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Abstract: Land-use/land-cover change (LUCC) is an important factor affecting carbon storage. It
is of great practical significance to quantify the relationship between LUCC and carbon storage
for regional ecological protection and sustainable socio-economic development. In this study, we
proposed an integrated framework based on multiobjective programming (MOP), the patch-level
land-use simulation (PLUS) model, and the integrated valuation of ecosystem service and trade-offs
(InVEST) model. First, we used the InVEST model to explore the spatial and temporal evolution
characteristics of carbon storage in Hangzhou from 2000 to 2020 using land-cover data. Second, we
constructed four scenarios of natural development (ND), economic development (ED), ecological
protection (EP), and balanced development (BD) using the Markov chain model and MOP, and then
simulated the spatial distribution of land cover in 2030 with the PLUS model. Third, the InVEST
model was used to predict carbon storage in 2030. Finally, we conducted a spatial correlation of
Hangzhou’s carbon storage and delineated carbon storage zoning in Hangzhou. The results showed
that: (1) The artificial surfaces grew significantly, while the cultivated land decreased significantly
from 2000 to 2020. The overall trend was a decrease in carbon storage, and the changing areas of
carbon storage were characterized by local aggregation and sporadic distribution. (2) The areas of
artificial surfaces, water bodies, and shrubland will continue to increase up to 2030, while the areas of
cultivated land and grassland will continue to decrease. The BD scenario can effectively achieve the
multiple objectives of ecological protection and economic development. (3) The carbon storage will
continue to decline up to 2030, and the EP scenario will have the highest carbon storage, which will
effectively mitigate the carbon storage loss. (4) The spatial distribution of carbon storage in Hangzhou
was inextricably linked to the land cover, which was characterized by a high–high concentration and
a low–low concentration. The results of the study can provide decision support for the sustainable
development of Hangzhou and other cities in the Yangtze River Delta region.

Keywords: carbon storage; land-use/land-cover change; multiobjective programming; PLUS model;
InVEST model; multiple scenario simulation

1. Introduction

Global warming is an important environmental issue of widespread concern to the in-
ternational community [1,2]. Carbon emissions are one of the causes of global warming [3],
which poses a great challenge to the sustainable development of both human society and
the environment [4]. Terrestrial ecosystems are important global carbon pools and play
a key role in maintaining the global carbon cycle [5,6] and regulating climate change [7].
Studies showed that human-induced LUCC is a major driver of carbon storage changes in
terrestrial ecosystems [8–10]. Therefore, a quantitative assessment of the corresponding
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relationship between carbon storage and LUCC is of great practical significance for regional
ecological protection and sustainable socio-economic development.

In recent years, many scholars have conducted numerous studies on the relation-
ship between the role of LUCC and carbon storage and its influence mechanisms at the
global [11], national [12], urban cluster [13], provincial [14], and municipal [15] scales. In
terms of research content, previous studies mostly analyzed changes in carbon storage
and their driving factors based on land-use/land-cover data. For example, Yin Ren et al.
studied the effects of rapid urban sprawl on urban forest carbon storage [16]. Zhang et al.
studied the changes in soil organic carbon following the “Grain-for-Green” Programme in
China [17]. Maia et al. studied the changes in soil organic carbon storage under different
agricultural management systems [18]. With the widely used InVEST model, which can
estimate carbon storage easily and reliably [19–21], scholars started to combine this and
land-use/land-cover simulation models, such as CA [6], CLUE-S [22], FLUS [23], and
PLUS [24], to predict future carbon storage situations. For example, Shao Zhuang et al.
used the FLUS–InVEST model to predict carbon storage in Beijing in 2035 under three
scenarios [25]. Lin et al. used the PLUS–InVEST model to predict the distribution of
land use and carbon storage in Guangdong Province in 2050 [26]. However, in terms of
simulation scenario settings, most scholars focused on thinking about technical methods;
for example, Cao et al. defined different scenarios by setting different transfer probabilities
in the Markov chain model [27] and Liu et al. defined different scenarios by adjusting the
conversion cost matrix [28]. These methods did not consider benefit targets. However,
China is now facing multi-dimensional development requirements, such as new urbaniza-
tion, ecological civilization, and rural revitalization. Therefore, it is necessary to consider
the multiple objectives of economic, social, and ecological benefits when establishing simu-
lation scenarios. In addition, previous studies did not sufficiently delve into the analysis
of carbon storage projections, and few explored the fine-grained partitioning of carbon
storage [25]. In September 2020, China put forward the goals of “carbon peaking” by 2030
and “carbon neutrality” by 2060, and the “Report on the Work of the State Council in 2021”
proposed to help achieve the “double carbon” goal through territorial spatial planning [29]
and other means. The Report of the State Council on the Work of the Government of the
People’s Republic of China in 2021 also proposed that the “double carbon” target should
be achieved through territorial and spatial planning. Therefore, it is necessary to further
explore possible pathways for applying the findings to planning practice when making
carbon storage predictions.

Here, we proposed an integrated framework based on MOP, the PLUS model, and the
InVEST model. MOP was used to deal with multiple conflicting objectives [30], the PLUS
model was used to simulate the land cover spatial distribution pattern [31], and the InVEST
model was used to assess and predict the spatial distribution in carbon storage [32]. This
research framework was applied to Hangzhou, East China.

The aims of this study were to (1) identify the spatial and temporal evolution character-
istics of carbon storage in Hangzhou from 2000 to 2020, (2) simulate the spatial distribution
of land cover under four scenarios, (3) predict future carbon storage and spatial distribution
patterns, and (4) delineate carbon storage zones. Overall, this study creatively combined the
goals of ecological conservation and economic development with the prediction of carbon
storage, and its results can provide decision support for the sustainable development of
Hangzhou and other cities in the Yangtze River Delta region.

