Index 30 m N

Catchment Area 30 m N

Modified Catchment Area 30 m N

Catchment Slope 30 m N

Multiresolution Index of Valley Bottom
Flatness 30 m N

Multiresolution Index of Ridge Top Flatness 30 m N

Topographic Position Index 30 m N

Mid-Slope Position 30 m N

Terrain Surface Texture 30 m N

Valley Depth 30 m N

Slope Height 30 m N

Normalised Height 30 m N

Standardised Height 30 m N

Topographic Wetness Index 30 m N

Slope Length 30 m N

Fuzzy Landform Element Classification 30 m C

Stream Power Index 30 m N

Geomorphons 30 m C

Physiography 1:50,000 scale C

Parent Material

Carbonate Difference Ratio
(Band 4 − Band 3)/(Band 4 + Band 3) 30 m N

Clay Difference Ratio
(Band 6 − Band 7)/(Band 6 + Band 7) 30 m N

Ferrous Minerals Difference Ratio
(Band 6 − Band 5)/(Band 6 + Band 5) 30 m N

Iron Difference Ratio
(Band 4 − Band 7)/(Band 4 + Band 7) 30 m N

Rock Outcrop Difference Ratio
(Band 6 − Band 3)/(Band 6 + Band 3) 30 m N

Geomorphology 1:50,000 scale C
N—Continuous predictors; C—Categorical predictors.
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2.4. Model Development

The model’s training, testing, and spatial depiction of the predicted soil attributes
were facilitated through the spatial environment of R. The ithir package and its associated
functions for soil-related spatial functions were used in the present study. The visual pre-
sentation of the predicted soil attributes was facilitated by ArcGIS software. The packages
invoked for the calibration of the machine learning algorithms and their parameterisations
are specified in Table 2.

Table 2. Machine learning algorithms utilised for comparison along with their hyperparameters.

Machine Learning Algorithms R Package Hyperparameters

Multiple Linear Regression lm [36] None

Multinomial Logistic Regression nnet [37] Default

k-Nearest Neighbor caret [38] k

Decision Tree (Regression Trees) rpart [39] minspilt; cp

Decision Tree (C5.0) C50 [40] trails, rules, control (CF,
minCases, earlyStopping)

Naïve Bayes e1071 [41] Default

Support Vector
Machine/Regression e1071 [41] Default

Cubist cubist [42] committees; control (rules
and extrapolation)

Random Forest randomForest [43] mtry, ntree

2.4.1. Multiple Linear Regression (MLR)

Multiple linear regression is the most consistently used parametric measure for pre-
diction. MLR determines the linear relationship between the soil attribute and covariates
and predicts the outcome of the target attributes by fitting a linear equation with the model
parameters (coefficients) [44]. The major constraint of the MLR model is that it does not
account for the nonlinear relationship among the variables considered.

2.4.2. Multinomial Logistic Regression (MnLR)

Typically, logistic regression models can describe the binary response variables, where
the predictions are defined as the probability of the occurrence (0 and 1) [45]. Multinomial
logistic regression predicts the probability of the category membership of the soil attributes
based on the covariate predictors [46]. The present study generated logistic regression
models for each soil class with default parameter settings [47].

2.4.3. k-Nearest Neighbour (k-NN)

K-nearest neighbour (KNN) is a simple non-parametric classifier based on the known
instance to label an unknown instance based on a distance function [48]. The values/classes
will be assigned based on the majority classes or average of attributes or on the distance
measure implemented, i.e., the Euclidean distance [49]. The k-NN classifier usually requires
the data to be normalised for the model calibration, as distance-based learners require the
covariates to be in a similar range. The centring and scaling of the datasets were facilitated
via the ‘preProcess’ function of the caret package. Further, the k-NN model can be tuned
by specifying the number of neighbours (k) within the proximity for the model training.
The default parameter setting of the train function with the ‘knn’ method recursively
determines the optimal k values by implementing a bootstrap resampling procedure for
the model calibration. A k value of 9 was determined from the model calibration for all
the soil attributes based on the evaluations of the RMSE (continuous) and overall accuracy
(categorical) obtained for other values of k through cross-validation.
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2.4.4. Decision Trees (Regression Trees)

The algorithm works by recursively partitioning the datasets and determining the
subset that can be further split until the predetermined termination factor is achieved.
Decision tree algorithms are generally non-parametric models, and the split associated
with the models can be optimised based on passing a control function. The control function
can be invoked based on the ‘rpart.control’ parameter. The arguments that are necessarily
passed through the ‘rpart.control’ include minsplit (minimum observation in a node for a
split to be attempted) and cp (complexity parameter—split that does not decrease the overall
lack of fit by the factor of “cp” that is not tried). The ‘rpart’ function was implemented
with a ‘minsplit’ of 50 observations. Typically, the default arguments of the ‘rpart’ with a
cp of 0.01 with splits based on the “Information” or “gini” index have been determined
to be successful at pre-pruning and splitting so that the cross-validation excludes one
or two surrogate trees. Still, sometimes it may overprune, especially when the ‘rpart’ is
performed on large datasets with a small range [50]. Since splitting the dataset with the
default parameter yielded crude and incomparable results, the optimal cost-complexity
pruning value (cp) was determined by initially setting the cp value with -Inf. The negative
infinity value helps to generate all the maximum possible trees for the datasets. Then, based
on the minimum cross-validated error generated, the cp value for pruning was assessed
and further fine-tuned regression trees were generated.