2. Study Area and Data
2.1. Study Area

Hangzhou is located in the north of Zhejiang Province, East China, (29◦11′–30◦34′ N,
118◦20′–120◦37′ E). The administrative divisions of Hangzhou are Yuhang, Gongshu, Xi-
acheng, Shangcheng, Jianggan, Xihu, Binjiang, Xiaoshan, Fuyang, Lin’an, Tonglu, Chun’an,
and Jiande (2020), with a total area of 16,850 km2 (Figure 1). Hangzhou has varied geo-
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graphical conditions. In the western, central, and southern parts, there are mainly hills or
mountains, and the northeastern part is mainly covered by plains.

Figure 1. Location of Hangzhou.

As the social, economic, cultural, scientific, and educational center of Zhejiang Province,
Hangzhou is focused on the multiple objectives of maintaining economic development,
protecting the ecological environment, and ensuring social progress. In the past 20 years,
the rapid economic and social development of Hangzhou has led to a rapid growth in arti-
ficial surfaces, which has brought about huge changes in land cover, resulting in a drastic
decrease in ecosystem service functions and rapid changes in carbon storage [33,34]. There-
fore, it is necessary to simulate and predict the land cover and carbon storage in Hangzhou
based on the multiple objectives of future economic development and ecological protection.

2.2. Data Sources

The land-cover data for 2000, 2010, and 2020 used in this study were obtained from
GlobeLand 30 global land-cover data, which has an overall accuracy of 85.72% and a kappa
coefficient of 0.82, with high accuracy of interpretation; the land-cover map of Hangzhou
was obtained after mask extraction. Seven land-cover types were identified in the study
area, namely, cultivated land, forest, grassland, shrubland, wetland, water bodies, and
artificial surfaces, at a spatial resolution of 30 m. The driving socio-economic factors were
population density [35], GDP density [36], nighttime light [37], distance to major roads,
distance to water bodies, distance to railroads, and distance to highways. Climate and
environmental driving factors were the mean annual temperature, annual precipitation, the
digital elevation model (DEM) [38], the normalized difference vegetation index (NDVI) [39],
and the slope. The above data were unified in ArcGIS 10.2 into the WGS 1984 coordinate
system and all raster data were resampled and processed to a 30 m resolution.
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The carbon density data (carbon storage per unit area) [11,40] were obtained from
references. The ecological and economic benefits of Hangzhou were calculated based on
data from the Hangzhou Statistical Yearbooks from 2000 to 2020. The types, resolutions,
and sources of data are shown in Table 1.

Table 1. Data information and sources.

Category Data Year Resolution Source

Land cover Land-cover data 2000, 2010, 2020 30 m http://www.globallandcover.com/
(accessed on 10 October 2022)

Socioeconomic factors

Population density 2019 1 km http://www.resdc.cn/
(accessed on 11 October 2022)

GDP density 2019 1 km http://www.resdc.cn/
(accessed on 11 October 2022)

Night light data 2013 500 m http://www.resdc.cn/
(accessed on 10 October 2022)

Distance to main roads 2020 https://www.openstreetmap.org
(accessed on 3 August 2022)

Distance to railroad 2020 https://www.openstreetmap.org
(accessed on 3 August 2022)

Distance to highway 2020 https://www.openstreetmap.org
(accessed on 3 August 2022)

Distance to water bodies 2020 https://www.openstreetmap.org
(accessed on 3 August 2022)

Climate and
environmental factors

Annual average
temperature 2020 1 km http://www.resdc.cn/

(accessed on 10 October 2022)

Annual precipitation 2020 1 km http://www.resdc.cn/
(accessed on 10 October 2022)

DEM 2020 30 m https://www.gscloud.cn/
(accessed on 12 October 2022)

Slope 2020 30 m Retrieved from DEM

3. Method

The research framework is shown in Figure 2.

Figure 2. Research framework.

3.1. GM (1, 1) Model

The GM (1, 1) model is an important method for studying discrete data series with
small numbers of samples and incomplete information [41]. The essence of the GM (1, 1)

http://www.globallandcover.com/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.resdc.cn/
http://www.resdc.cn/
https://www.gscloud.cn/
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model is to cumulatively generate an original series of a single variable and then construct
a first-order linear differential equation model to obtain a fitted curve to predict the sys-
tem [42]. This is shown in Equation (1), where x(0) is the original sequence. Equation (2)
presents the constructed first-order linear differential equation, where x(1) is the new se-
quence after the accumulation of the original sequence. The predicted value of the original
sequence can be obtained from Equation (3).

x(1)(i) =
n
∑

i=1
x(0)(i)(i = 1, 2, . . . , n) (1)

u = dx(1)
dt + ax(1) (2)

x(0)(i + 1) = x(1)(i + 1)− x(0)(i)(i = 1, 2, . . . , n) (3)

3.2. MOP

MOP is an important technique for land-use optimization research [43] that has two
parts—the objective function and constraints—and its research results are of reference value
for understanding future land-use structures and contemporary land planning [44,45]. The
formulae used in the MOP are shown below: Equation (4) is the objective function, where
Fi(x) is the ith objective function, xj is the jth decision variable, and aj is the corresponding
decision coefficient; Equation (5) is the constraint condition, where bij is the coefficient
corresponding to the jth variable in the ith constraint condition, and cj is the corresponding
constraint value.

maxFi(x) =
n
∑

j=1
ajxj, (i, j = 1, 2, . . . , n) (4)

s.t.


n
∑

j=1
bijxj = (≥,≤)cj, (i = 1, 2, . . . , n)

xj ≥ 0, (j = 1, 2, . . . , n)
(5)

3.2.1. Construction of the Multiobjective Function

The contemporary characteristics and development of land resources in Hangzhou
are mainly a result of the combined influence of social, economic, and ecological benefits;
however, because social benefits mainly refer to the degree of demand for land by various
sectors of society, which is mainly reflected in the restrictions or protection of various
land-cover types in relevant policy documents, it is difficult to quantify with a single
maximum or minimum objective function [46]. Thus, this study selected economic benefits
and ecological benefits as the two direct objectives, and social benefits were reflected in
the constraints.