2.4.5. Decision Trees (C5.0)

The C5.0 algorithm is a non-parametric and decision tree-based machine learning
algorithm that fits the classification trees based on Quinlan’s C5.0 algorithm. The C5.0
algorithm was implemented with the control function defined within the model definition.
In general, the implication of trail parameters can help in the implementation of a boosted
classification tree process, with the results cumulated at termination [51]. The C5.0 control
function was defined in the current study using CF (confidence factor), minCases (minimum
number of samples that must be imparted in at least two of the splits), and earlyStopping
(a logical that defines whether the internal method for stopping boosting should be used)
argument values of 0.95, 20, and FALSE, respectively.

2.4.6. Naïve Bayes (NB) Classifier

A naïve Bayes classifier is a probability-based statistical classifier based on the assump-
tion that the effect of the covariate value on a given class is independent of the values of
the other covariates. Referred to as conditional independence, the assumption is made to
reduce the associated computational time. Hence, the classifier is termed “Naive” [52]. In
short, the classifier assumes that the covariates are completely independent even though
some dependency exists between the covariates. The classifier calculates the conditional
probabilities of each covariate separately and the a priori chances for each class level.

2.4.7. Support Vector Regression/Machine (SVR/M)

Support vector machine is essentially data classification and a non-parametric tech-
nique extended for regression predictions. The SVR/M operates by projecting the data
points (support vectors) using hyperplanes and further segregates and groups the datasets,
i.e., each segment contains only one kind of data. In cases of SVR/M, the algorithm ac-
knowledges the presence of nonlinearity in the datasets [53]. It calibrates the model by
limiting the error associated with the base value (principle of maximal margin). In addition,
SVR/M implies kernel functions to predict nonlinear problems by projecting the nonlinear
vector to high-dimensional spaces [54]. Based on the object type of the response variable
(factor or not), the model instigates the classification or regression of the proposed datasets.
With the default parameters included, the number of support vectors is automatically de-
termined for continuous (2788) and categorical (3133) variables, which decides the overall
performance of the support vector regression and classification.
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2.4.8. Cubist Regression

The Cubist model is the most popular model structure used because of its ability
to model the nonlinear relationships associated with the datasets and is an extension of
the M5 tree model. Like regression trees (rpart), the parameters are tuned by passing a
control function (cubistControl) or control parameter within the model definition [55]. In
the present study, values of 100 and 15 were inputted into the rules and extrapolation
arguments, respectively.

2.4.9. Random Forest (RF)

Random forest is a boosted decision tree model made by constructing multiple decision
trees during training, which are later consolidated to define one single prediction for each
observation in the datasets. The average of the individual trees is computed for regression
prediction, and for categorical variables, predictions are made on a majority basis [56]. Soil
prediction studies consider random forest algorithms for their robust performance and
limited need for fine-tuning. The present study implemented fine-tuning by adjusting
the ntree (number of trees to be constructed) and mtry (number of covariates selected as
candidates at each split) hyperparameters. For spatial prediction of the quantitative soil
attributes, an ntree value of 1000 with default mtry values were inputted [57]. For the
spatial prediction of the qualitative soil attributes, an ntree value of 500 and mtry of 5 were
inputted for pruning the decision trees.

2.5. Model Validation

In order to mitigate the effects of spatial autocorrelation on the validation of the
models, spatial partitioning of the datasets was facilitated based on the random holdback
procedure. The datasets were partitioned and 70% of the total was sampled for the training
dataset and the remaining 30% for validation. We calculated the validation metrics for the
quantitative and qualitative soil attributes separately for each predictive model calibrated.

2.5.1. Quantitative Soil Attributes

For the quantitative soil attributes, the coefficient of determination (R2) [a], concor-
dance correlation coefficient (CCC) [b], root mean square error (RMSE) [c], and bias [d]
were implemented for determining the quality of the predictions made by each of the
machine learning algorithms. The metrics were calculated using the goof function of the
ithir package in R.

R2 = 1− ∑n
i=1(pi − oi)

2

∑n
i=1(oi − oi)

2 [a]

CCC =
2ρ ∗ oi pi

oi
2 + pi

2 + (oi − pi)
2 [b]

RMSE =

√
1
n
−

n

∑
i=1

(oi − pi)
2 [c]

Bias =
1
n
−

n

∑
i=1

(oi − pi) [d]

where pi and oi denote the predicted and observed values of the soil attributes, ρ denotes
the correlation coefficient between the observed and predicted attributes, and oi and pi
denote the means of the observed and predicted values of the soil attributes.

2.5.2. Qualitative Soil Attributes

The class assigned by the machine learning model in the classified image was com-
pared with the class of the validation dataset to determine the “correctness” of the clas-
sification. The confusion matrix was generated based on the [58] accuracy assessment
measures. For the qualitative soil attributes, the overall accuracy (OA), kappa, quantity
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disagreement (Q) [e], and allocation disagreement (A) [f] were based on the generated
confusion matrix. Further, the substantiations were based on the total disagreement (TD)
calculated [g]. The metrics were derived from the goofcat (OA and kappa) and diffTablej (Q
and A) functions of the ithir and diffeR packages, respectively. Due to the shortcomings of
kappa, as stated by Pontius and Millones [59], disagreement measures were implemented
to study the effectiveness of the model’s performance.