(1) Ecological benefit objectives

Based on the total grain PV and the area of cultivated land in each year from 2000 to
2020 in the statistical yearbooks for Hangzhou, the average output value of grains per unit
area in Hangzhou in the previous ten years was calculated to be 19,240.99 CNY/hm2/year.
The ecological benefit values of land-cover types in Hangzhou were then measured based
on China’s ecosystem service value equivalent per unit area proposed by Xie et al. [47]; the
results are shown in Table 2.

(2) Economic benefit objective

The total agricultural output value, sub-production value, and output value of two or
three industries in each year from 2000 to 2020 were obtained from the statistical yearbooks
of Hangzhou disclosed by Hangzhou’s government, and the economic efficiency value
of Hangzhou from 2000 to 2020 was calculated according to the related formula; then the
values of each land cover type in 2030 were predicted by using the GM (1, 1) model. The
results are shown in Table 3.
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Table 2. Ecological efficiency factors of each land-cover type in Hangzhou.

Land-Cover Type (A) Ecological Factor
Ecological Efficiency Value
(Unit: 104 CNY/hm2/year)

(CNY—Chinese Yuan)

Cultivated land (A1) Dryland + paddy 1.11
Forest (A2) Coniferous forest + mixed coniferous forest + broadleaf forest 7.91

Grassland (A3) Grassland + scrub + meadow 1.89
Shrubland (A4) Shrubs 4.50
Wetland (A5) Wetland 6.47

Water bodies (A6) Water system 15.62
Artificial surfaces (A7) Urban and rural construction land 0.02

Table 3. Economic efficiency factors of each land-cover type in Hangzhou.

Land-Cover Type (B) Formula
(PV: Production Value)

Economic Efficiency Value in 2030
(Unit: 104 CNY/hm2/year)

(CNY—Chinese Yuan)

Cultivated land (B1) (Agricultural PV − tea fruit PV)/cultivated land area 10.23
Forest (B2) Forestry PV/forest land area 1.06

Grassland (B3) Pastoral PV/grassland area 11.57
Shrubland (B4) Tea fruit PV/shrubland area 1044.26
Wetland (B5) Fishery PV/(water bodies area + wetland area) 0.12

Water bodies (B6) 5.46

Artificial surfaces (B7) (Secondary industry PV + tertiary industry
PV)/artificial surfaces area 1762.60

3.2.2. Scenario Setting

Four scenarios were developed for this study: natural development scenario (ND),
economic development priority (ED), ecological protection priority (EP), and balanced
development (BD). The ND scenario followed the natural evolution of land-cover types
without additional constraints. The area of each land-cover type under this scenario was
determined by entering the land-cover data in the study area in 2010 and 2020 in the Markov
chain module of the PLUS model. The ED scenario strengthened economic development
and urbanization, with the growth of economic benefits as the main objective. The EP
scenario strengthened the protection of ecological land, with the growth of ecological
benefits as the main objective. The BD scenario strengthened the degree of comprehensive
use of land resources and promoted economic and urbanization under the premise of
ensuring the sustainable development of the ecological environment, with the growth of
both ecological and economic benefits as the main objective. The weights of ecological
and economic benefits in the ED, EP, and BD scenarios were determined using the Delphi
method [45,48] (Table 4).

Table 4. Scenario setting.

Scenario Economic Efficiency Target Weighting Ecological Efficiency Target Weighting

Economic development (ED) 0.80 0.20
Ecological protection (EP) 0.20 0.80

Balanced development (BD) 0.50 0.50

3.2.3. Constraints

To ensure that the future land-cover changes in Hangzhou under multiple objectives
and scenarios were consistent with the laws of social development and relevant macro
policy expectations, this study integrated the land-cover data under the ND, the natural
decay rate of land cover in Hangzhou from 2010 to 2020, the objectives and requirements
of the relevant 14th Five-Year Plan documents issued by Hangzhou, and the coordination
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relationship between each scenario and social benefits needs. The results are shown in
Table 5.

Table 5. Multiobjective function constraints.

Constraint Factors Constraint Range (hm2) Description

Total constraint X0 = 1,685,639.88
Ecological space, living space, and production space.

The total area of these three types of land space
constituted the total area constraint.

Cultivated land constraint 295,485.12 ≥ X1 ≥ 282,675.10

Considering China’s cultivated land protection policy,
the rate of decrease in the cultivated land area from 2020
to 2030 should be no higher than the rate of decrease in
the cultivated land area from 2010 to 2020. Thus, the rate
of decrease from 2010 to 2020 was taken to measure the
lower limit constraint of the cultivated land area from
2020 to 2030. Additionally, the cultivated land area in
2030 under the ND scenario was taken as the upper

limit constraint.

Forest constraint

(ED)
1,021,124.52 ≥ X2 ≥ 687,464.02

According to the “14th Five-Year Plan for Forestry
Development” for Hangzhou in 2021, the target forest
coverage should be greater than 66.8% of that in 2020.

According to the policy, in the ED scenario, 66.8% of the
current forest area in 2020 was taken as the lower limit
constraint. Additionally, the forest area in 2030 under

the ND scenario was taken as the upper limit constraint.

(EP and BD)
X2 ≥ 687,464.02

In the EP and BD scenarios, the forest should be strictly
protected; therefore, the current forest area in 2020 was

taken as the lower limit constraint.

Grassland constraint

(ED)
X3 ≤ 64,775.79

In the ED scenario, economic development should be a
priority; therefore, the current grassland area in 2020

was taken as the upper limit constraint.

(EP and BD)
65,689.22 ≥ X3 ≥ 59,433.10

A 5% increase in the grassland area in 2030 under the
ND scenario was taken as the upper limit constraint, and
a 5% decrease was taken as the lower limit constraint.

Shrubland constraint

(ED)
X4 ≤ 1692.18

In the ED scenario, economic development should be a
priority; thus, the shrubland area in 2030 under the ND

scenario was taken as the upper limit constraint.

(EP and BD)
1861.40 ≥ X4 ≥ 1625.76

A 10% increase in the shrubland area in 2030 under the
ND scenario was taken as the upper limit constraint.
The current shrubland area in 2020 was taken as the

lower limit constraint.

Wetland constraint

(ED)
2982.42 ≥ X5 ≥ 1548.90

According to the “14th Five-Year Plan for Wetland
Protection” for Hangzhou in 2021, the wetland area in
2025 was targeted to reach at least 55% of that in 2020.
According to the policy, in the ED scenario, 55% of the

current wetland area in 2020 was taken as the lower limit
constraint. Additionally, the wetland area in 2030 under
the ND scenario was taken as the upper limit constraint.

(EP and BD)
X5 ≥ 2816.19

In the EP and BD scenarios, the wetland should be
strictly protected; therefore, the current wetland area in

2020 was taken as the lower limit constraint.
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Table 5. Cont.

Constraint Factors Constraint Range (hm2) Description

Water bodies constraint

(ED)
116,521.56 ≥ X6 ≥ 95,324.66

According to the “14th Five-Year Plan for Water & Soil
Conservation” and the “14th Five-Year Plan for Water
Ecological Protection” for Hangzhou in 2021, the main
bodies of watersheds should be protected, and the soil
and water bodies area in 2025 should reach at least 94%

of that in 2020.
According to the policy, in the ED scenario, 94% of the

current water bodies area in 2020 was taken as the lower
limit constraint. Additionally, the water bodies area in

2030 under the ND scenario was taken as the upper
limit constraint.

(EP and BD)
X6 ≥ 101,409.21

In the EP and BD scenarios, water bodies should be
strictly protected; thus, the current area of water bodies

in 2020 was taken as the lower limit constraint.

Artificial surfaces
area constraint

(ED)
X7 ≤ 203,800.21

In the ED scenario, a 10% increase in the artificial
surfaces area in 2030 under the ND scenario was taken

as the upper limit constraint.

(EP)
X7 ≤ 166,745.63

In the BD scenario, a 5% increase in the artificial surfaces
area in 2030 under the ND scenario was taken as the

upper limit constraint and a 5% decrease was taken as
the lower limit constraint.

(BD)
194,536.57 ≥ X7 ≥ 176,009.27

In the BD scenario, a 5% increase in the artificial surfaces
area in 2030 under the ND scenario was taken as the

upper limit constraint and a 5% decrease was taken as
the lower limit constraint.

3.3. The PLUS Model

The PLUS model was developed by the High-Performance Spatial Computing In-
telligence Laboratory of China University of Geosciences (Wuhan) [49,50]. The model
integrates the Land Expansion Analysis Strategy (LEAS) and a CA model based on muti-
type random patch seeds (CARS) to explore the drivers of land expansion and landscape
change. Compared with other models, the PLUS model can obtain higher simulation
accuracy and more similar landscapes [50].

The specific parameters of the PLUS model in this study were set as follows: in the
LEAS module, the number of regression trees = 50, mTry = 5, and sampling rate = 0.01. In
the CARS module, neighborhood size = 3, patch generation = 0.9, expansion coefficient = 0.1,
and thread = 0.9. In the CARS (CA based on multiple path seeds) module, neighborhood
size = 3, patch generation = 0.9, expansion coefficient = 0.1, and thread = 0.9. The neigh-
borhood weights for each land-cover type were calculated by calculating the expansion
area of land cover type as a percentage of the total land-cover expansion area. The final
parameters were 0.196511, 0.293085, 0.134640, 0.003633, 0.005221, 0.116621, and 0.250289.

Model accuracy validation was needed before the simulation of the 2030 land cover.
First, we loaded the land-cover data of 2010 and 2020 in the Extract Land expansion
module to obtain the land expansion map from 2000 to 2010; second, we loaded the Land
Expansion map from 2000 to 2010 and the driving factors into the LEAS module to obtain
the development potential of each category during this period; finally, we loaded the
land-cover data for 2020 and the development potential of each type in the CARS module
to obtain the simulated land cover in 2020 and compared them with the real value for 2020.
The overall accuracy of the simulation reached 85.51%, the kappa value was 0.75, and the
figure of merit (FOM) value was 0.15, which met the requirements.
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3.4. The InVEST Model

The InVEST model is an ecosystem service assessment model [15], which is a tool for
exploring how changes in ecosystems are likely to lead to changes in benefits that flow
to people [51]. It can estimate the amount of carbon sequestration with maps of land-
cover types and data on carbon storage in four carbon pools (i.e., aboveground biomass,
belowground biomass, soil, and dead organic matter). The basic assumption of the module
is that the carbon density of a given land type is considered to be a constant and does not
change over time [52]. The calculation formula is as follows:

Ck = Ck_above + Ck_below + Ck_soil + Ck_dead (6)

CToal = ∑n
k=1 Ak × Ck (7)

where k is the kth land cover type, Ck is the kth total carbon density (t/hm2), Ck_above is the
kth aboveground vegetation carbon density, Ck_below is the kth belowground vegetation
carbon density, Ck_soil is the kth soil carbon density, and Ck_dead is the kth dead organic
matter carbon density. CTotal is the total carbon storage (t), n is the total number of land-use
types, and Ak is the area of kth land-cover type (hm2).