Q =
∑
(

2 ∗min( xi+
N −

xii
N , x+ i

N −
xii
N

)
2

∗ 100 [e]

A =
∑
∣∣ x+ i

N −
xi+
N

∣∣
2

∗ 100 [f]

TD = Q + A [g]

where N is the cumulative number of items considered for validation. xii is the diago-
nal entry of the matrix. xi+ and x+i indicate the sum of row i and the sum of column i,
respectively.

2.5.3. Variable Importance Measure

A major limitation of the machine learning algorithms implemented is that all models
failed to exhibit the functional relationship between the predictor covariates and soil
attributes. To facilitate the determination of the percentage influence of the covariates on the
spatial model prediction based on the selected machine learning algorithm, the permutation
feature importance (PFI) method was implemented. The PFI analysis was presented by
Breiman [56] and was subsequently developed by Fisher et al [60]. The analysis is a model-
agnostic tool for determining the feature importance of almost every machine learning
algorithm implemented, irrespective of the number of covariates implemented. The method
estimates the variations in the prediction quality of a single covariate vector. Hence a
covariate is deemed important if shuffling its values increases the error of the model, as in
this case, where the model heavily relied on the covariate. Further, the model evaluation
was also facilitated based on the ability of the model to incorporate the continuous and
categorical predictor variables (covariates) for spatial predictions. The differences in the
contributions of the covariates for spatial modelling can reflect the ability of the model to
mitigate bias and explain the nonlinearity associated with the model trained and tested.
The current study included the permutation feature importance for each machine learning
algorithm, implicated using the “iml” package in R [61,62].

In addition, the calculations included for determining the contribution of the covariates
to the predicted soil attributes for each learner (f ) were provided and the error of each
algorithm was estimated as follows:

Error ori = soilproperty − f (covariates ori)

For each covariate, the covariate space was extended by randomly permutated covari-
ates to remove their correlation with the soil properties. The error based on the permutated
covariates is as follows:

Error perm = soilproperty − f (covariates perm)

By differencing the error derived through the original covariates and permutated
covariates, the associated deviations can be derived through the following function and the
values can be converted to a percentage for substantiation:

PFI = (Error perm − Error ori)
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3. Results
3.1. Descriptive Statistics

Descriptive statistics predominantly define the range of variability associated with the
soil properties. The variability of the soil properties is usually attributed to soil-forming
factors that are closely related [63]. The summary statistics of the continuous soil attributes
based on the minimum, maximum, mean, and standard deviation parameters are presented
in Table 3.

The study area’s soils varied in their range of pH values but were typically neutral
to slightly alkaline. The pH values showed a moderate spatial variation with a standard
deviation of 0.95 and a mean value of 7.2. The minimum and maximum values of the pH
were 4.6 and 9.8, respectively, with a coefficient of variation (CV) of 13.12. The organic
carbon (OC) was typically low throughout the study area, which may be attributed to tillage
activities, high temperatures, and the high erodibility of the soils. The OC values exhibited
a standard deviation of 0.26 and a CV of 53%, with a mean value of 0.49%, exhibiting high
variability. The minimum and maximum values of the organic carbon were 0.10 and 1.42%,
respectively.

The study area soils also showed variability for the cation exchange capacity (CEC)
with a standard deviation and CV of 11.24 and 57.61%, respectively, and a mean value
of 19.5 meq/L. Further, the CEC’s minimum and maximum values were 3.03 meq/L and
58.1 meq/L, respectively. For all soil attributes, the mean and median values were almost
comparable, indicating the normality of the data distribution.

Table 3. Descriptive statistics of the continuous soil attributes.

Soil Properties Unit Minimum Maximum Mean Median SD CV

pH - 4.6 9.8 7.2 7.2 0.95 13.12

Organic Carbon % 0.10 1.42 0.49 0.44 0.26 53.06

Cation Exchange Capacity meq/L 3.03 58.1 19.51 17.29 11.24 57.61

3.2. Model Comparison and Evaluation
3.2.1. Quantitative Soil Attributes

The independent validation datasets partitioned using the random holdback procedure
were utilised to validate the model’s performance. Among the machine learning algorithms,
the highest R2 and CCC for the pH were estimated by the random forest (38%; 0.50) and
Cubist (31%; 0.53) algorithms. Similarly, the highest R2 and CCC for the OC were estimated
by the random forest (13%; 0.19) and Cubist (12%; 0.29) algorithms. The RMSE values
observed for the pH and OC varied slightly among the models. Compared to the other
models, the highest R2 and CCC for the CEC attribute were estimated by the RF (40%; 0.52)
followed by the Cubist (29%; 0.52) algorithms, with the lowest RMSE values estimated
by the RF and Cubist algorithms at 8.84 and 9.93, respectively. The bias calculated by
the models was low for all models. We found that the differences among the metrics of
the models were comparable. The metrics assessed for the quantitative soil attributes are
presented in Table 4.
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Table 4. Prediction evaluation metrics assessed for continuous soil attributes.

Quantitative Soil
Attribute

Machine Learning
Algorithms

Validation

R2 CCC RMSE Bias

pH

Cubist 0.31 0.53 0.81 −0.02

Decision Tree 0.27 0.44 0.81 −0.01

k-Nearest Neighbour 0.19 0.37 0.86 0.01

Multiple Linear
Regression 0.20 0.34 0.85 −0.01

Random Forest 0.38 0.50 0.75 −0.01

Support Vector
Regression 0.25 0.45 0.83 −0.03

Organic Carbon

Cubist 0.12 0.29 0.25 −0.02

Decision Tree 0.06 0.16 0.26 −0.01

k-Nearest Neighbour 0.04 0.13 0.26 −0.01

Multiple Linear
Regression 0.04 0.09 0.26 −0.01

Random Forest 0.13 0.19 0.25 0.00

Support Vector
Regression 0.06 0.16 0.26 −0.04

Cation Exchange
Capacity (CEC)

Cubist 0.29 0.52 9.93 −0.39

Decision Tree 0.22 0.38 10.01 0.12

k-Nearest Neighbour 0.15 0.31 10.44 0.45

Multiple Linear
Regression 0.14 0.29 10.49 0.43

Random Forest 0.40 0.52 8.84 0.34

Support Vector
Regression 0.17 0.34 10.39 −0.94

Note: R2—Coefficient of Determination; CCC—Concordance Correlation Coefficient; RMSE—Root Mean
Square Error.

3.2.2. Qualitative Soil Attributes

For the qualitative soil attributes, the spatial prediction of the soil order was predicted,
with the highest overall accuracy and kappa values estimated by RF (67%; 0.52) and C5.0
(65%; 0.51). Further, from a comparison of the disagreements stated by the algorithms,
the random forest (33.87%) and C5.0 (35.53%) algorithms had the comparably lowest total
disagreements, with higher allocation disagreements. Similarly, for the soil suborder, the
highest overall accuracy and kappa values were estimated by RF (65%; 0.50) and C5.0
(64%; 0.50). On the other hand, the total disagreements were found to be the lowest for RF
(35.13%) and Cubist (36.20%), with higher allocation and lower quantity disagreements.
Further, for the great group soil predictions, the highest overall accuracy and kappa values
were estimated by RF (65%; 0.50) and C5.0 (65%; 0.53%), with the lowest total disagreement
of 35.33% for both the RF and C5.0 algorithms. In addition, the classifiers removed the
spatial predictions of certain class categories, generally due to low sampling observations
concerning the removed categories. The metrics assessed for the qualitative soil attributes
are presented in Table 5.
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Table 5. Prediction evaluation metrics assessed for categorical soil attributes.

Qualitative Soil
Attributes

Machine Learning
Algorithms

Validation

OA (%) Kappa Q (%) A (%) TD (%)

Order

Decision
Trees (C5.0) 65 0.51 5.40 30.13 35.53

k-Nearest
Neighbour 51 0.29 9.27 40.40 49.67

Multinomial
Logistic Regression 46 0.26 18.93 35.67 54.60

Naïve Bayes 31 0.15 53.00 16.47 69.47

Random Forest 67 0.52 7.87 26.00 33.87

Support Vector
Machine 55 0.35 11.47 33.67 45.13

Suborder

Decision
Trees (C5.0) 64 0.50 5.00 31.20 36.20

k-Nearest
Neighbour 50 0.28 10.00 40.13 50.13

Multinomial
Logistic Regression 46 0.21 17.47 37.07 54.53

Naïve Bayes 26 0.13 52.93 21.40 74.33

Random Forest 65 0.50 9.47 25.67 35.13

Support Vector
Machine 55 0.35 11.40 34.00 45.40

Great group

Decision
Trees (C5.0) 65 0.53 6.33 29.00 35.33

k-Nearest
Neighbour 50 0.30 13.67 36.40 50.07

Multinomial
Logistic Regression 46 0.28 19.00 35.00 54.00

Naïve Bayes 27 0.17 48.00 25.53 73.53

Random Forest 65 0.50 15.00 20.33 35.33

Support Vector
Machine 54 0.32 17.80 29.13 46.93

Note: OA—Overall Accuracy; KD—Kappa Disagreement; Q—Quantity disagreement; A—Allocation Disagree-
ment; TD—Total Disagreement.

3.3. Visual Assessment

The machine learning algorithms for the spatial modelling and prediction of the quan-
titative and qualitative soil attributes generated through the raster “predict” function were
depicted as their respective attribute maps in Figures 2–7. The predicted continuous soil at-
tribute maps were similar to the existing maps, with the added spatial variations explained
through the predictions. The comparison of the prediction maps of the pH, OC, and CEC
with the existing maps showed that most intricate spatial variations were explained by the
Cubist and random forest algorithms, followed by support vector regression, k-NN, deci-
sion trees, and multiple linear regression, with an increasing gradient of all soil attributes
from west to east. The predicted OC attribute maps depicted a very low concentration,
which can be substantiated based on the slope direction, depth, and elevation of the study
area.



Land 2022, 11, 2279 13 of 26Land 2022, 11, x FOR PEER REVIEW 13 of 26 
 

 
Figure 2. Existing and predicted maps of pH using different machine learning algorithms. 