The carbon density has a considerable influence on the results of the total carbon
storage in the study area [53]. Ideally, the carbon storage of the landscape should be
determined by large-scale soil sampling [54]. This is not always feasible due to the long
time and high cost constraints; therefore, many scholars use the carbon density data source
from the extant literature [54,55].

In this study, we derived the carbon density data of each land-cover type (Table 6) from
the references available for China [56–62]. The carbon density data from different studies
vary considerably and the spatial patterns of carbon density are strongly correlated with
climatic variables [63,64]; thus, we developed principles for the selection of carbon density
data: we prioritized carbon density data from Zhejiang Province, followed by carbon
density data from areas in the same climate zone (subtropical monsoon) as Hangzhou.
Sources of carbon intensity data for different land covers are shown in Table 6.

Table 6. Carbon density of each land-cover type (unit: t/hm2).

Land-Cover Type Ck_above Ck_below Ck_soil Ck_dead Ck References

Cultivated land 16.49 10.89 75.82 2.11 105.31 [56–58]
Forest 22.62 18.03 126.75 2.78 170.18 [56,59]

Grassland 14.29 17.15 87.05 7.28 125.77 [56,58]
Shrubland 8.10 1.62 91.70 3.48 104.90 [60]
Wetland 7.40 24.30 247.80 1.24 280.74 [61]

Water bodies 1.59 0.00 64.03 3.98 69.60 [59]
Artificial surfaces 0.83 0.08 43.71 0.00 44.62 [58,59,62]

3.5. Spatial Correlation Analysis

The purpose of spatial autocorrelation analysis is to determine whether a variable is
spatially correlated and to what extent it is correlated [65–67]. In this study, the spatial
autocorrelation analysis was performed on Hangzhou’s predicted carbon storage results
in 2030. First, the create fishnet was used on ArcMap to generate 1 km×1 km grids of
Hangzhou; then. Zonal Statistics as Table was used to determine the carbon storage value
of each 1 km×1 km grid point. Secondly, global spatial autocorrelation analysis was
performed on Geoda. Finally, we used LISA clustering maps to explore the local spatial
distribution patterns.
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4. Results
4.1. Land-Cover Change from 2000 to 2020

From the spatial distribution map of land cover in Hangzhou for 2000, 2010, and 2020
(Figure 3), the artificial surfaces were clustered in the northeast, which was the main urban
area of Hangzhou. There was a large water body area in the southwest, which was Qiandao
Lake, a national 5A-level tourist attraction in Hangzhou. As presented in Table 7, the land
cover of Hangzhou was dominated by cultivated land and forest, of which forest accounted
for over 60% and the cultivated land accounted for over 20%.

Figure 3. Spatial distribution of land cover in Hangzhou from 2000 to 2020.

Table 7. Area changes in each land-cover type in Hangzhou from 2000 to 2020.

Land-Cover Type Area (km2) Rate of Change (%)
2000 2010 2020 2000–2010 2010–2020 2000–2020

Cultivated land 4345.23 4122.44 3413.67 −5.13 −17.19 −21.44
Forest 10,333.40 10,291.91 10,291.38 −0.40 −0.01 −0.41

Grassland 674.25 682.50 647.76 1.22 −5.09 −3.93
Shrubland 10.68 14.80 16.26 38.53 9.86 52.19
Wetland 13.90 29.58 28.16 112.75 −4.80 102.54

Water bodies 880.73 816.32 1014.09 −7.31 24.23 15.14
Artificial surfaces 597.78 898.85 1445.09 50.36 60.77 141.74

In terms of the rate of change in each land-cover type from 2000 to 2020, the artificial
surfaces had the highest rate of 141.74%, which indicated the rapid expansion of the urban
and rural areas in Hangzhou over the past 20 years. Notably, wetlands reached 102.54%
from 2000 to 2020, which may be attributed to the implementation of the Wetland Protection
Plan in Hangzhou. The cultivated land was not well protected and was significantly
reduced by 21.44% of its area. The rates of change in the forest and grassland declined
slightly by 0.41% and 3.93%, respectively.

4.2. Spatial-Temporal Evolution of Carbon Storage from 2000 to 2020

To study the general trend in carbon storage in Hangzhou from 2000 to 2020, we used
the carbon storage module of the InVEST model to estimate the data (Figures 4 and 5).
As shown in Table 8, the total values of carbon storage in Hangzhou were 239.39 × 106 t,
237.75 × 106 t, and 233.69 × 106 t in 2000, 2010, and 2020, respectively, with a decreasing
trend and a cumulative loss of 5.70 × 106 t. Specifically, the carbon storage decreased by
only 1.6× 106 t from 2000 to 2010, which was mainly attributed to an increase in the wetland
area of 112.75%, which played an important role as a carbon sink. Moreover, carbon storage
decreased sharply from 2010 to 2020 by 3.45 × 106 t and the loss of soil carbon storage was
the highest by 2.05 × 106 t. During this period, the demand for economic development
and urban construction accelerated, resulting in a drastic reduction in Hangzhou’s carbon
storage and an increase in carbon loss.
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Figure 4. Spatial distribution of carbon storage in Hangzhou from 2000 to 2020.