 
Figure 3. Existing and predicted maps of OC using different machine learning algorithms. 

Figure 2. Existing and predicted maps of pH using different machine learning algorithms.

Land 2022, 11, x FOR PEER REVIEW 13 of 26 
 

 
Figure 2. Existing and predicted maps of pH using different machine learning algorithms. 

 
Figure 3. Existing and predicted maps of OC using different machine learning algorithms. Figure 3. Existing and predicted maps of OC using different machine learning algorithms.



Land 2022, 11, 2279 14 of 26Land 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 
Figure 4. Existing and predicted maps of CEC using different machine learning algorithms. 

 
Figure 5. Existing and predicted maps of soil order using different machine learning algorithms. 

Figure 4. Existing and predicted maps of CEC using different machine learning algorithms.

Land 2022, 11, x FOR PEER REVIEW 14 of 26 
 

 
Figure 4. Existing and predicted maps of CEC using different machine learning algorithms. 

 
Figure 5. Existing and predicted maps of soil order using different machine learning algorithms. Figure 5. Existing and predicted maps of soil order using different machine learning algorithms.



Land 2022, 11, 2279 15 of 26Land 2022, 11, x FOR PEER REVIEW 15 of 26 
 

 
Figure 6. Existing and predicted maps of suborder using different machine learning algorithms. 

 
Figure 7. Existing and predicted maps of the great group using different machine learning algo-
rithms. 

The lower elevation areas were generally estimated as having lower carbon concen-
trations due to the increased temperatures [64]. The variations in the minimum and max-
imum values for the soil attributes were usually attributed to the bias and indicated the 

Figure 6. Existing and predicted maps of suborder using different machine learning algorithms.

Land 2022, 11, x FOR PEER REVIEW 15 of 26 
 

 
Figure 6. Existing and predicted maps of suborder using different machine learning algorithms. 

 
Figure 7. Existing and predicted maps of the great group using different machine learning algo-
rithms. 

The lower elevation areas were generally estimated as having lower carbon concen-
trations due to the increased temperatures [64]. The variations in the minimum and max-
imum values for the soil attributes were usually attributed to the bias and indicated the 

Figure 7. Existing and predicted maps of the great group using different machine learning algorithms.

The lower elevation areas were generally estimated as having lower carbon concentra-
tions due to the increased temperatures [64]. The variations in the minimum and maximum
values for the soil attributes were usually attributed to the bias and indicated the underfit-
ting and overfitting of the predictions. The predicted categorical soil attribute maps were
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almost identical to the existing class maps with variations in the shape and size of the grid
clusters, except for the map derived using the naïve Bayes classifier, which depicted evident
bias and inconsistencies in the predictions of the implicated categorical soil attributes. In
addition, a slight ambiguity in the feature space along the areas of great diversity was also
observed for the class prediction maps obtained using multinomial logistic regression and
k-NN. Further, the speckled results produced by k-NN due to overfitting might be difficult
to interpret.

A larger proportion of the study area was covered by the Inceptisols soil order. The
random forest and C5.0-derived soil class maps presented the clearest representation of the
class elements followed by SVM, k-NN, and multinomial logistics regression. Although
C5.0 and SVM removed three class elements of the great group, they were considered for
their potential to adhere to other class elements almost identical to the existing maps. In
summary, the predicted soil attribute maps depicted the complex spatial organisation of
the variations associated with the existing soil maps and confirmed that all the prediction
models, except for naïve Bayes (soil class), could digitally map the soil attributes, but
the maps were more accurate with the selected models. The RF and Cubist algorithms
for the continuous soil attributes were almost identical to the existing maps, with much
greater delineation facilitated by the Cubist algorithm for all the continuous soil attributes
considered (Figure 8).

Land 2022, 11, x FOR PEER REVIEW 16 of 26 
 

underfitting and overfitting of the predictions. The predicted categorical soil attribute 
maps were almost identical to the existing class maps with variations in the shape and 
size of the grid clusters, except for the map derived using the naïve Bayes classifier, which 
depicted evident bias and inconsistencies in the predictions of the implicated categorical 
soil attributes. In addition, a slight ambiguity in the feature space along the areas of great 
diversity was also observed for the class prediction maps obtained using multinomial lo-
gistic regression and k-NN. Further, the speckled results produced by k-NN due to over-
fitting might be difficult to interpret. 

A larger proportion of the study area was covered by the Inceptisols soil order. The 
random forest and C5.0-derived soil class maps presented the clearest representation of 
the class elements followed by SVM, k-NN, and multinomial logistics regression. Alt-
hough C5.0 and SVM removed three class elements of the great group, they were consid-
ered for their potential to adhere to other class elements almost identical to the existing 
maps. In summary, the predicted soil attribute maps depicted the complex spatial organ-
isation of the variations associated with the existing soil maps and confirmed that all the 
prediction models, except for naïve Bayes (soil class), could digitally map the soil attrib-
utes, but the maps were more accurate with the selected models. The RF and Cubist algo-
rithms for the continuous soil attributes were almost identical to the existing maps, with 
much greater delineation facilitated by the Cubist algorithm for all the continuous soil 
attributes considered (Figure 8). 

 
Figure 8. Visual assessment on the RF and Cubist predicted continuous variables maps. Figure 8. Visual assessment on the RF and Cubist predicted continuous variables maps.

Similarly, when comparing the C5.0 and RF predictions with the existing maps, finer
and more detailed boundary delineations were attributed to the C5.0 algorithm (Figure 9).
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The delineation variations may be attributed to the predictor covariates’ contributions to
the spatial model calibration.
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3.4. Permutation Feature Importance

The percentage contribution of each parameter derived through PFI analysis was
abstracted cumulatively and these are depicted in Table 6.

From Table 6, it can be inferred that the highest overall contributions were from the
terrain covariate, which indicates the primary effect of the topographical characteristics
on the spatial variability of the soil properties. In general, most models had differing
contributions from the parent material and terrain parameters in the model calibration.
Between the terrain and parent material covariates, the categorical soil attributes were
mostly determined using the terrain parameters. Similarly, the parent material covariate
was used the most by the continuous soil attributes. This explains the influence of the
nature of the covariate parameter on spatial modelling. Further, MLR showed its linear
tendency of data fitting by increasing the incorporation of continuous predictors rather than
categorical predictors for its model calibration. Attributable to only two climatic parameters
implemented, the influence of the climate covariate on all soil attributes sufficiently explains
their importance in predictions of soil properties. The effect of the organisms covariate
indicates the constant influence of underlying organisms and other anthropogenic activities
on the descriptions of the soil attributes [65].
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Table 6. Percentage contributions of the covariates to the soil attribute predictions implied through
permutation feature importance.

Soil Attributes Covariates
Machine Learning Algorithms

Cubist Decision Trees k-NN MLR RF SVR

pH

Climate (%) 2.8 3.0 2.4 3.6 3.2 2.1

Organisms (%) 21.6 0.0 0 8.3 6.3 11.8

Terrain (%) 52.5 93.1 97.6 10.1 84.0 76.9

Parent material (%) 23.1 3.8 0 77.9 6.5 9.2

OC

Climate (%) 4.0 4.6 4.8 5.6 3.2 3.0

Organisms (%) 24.5 38.7 22.1 33.2 29.1 32.1

Terrain (%) 52.3 52.1 61.1 5.3 58.9 43.1

Parent material (%) 19.2 4.5 12.0 55.9 8.8 21.9

CEC

Climate (%) 3.6 1.3 2.1 2.1 2.5 2.2

Organisms (%) 30.4 9.7 20.9 31.2 11.2 22.7

Terrain (%) 47.2 81.3 62.8 9.7 80.0 64.7

Parent material (%) 18.7 7.7 14.2 57.0 6.2 10.3

C5.0 k-NN MnLR NB RF SVM

Order

Climate (%) 4.7 2.4 4.5 3.3 3.0 3.0

Organisms (%) 6.1 22.8 62.2 0.0 10.5 21.6

Terrain (%) 82.4 62.3 33.2 91.2 79.2 61.8

Parent material (%) 6.7 12.6 0.0 5.5 7.2 13.7

Suborder

Climate (%) 3.2 3.4 3.1 4.0 4.6 3.2

Organisms (%) 2.1 17.1 62.5 62.6 7.3 22.2

Terrain (%) 90.6 62.3 34.2 0.0 84.9 61.8

Parent material (%) 4.1 17.2 0.1 33.3 3.2 12.8

Great group

Climate (%) 2.3 3.1 4.6 3.00 2.1 3.0

Organisms (%) 5.6 20.1 54.0 14.68 11.1 24.9

Terrain (%) 87.9 62.5 41.3 82.31 81.9 61.1

Parent material (%) 4.2 14.2 0.0 0.00 4.9 11.0

Note: k-NN—k-Nearest Neighbor; MLR—Multiple Linear Regression; RF—Random Forest; SVR/SVM—Support
Vector Regression/Machine; MnLR—Multinomial Logistic Regression; NB—Naïve Bayes.

Furthermore, several of the machine learning algorithms exhibited no influence of the
covariates on the calibrated model, which further substantiates the higher bias associated
with the models discussed. In summary, for qualitative soil attributes, the Cubist model
had an almost equal contribution from all the covariates for its spatial predictions. The
equal influence of the covariates is reflected in the finer delineations of the spatial variations
accounted for by the Cubist algorithms. Further, impartial influences were presented by
the other machine learning algorithms for each soil attribute.

The terrain covariate facilitated a greater influence of the pH soil attribute, followed
by the parent material, organisms, and climatic parameters. The influence of the parent
material in addition to the terrain attributes can explain the spatial variability of the pH
based on the composition of soil-forming materials. The contribution of the organisms
covariate was found to be the second highest for the OC after the terrain attributes, which
substantiates the generalised influence of the organisms on the soil carbon and organic
matter contents. More specifically, the effects of Landsat band 3, LULC, and NDVI on the
OC prediction were higher, which has been reported in several studies [66,67]. Similar to
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those of the OC, the predictions of the CEC showed a stronger influence of organisms than
parent material, which contrasts the order of the influence exhibited by the covariates for
the pH and CEC soil attributes. In addition, in the cases of the categorical variables, the
terrain attributes had a greater influence, followed by parent material and organisms for
the C5.0 algorithm. However, the RF algorithm exhibited a contrasting order, with terrain
as the most influential, followed by organisms and parent material. Moreover, the inclusion
of the parent material in the C5.0 algorithm explains the segregations and almost finer
delineations among the classes. This might further substantiate that most soil classifications
were based on parent material characteristics [68].