Figure 5. Spatial variation in carbon storage in Hangzhou from 2000 to 2020.

Table 8. Carbon storage in Hangzhou from 2000 to 2020 (unit: 106 t).

Year CTotal_above CTotal_below CTotal_soil CTotal_dead CTotal

2000 31.71 24.56 178.49 4.64 239.39
2010 31.29 24.22 177.67 4.56 237.75
2020 30.15 23.45 175.62 4.47 233.69

The carbon storage of each land-cover type in Hangzhou changed from 2000 to 2020
(Table 9). The carbon storage of cultivated land decreased significantly from 457.60× 105 t in
2000 to 359.49× 105 t in 2020. The carbon storage of the forest, as the most important carbon
pool, remained almost unchanged. The carbon storage of grassland rose and then fell from
2000 to 2020, reducing by 3.33 × 105 t. The carbon storage in the shrubland, wetland, and
water bodies increased because of the government-implemented environmental protection
for wetland parks, national nature reserves, and ecological restoration project during this
period. In addition, the carbon storage of artificial surfaces increased significantly by
37.69 × 105 t from 2000 to 2020.

Table 9. Carbon storage of each land-cover type in Hangzhou from 2000 to 2020 (unit: 105 t).

Land-Cover Type 2000 2010 2020

Cultivated land 457.60 434.13 359.49
Forest 1758.54 1751.48 1751.39

Grassland 84.80 85.84 81.47
Shrubland 1.12 1.55 1.71
Wetland 3.90 7.63 7.91

Water bodies 61.30 56.82 70.58
Artificial surfaces 26.67 40.03 64.36
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4.3. Simulation of Land Cover in 2030

The spatial distribution of land cover in Hangzhou under four scenarios in 2030 was
obtained by applying the PLUS model with the data of the current land-cover status and the
driving factors in 2020 (Figure 6). The area of each land-cover type under the four scenarios
is shown in Table 10, and the areas of artificial surfaces, water bodies, and shrubland
will continue to increase, whereas those of cultivated land and grassland will continue
to decrease. Specifically, under the ND scenario, the land cover will continue the same
changing trend as that from the previous two decades. Additionally, the area of artificial
surfaces will increase to 1852.73 km2, with some land-cover expansion in Xiaoshan, Yuhang,
Xihu, Fuyang, and Jiande. Under the ED scenario, the area of artificial surfaces will further
increase to 2038.00 km2. Compared with the ND scenario, more expansion will occur in
Chun’an, Tonglu, and Lin’an. Under the EP scenario, artificial surfaces will expand slightly.
Compared with the ND and ED scenarios, the artificial surfaces will decrease by 185.27 km2

and 370.55 km2 by 2030, respectively. In addition, the changing trend of the forest will be
reversed from decreasing to increasing as the ecological land covers are protected. Finally,
under the BD scenario, the area of artificial surfaces will be 1945.37 km2, compared with
the ND scenario, with only an obvious expansion in Tonglu.

Figure 6. Simulation of the land-cover distribution in Hangzhou under the four scenarios in 2030.

4.4. Comparative Analysis of Benefits in 2030

The economic and ecological PVs in 2030 under four scenarios are shown in Table 11.
The economic PV under the ND scenario will be CNY 33,379.47 × 104 and the ecological
PV will be CNY 1037.11 × 104, whereas the economic PV under the ED scenario will be
the highest at CNY 36,627.01 × 104 and the ecological PV will only be CNY 1034.00 × 104,
which will be the lowest among the four scenarios. Under the EP scenario, the ecological
PV will be the highest at CNY 1071.26 × 104, but the economic benefit will be the lowest
among the four scenarios at CNY 30,123.58 × 104, which was attributed to the higher focus
on the protection of ecological land cover, although it may hinder economic development.
Under the BD scenario, compared with the ND scenario, the economic and ecological
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PVs will increase by 4.91% and 1.18%, respectively. The BD scenario would guarantee the
ecological protection of Hangzhou while ensuring reasonable economic development. It
can effectively achieve both targets of the ED and EP scenarios.

Table 10. Area of each land-cover type in Hangzhou under four scenarios in 2030 (unit: km2).

Land-Cover Type ND ED EP BD

Cultivated land 2954.85 2826.75 2826.75 2826.75
Forest 10,211.25 10,211.25 10,439.35 10,161.44

Grassland 625.61 582.77 594.33 594.33
Shrubland 16.92 16.92 18.61 18.61
Wetland 29.82 15.49 28.16 28.16

Water bodies 1165.22 1165.22 1281.74 1281.74
Artificial surfaces 1852.73 2038.00 1667.46 1945.37

Table 11. Comparative analysis of benefits under four scenarios in 2030.