4. Discussion
4.1. Model Efficiency and Performance

Model performance is generally based on the nature of the datasets implicated; the
parameters depicted; and the complexity, consistency, and structure of the model pro-
posed [69]. Based on the evaluation metrics assessed for the soil attributes, discussions
are herein presented for the comparison of the machine learning algorithms. Besides the
metrics specified, the selections were also made by comparing the quality of the visual
delineations provided by a particular machine learning algorithm. Since a standardised
measure of model efficiency has not yet been determined, several evaluation metrics were
assessed to capture the variations in the model training. In general, the comparison results
and the resulting predictions of the study might vary from other studies. Although specu-
lating about the reasons behind the differences is difficult, the differences could be because
of the varying nature of the study area and the quantity and quality of the soil attributes.

4.1.1. Quantitative Soil Attributes

In general, the lower R2 and CCC values presented by the algorithms were due to the
higher variability and complex interactions depicted by the environmental covariates. The
high variability can be explained by the management practices, vegetation, and climatic
factors influencing the characteristics of the study area [70]. Furthermore, several studies
indicated a similar range of R2 results, stating that R2 values < 0.50 are common [71],
considering the spatial prediction of the continuous soil attributes. Previous studies on
continuous spatial soil predictions resulted in R2 ranges not exceeding 70% [72–77].

Other research on digital soil mapping of the continuous soil attributes in India
presented similar spatial soil predictions in the watershed regions of Karnataka, India. The
R2 values of the predictions for the pH, EC, and OC using random forest regression (RF)
yielded 46%, 16%, and 19%, respectively, for the Aland watershed and 30%, 7%, and 12%
for the Guppi watershed [78]. Recent works evaluating digital soil-mapping approaches
indicated that the variations exhibited by the R2 measure ranged from 9% to 48% for
predicting soil fertility nutrients [79]. The low R2 values were due to the lower range of
the soil attributes and non-significant spatial variations of the inputted soil datasets. The
differences in the results of the evaluation metrics due to scale and range have also been
investigated in other studies [80] and it has been stated that the lower values might indicate
the insufficiency of the covariates to explain the soil attributes aside from their range and
scale [81].

The lower RMSE measure indicates the reasonable performance of the spatial predic-
tion models, which was expected using the sampled data. Further, when comparing the
bias, the pH and OC attributes provided an unbiased prediction, with k-NN and MLR
suffering a moderate bias when predicting the CEC attribute. When comparing the evalu-
ation metrics derived using the test datasets, for the spatial prediction of the continuous
soil attributes, the RF model consistently made the most accurate predictions (with the
highest R2 and lowest RMSE). Furthermore, the Cubist model also performed efficiently
in addition to the RF algorithm. Similar results were found in previous studies [76–83],
which stated the RF and Cubist algorithms as being among the most efficient soil organic
carbon prediction models. However, these studies showed differences in the R2 and other
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evaluation metrics, which might be due to the different sampling designs, scales, and
ranges of the soil attributes and covariates incorporated.

Several studies indicated that the random forest approach was considered suitable for
spatial soil predictions because of its ability to handle many covariates, limited samples,
and low need for hyperparameter tweaking [84]. Furthermore, following RF and Cubist,
regression trees (DT) reported comparable prediction metrics. The lower accuracy of
support vector machine can be attributed to the larger sampling data implemented. Thus,
based on the evaluation metrics and visual assessments, among the machine learning
algorithms compared, the RF and Cubist are considered efficient models for predicting the
spatial variations in the pH, OC, and CEC for the proposed study.

4.1.2. Qualitative Soil Attributes

The evaluation metrics assessed for the qualitative soil attributes indicated that all the
prediction models performed sufficiently in explaining the variability of the soil attributes,
except for multinomial logistic regression and the naïve Bayes classifier. In addition to
estimating the kappa and overall accuracy (OA), disagreement measures adopted in several
recent studies were also estimated in the comparison of the machine learning algorithms
for their robustness in depicting the variations in the predicted class [85–89].

Based on the evaluation metrics assessed, the random forest and C5.0 algorithm
outperformed other models and predominantly reported the most accurate results for
every soil class prediction implicated. Previous studies found that the RF [85,90] and
C5.0 [91] algorithms provided the most accurate results and similar results were found by
Zeraatpisheh et al. [92], which resulted in multinomial logistic regression for higher soil
taxonomic units (due to the inclusion of the AIC-based predictor variable selection) and RF
for lower taxonomic units as the best-performing models. Other studies [93] also resulted
in RF (kappa = 0.55) being a more efficient model than multinomial logistic regression
(kappa = 0.33). The prediction of soil class units in Iran also reported similar results [94],
with the RF model performing the best at higher taxonomical units with OAs of 0.87 and
0.52 and kappas of 0.57 and 0.38 for order and suborder class predictions, respectively. The
study also reported the increased prediction accuracy of RF compared to the proposed
ensemble model.

The overall accuracies of the DSM maps selected based on the evaluation metrics for
each soil taxonomic level ranged from 65% to 67%, which was the recommended level
reported in the previous studies [95,96]. The results obtained were generally found to be
comparable to or higher than the previous studies. For example, soil class prediction [89]
in Brazil resulted in an overall accuracy of 0.54 for the RF algorithm. Similar results to our
study area have been reported for predicting soil class units, with overall accuracies of
68%, 63.6%, and 58.8% achieved through RF, classification trees, and multinomial logistic
regression, respectively [97].

When comparing the disagreement components between the algorithms, the validated
naïve Bayes classifier had a higher number of disagreements. The total disagreement
measure was found to be the lowest for the RF and C5.0 algorithms, with a higher allocation
disagreement. The major limitation of the soil class prediction associated with the C5.0
and support vector machine was that the fitted model failed to classify some of the soil
classes, which was mainly attributed to low sampling frequencies related to the particular
soil class element. In general, classes with lower sampling frequencies were predicted less
accurately due to the limited observations associated with segregating such classes in the
feature space.

Further, it was evident that the increase in the number of class categories had no
significant effect on the resulting prediction accuracies. From the assessment of the per-
centage contributions of the covariates, it was observed that NB and multinomial logistic
regression did not consider the parent material covariates (spectral ratios). Although the
RF and C5.0 algorithms provided comparable results in observing the evaluation metrics,
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based on the visual assessments, all the machine learning algorithms derived a comparable
interpretation, except for the NB classifier.

4.2. Potential Applications at the Farm Level and Policy Decisions

Climate change and an increasing population demand a well-established soil database
to increase productivity, reduce emissions, and create a safe environment for future food
security. Soil databases are used to assess soil conditions to mitigate global concerns re-
garding environmental sustainability. In DSM, several studies have addressed the spatial
prediction of the contiguous soil attributes viz. pH, CEC, organic carbon, etc., compared to
the categorical attributes [98]. The block-level soil information with legacy soil maps also
lacks detailed soil information, whereas the soil information predicted and downscaled
through DSM helps farmers with their day-to-day management decisions [99]. The high-
resolution digital maps can be used to assess crop suitability, soil and land management
practices, site-specific fertilizer recommendations, the integration of spatial variability
in VRT systems, and irrigation scheduling, subsequently reducing operational costs by
optimising the inputs. The proper selection of crops, effective soil and land management
practices, and balanced fertilization using DSM will result in reduced input costs and in-
creased farm outputs, thereby improving the net income of farmers in addition to ensuring
their livelihoods through crop cultivation [100].

The results from this study depict the strength of digital soil-mapping techniques to
generate precise information pertaining to soils. The knowledge can be transferred to farm-
ers through mobile applications and other Information and Communication Technology
(ICT) tools on digital platforms. Agro-technology transfer has reached most smallholder
farmers in Tamil Nadu, which account for nine million farm holdings, with large variability
in the spatial attributes of soil. The further development of soil-based ICT tools in local
languages will empower farmers in terms of farm management, resource recycling, and
adopting strategies to manage soil constraints [101]. The technology has the potential for
upscaling across the different geographies of India.

5. Conclusions

The current study was based on the soil information derived from the existing soil
maps, which were based on the stratified random sampling procedure. From the class
prediction results, it can be inferred that the strata-based sampling procedure may limit
the depiction of the transition variations near the strata boundaries. The effect of the
nature and range of the soil and predictor variables had a considerable influence on
the resulting predictions. Irrespective of the number of covariates considered, it was
observed that the continuous scale predictors had a comparably greater influence than the
categorical predictor variables on the model calibration, except for NB and multinomial
logistic regression. The key findings of our research are:

1. From the suite of machine learning algorithms compared for mapping three continu-
ous soil attributes and three soil taxonomical units, it can be inferred from the visual
interpretation that all the algorithms provided a reasonable spatial prediction of the
soil attributes, except for the NB classifier.

2. Among the ML models, the tree-based ensemble (RF) and rule-based models (Cubist
and C5.0) efficiently predicted the soil properties spatially. The efficiency of the models
can be further increased by adopting appropriate sampling and tuning methods.

3. The probability-based machine learning algorithms (NB and multinomial logistic
regression) produced biased and crude results, which might have been due to the
inclusion of continuous covariate predictors for the model calibration. Hence, the
transformation of covariate predictors and the implementation of suitable variable
selection techniques can improve the accuracy of the predictions.

4. The results of k-NN, SVM, and SVR with default parameterisation were used to
deduce the potential of the models, which was further increased by the appropriate
tuning of parameters. The time required for the computation of SVM/SVR parameteri-
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sation is tedious for a larger dataset; hence, it is recommended for limited observations
at a smaller scale.

This study also revealed that the spatial predictions of the soil attributes at regional
levels with contrasting climates and landscapes were substantial. The tree-based models
can be further enhanced and utilised for spatial predictions for producing digital soil
maps at other regional and state levels. The digital soil maps generated at the higher
spatial resolution will help farmers to execute effective farm planning through the choice of
efficient crops, the scientific scheduling of irrigation and need-based nutrient application,
effective management practices in the case of soil constraints, and the facilitation of the
transformation to digital agriculture.
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