ND ED EP BD

Economic PV (billion CNY) 33,379.47 36,620.88 30,123.58 35,019.06
Ecological PV (billion CNY) 1037.11 1018 1071.26 1049.35

Percentage change in economic PV 0.00% 9.71% −9.75% 4.91%
Percentage change in ecological PV 0.00% −1.84% 3.29% 1.18%

4.5. Prediction of Carbon Storage in 2030

Importing the land-cover simulation data under the ND, ED, EP, and BD scenario
outputs from the PLUS model into the carbon storage module of InVEST model, we
determined the spatial distribution of 2030 carbon storage in Hangzhou (Figure 7). In
general, there were reductions in the carbon storage of aboveground, underground root,
soil, and dead organic matter under four scenarios compared with the values in 2020
(Table 12); Figure 8 shows that the decreasing carbon storage was spatially concentrated
in the Yuhang, Fuyang, Xihu, Xiaoshan, and Jianggan districts, while the Shangcheng,
Xiacheng, and Gongshu districts exhibited no more carbon storage because they were
closer to the urban center and were constructed earlier, meaning there was no space for any
more expansion. Specifically, in the ND scenario, the carbon storage of the aboveground,
underground root, soil, dead organic matter, and accumulative carbon storage will be
29.24 × 106 t, 22.78 × 106 t, 173.73 × 106 t, 4.39 × 106 t, and 230.14 × 106 t, respectively. In
the ED scenario, the carbon storage will be the lowest at only 228.67 × 106 t. Under this
scenario, in addition to the three districts near the urban center, there was no more space
for further expansion in the other ten districts and the carbon storage there will reduce
obviously. In the EP scenario, the carbon storage will reach 232.23 × 106 t, which will
be 2.10 × 106 t and 3.56 × 106 t higher than the ND and ED scenarios, respectively. The
expansion of artificial surfaces in the EP scenario will be strictly limited and it is prohibited
to reduce the area of the water bodies, wetlands, and forests, effectively slowing down the
decline in carbon storage. Finally, in the BD scenario, the level of carbon storage will be
between the ND scenario and the EP scenario at 228.74 × 106 t.

4.6. Spatial Correlation Analysis of Carbon Storage in 2030

In terms of global spatial correlation, the spatial Moran’s I values of carbon storage in
Hangzhou under the ND, ED, EP, and BD scenarios for 2030 were all greater than 0, i.e.,
0.711, 0.713, 0.708, and 0.714, respectively. Figure 9 shows the Moran’s I scatter plot, in
which most of the areas were located in the first quadrant (hot-spot area) and the third
quadrant (cold-spot area), indicating that most spaces in Hangzhou exhibited a strong
positive spatial correlation. The global spatial correlation of Hangzhou carbon storage was
characterized by the fact that high-value areas tended to be adjacent to high-value areas,
whereas low-value areas tended to be adjacent to low-value areas.
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Figure 7. Prediction of the carbon storage distribution in Hangzhou under the four scenarios in 2030.

Table 12. Carbon storage in Hangzhou under four scenarios in 2030 (unit: 106 t).

Scenario CTotal_above CTotal_below CTotal_soil CTotal_dead CTotal_total

ND 29.24 22.78 173.73 4.39 230.14
ED 28.97 22.53 172.84 4.33 228.67
EP 29.50 22.99 175.29 4.45 232.23
BD 28.90 22.49 172.98 4.37 228.74

In terms of local spatial correlation, Hangzhou’s carbon storage values under the four
scenarios in 2030 were similar to the spatial distribution. The LISA agglomeration analysis
(Figure 10) showed that the high–high carbon storage agglomeration areas and hotspot
areas were mainly distributed in the northern, central, southern, and southeastern areas of
the city, exhibiting a concentrated distribution trend, probably because these districts had
fewer artificial surfaces and more forests. The low–low carbon storage concentration areas
and cold spot areas were mainly distributed in the northeastern and southwestern areas
of the city, including the main urban districts, in which more artificial surfaces and more
water bodies exist. Overall, the spatial distribution of carbon storage in Hangzhou was
inextricably linked to the land cover. The high values of carbon storage were distributed in
the central and northern areas where there were few artificial surfaces but more ecological
land cover, whereas the low-value areas were distributed in the northeastern districts
where the intensity of artificial surfaces was high and the areas of ecological land cover
were fragmented.
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Figure 8. Prediction of the carbon storage change in Hangzhou under the four scenarios in 2030.

Figure 9. Moran scatter charts of the carbon storage in Hangzhou under the four scenarios in 2030.
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Figure 10. LISA agglomeration diagrams of the carbon storage in Hangzhou under the four scenarios
in 2030.

4.7. Zoning of Carbon Storage in 2030

Using the natural breakpoint method in ArcGIS 10.2, the spatial distribution map
of Hangzhou carbon storage in 2030 under the four scenarios was mapped and divided
into a lower-carbon-storage area, low-carbon-storage area, medium-carbon-storage area,
high-carbon-storage area, and higher-carbon-storage area (Figure 11). The results showed
that the overall characteristics and patterns of carbon storage values in Hangzhou in 2030
under the four scenarios remained unchanged.

The lower-carbon-storage area and low-carbon-storage area were mainly distributed
in the northeastern and southwestern areas of Hangzhou, and control measures could be
formulated for this area in the future to avoid further declines in the carbon storage value.
The higher-carbon-storage area and high-carbon-storage area were mainly distributed in
the northern, central, southern, and southeastern areas of the city in which more ecological
land covers should be protected.
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Figure 11. Carbon storage zoning in Hangzhou under the four scenarios in 2030.

5. Discussion
5.1. Comparative Discussion and Analysis of the Four Scenarios

According to the results obtained from the simulations, compared with 2020, the
carbon storage in Hangzhou will further decrease in all four scenarios in 2030, which
will be due to the increase in the area of artificial surfaces and the decrease in the area of
cultivated land.

In terms of specific scenarios, under the ND scenario, the change in Hangzhou’s carbon
storage will continue the trend of 2000–2020, i.e., with population and economic growth,
there will be further expansion of artificial surfaces and a decline in forest and cultivated
land. Under the ED scenario, the decline in Hangzhou’s carbon storage will accelerate
due to the further increase in the expansion of artificial surfaces. Under the EP scenario,
Hangzhou’s carbon storage will slow down significantly, decreasing by only 0.62%, due
to the implementation of strategies to strictly protect forests, wetlands, and water bodies,
and strictly limit the growth rate of artificial surfaces. This scenario is consistent with
building an ecological city and a low-carbon city in Hangzhou and is worthy of further
study. Finally, under the BD scenario, the carbon storage in Hangzhou will be lower than
in the ND scenario and only slightly higher than in the ED scenario because of the reduced
restriction on the growth in artificial surfaces. The economic and ecological benefits of
this scenario will both increase compared with the natural development scenario. This
scenario will be in line with the objectives of constructing an ecological city and economic
development in Hangzhou and is also worthy of further extension studies.

In summary, among the four scenarios, both the EP and BD scenarios will be conducive
to Hangzhou achieving several planning objectives and should be further studied in
the future to achieve optimal ecological and economic benefits and the highest carbon
storage capacity.
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5.2. Possible Directions for Improvement

This study applied a framework that combined MOP, the PLUS model, and the InVEST
model to predict carbon storage in Hangzhou in 2030 under four different scenarios.
However, the framework used in this study still has shortcomings.

First, in simulating the spatial distribution of land cover in Hangzhou in 2030, the
Markov chains modules of the PLUS model and MOP were used to predict the demand
of each land-cover type under different scenarios; however, Hangzhou has a large water
network and future global warming may lead to a reduction in the area of water systems,
especially in Qiandao Lake and Yuhangtang River. However, in the PLUS model, it is
not possible to reflect the potential impact in this respect. Therefore, in the future, when
modeling the spatial distribution of land cover, future climate change should also be taken
into account, as well as human activities and policies.

Second, in predicting the carbon storage in Hangzhou in 2030, this study used the
InVEST model to measure the carbon storage, where the carbon density data were obtained
by reviewing the previous literature. However, the InVEST model ignores both differences
in vegetation type and growth conditions for the same land type and differences in carbon
density values over time. Therefore, in the future, when measuring carbon storage, a finer
division of land classes is needed and large-scale soil sampling should be used to obtain
accurate carbon density data.

6. Conclusions

Studies of LUCC and carbon storage have been conducted globally in a wide range
of situations. However, despite a considerable amount of the extant literature using land
prediction models to simulate LUCC and carbon storage changes under different scenarios,
few scholars have considered economic and social benefit markers when establishing
the simulation scenarios, nor have many explored fine-grained zoning based on carbon
storage predictions. We proposed an integrated framework that couples MOP, the PLUS
model, and the InVEST model to simulate and predict the spatial distribution of land
cover and carbon storage under different scenarios, taking into account multiple objectives
of ecological conservation and economic development. The following conclusions were
obtained. From 2000 to 2020, the areas of artificial surfaces and wetlands in Hangzhou grew
rapidly, whereas the area of cultivated land decreased significantly. Carbon storage showed
an accelerated decline, with a cumulative decrease of 5.7 × 106 t. Moreover, the simulation
results of land cover in Hangzhou under four different scenarios showed that the areas
of artificial surfaces, water bodies, and shrubland will continue to increase, whereas the
areas of cultivated land and grassland will continue to decrease by 2030 compared with
2020. The ED scenario predicted the most rapid expansion of artificial surfaces, with
an area of 2038.00 km2, whereas the EB scenario predicted the smallest area of artificial
surfaces at 1667.46 hm2. Compared with the ND scenario, the BD scenario had 4.91% more
economic benefits and 1.18% more ecological benefits, which can effectively achieve the
multiple objectives of ecological protection and economic development. The predictions of
carbon storage in Hangzhou under four different scenarios showed that the carbon storage
will continue to decline up to 2030 compared with 2020, with the areas of decline mainly
concentrated in Yuhang, Fuyang, Xihu, Xiaoshan, and Jianggan. The ED scenario will result
in the lowest carbon storage at 228.67 × 106 t, while the EB scenario will have the highest
carbon storage at 232.23 × 106 t. This scenario will strictly limit the expansion of artificial
surfaces and prohibit the reduction in the total amount area of water bodies, wetlands, and
forests, which will effectively slow down the decline in carbon storage. Finally, the results
of the spatial correlation analysis and zoning of carbon storage in Hangzhou under the four
different scenarios showed that the spatial distribution of carbon storage was inextricably
linked to the land cover, exhibiting more obvious characteristics of high–high concentration
and low–low concentration. The zoning of carbon storage can help decision makers in
formulating different conservation and control strategies.
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Most cities in the Yangtze River Delta region, such as Hangzhou, are facing multiple
objectives of economic development, ecological protection, and low-carbon development;
therefore, the presented case study of Hangzhou can represent a reference in the following
aspects: (1) the framework of MOP–PLUS–InVEST can quantify the results of urban land-
cover change under different scenarios from three aspects: economic benefits, ecological
benefits, and carbon storage; (2) the application of carbon storage zoning can combine
urban carbon storage management with future urban zoning management, which can help
managers to adopt different planning strategies for different zones and help to achieve the
“double carbon” goal of urban metropolitan development.

Although meaningful results and findings were revealed through this study, other
issues need to be explored and discussed in further research. The achievement of carbon
neutrality and peak carbon targets requires attention, not only regarding carbon storage
but also carbon emissions. However, this study only discussed carbon storage, which
may not be sufficient for policy support; thus, future research needs to integrate carbon
storage and emissions to provide data and policy recommendations for achieving carbon
neutrality targets. In addition, this study only explored the relationship between urban
land cover and carbon storage in different contexts at a single scale; thus, future research
needs to quantify and compare the impact of urban land cover on carbon storage from a
multi-scale perspective.
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