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Abstract: The study of spatial bias in opportunistic data produced by citizen science programs is
mainly approached either from a geographical angle (site proximity, accessibility, habitat quality)
or from the angle of human behavior and volunteer engagement. In this study we linked both
by analyzing the effect of observer profile on spatial distribution of recordings. We hypothesized
that observer profile biases spatial distribution of records and that this bias can be explained by
landscape naturalness. First, we established observer profiles from analysis of the temporal and
spatial distributions of their records as well as record contents. Second, we mapped a naturalness
gradient at regional and local scales. Using a dataset of more than 7 million bird records covering a
time span of 15 years from the west of France, we defined four types of observer: garden-watchers,
beginners, naturalists, and experts. We found that recording intensity could be related to naturalness
at regional level; most visited areas were those where naturalness was on average lower i.e., close
to population basins and highly accessible due to well-developed road infrastructure. At local level
(neighborhood of recording sites), we found that experts and naturalists recorded in areas of higher
naturalness index than those of garden-watchers and beginners. These results highlight how records
contributed by different types of observer may lead to complementary coverage of different areas
of the landscape. Future studies should therefore fully consider observer heterogeneity and how
different observer profiles are influenced by local landscape naturalness.

Keywords: citizen science; spatial bias; observer profile; naturalness index; recording intensity;
observer behavior; birders; observer engagement; landscape preferences; GIS

1. Introduction

Citizen science—the involvement of volunteers in data collection, analysis, and
interpretation—holds great promise for nature conservation [1]. Species observation data
collected through citizen science allows large-scale monitoring (spatial and temporal) that
would be impossible or too expensive to carry out with only professional scientists [2–4].
Citizen science (CS) has already made enormous contributions to conservation science,
and this approach of harnessing the power of data, information and voluntary skills has
the potential to do much more [5]. For a review of studies which directly contribute to
understanding of the role of CS in conservation sciences, see [6].

Citizen sciences cover a large range of programs with a great diversity of method-
ological approaches. This diversity ranges from CS programs with standardized protocols
intended for volunteers with good naturalist skills, to CS programs open to any observer
which promote the collection of opportunistic data [2,7,8].
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Mass participation approaches, though a powerful means of raising awareness and
educating about nature and its conservation [9,10], are most often associated with unstruc-
tured monitoring programs because data collection is more flexible. In addition to the many
CS-related biases, the so-called “opportunistic” data that come from these unstructured
programs are more susceptible to observer bias [11]. It is well-known that researchers
must exercise caution in the use of such data for modeling distributions [12] and making
predictions [13].

These biases are often classified into three categories: spatial, temporal, and species-
related [14,15]. It is now well-known that species presence data derived from opportunistic
programs exhibit strong temporal and spatial bias. Data are not collected randomly either
in time [16–18] or in space [19,20] leading to unfortunate gaps and redundancies. In
addition, although there have been substantial improvements [21,22] these biases also
include observer errors and species detectability problems due to skill heterogeneity of
volunteers [23].

Among these biases, the study of spatial heterogeneity in recording intensity has a
literature which can be classified into two relatively permeable categories: the first group
studies that attempt to explain this heterogeneity from a geographical perspective, using
landscape spatial variables; the second concerns studies that aim to explain it from a social
and human perspective, using human behavior and observer engagement variables.

The first category of studies have shown that at least three landscape spatial variables
can explain spatial heterogeneity in recording intensity. The first is the proximity of the
“home base” [24], of “previous records” [25], of “large cities” [15,26], or of high “population
density” areas [19,27]. The second is site accessibility or remoteness. It has been shown
that records are more numerous in easily accessible areas [28], such as along highways [26]
or in areas close to roads [19,27], than in areas remote from roads. Finally, the third often
cited variable is the natural quality of the landscape. Protected areas [25], high quality
habitats [12] or areas with high species richness [24,28], threatened species and habitats [25]
or particular taxonomic groups [29] are more visited by observers. However, in these
studies, all participants are considered to be equivalent, and no allowance is made for
differences between observers.

Conversely, the other studies have sought to document the heterogeneity of partic-
ipants in biodiversity CS, from social and human behavior viewpoints. The first source
of participant heterogeneity noted is the type of CS program. During the past decade, CS
programs have changed and diversified significantly [2] and this has been accompanied by
a notable change in participation due in part to the development of Internet tools which
have led to massive recruitment [30,31]. The second source of participant heterogeneity,
observed within individual CS programs, is the increase in non-specialist or beginner par-
ticipants from the wider general public as opposed to naturalists with expert knowledge.
Seen as providing valuable insights into observers’ recording behavior, this heterogeneity
has been studied in particular from the angles of motivation, temporal behavior (also
called “participant engagement”) [28,32–34], and spatial behavior. For example, with a
“behavioral ecology approach”, ref. [29] showed that local and tourist participants have
different spatial recording habits. Spatial variables have also been used either to group
participants (based on their spatial practices in addition to their temporal practices) [7]
or in very rare studies (one to our knowledge) to link peoples’ profiles (e.g., “Dabbler”,
“Steady”, “Enthusiast”) to the spatial distribution of records [28]. In the latter study, the
authors showed that datasets from each of the three different programs had its own spatial
and taxonomic signature depending on volunteer profile. They also found hotspots of
recording intensity in sites containing open water.

A better understanding of these links could be used to better manage data biases
in studies that use CS data in conservation, for example, by filtering certain groups of
volunteers to obtain better spatial representativeness, as well as to reduce spatial bias by
improving recommendations to participants, for example, by asking volunteers to give
preference to recordings in sites that are unfamiliar to them or less attractive.
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Our hypothesis was that differing observer profiles introduce spatial bias into bird
recording, which can be related to landscape naturalness. Using an opportunistic bird
observation dataset that includes more than 7 million data, collected over 15 years, by a
wide and diverse range of people and covering an area of 32,000 km2, we:

1. Analyzed individual participants’ habits to identify observer profiles;
2. Used the landscape naturalness gradient approach to explain the spatial distribution

of observations at regional level;
3. Explored the links between observer profiles and landscape naturalness in the neigh-

borhood of their records.

2. Materials and Methods
2.1. Bird Dataset and Preprocessing

The CS bird dataset used in this study was collected by the French BirdLife Interna-
tional Partner (Ligue pour la Protection des Oiseaux, LPO). The data were considered as
opportunistic because most came from participants who recorded whatever, wherever,
and whenever they chose. Participants could contribute their records online after their
outing or, since 2017, directly in the field using the smartphone application NaturaList to
geolocate record. Observations may involve heard birdsongs or direct, visual observations.
There is no minimum or maximum outing duration and observers are free to declare all or
part of their observations. Moreover, observers do not need any prerequisites to register
and they do not receive any training. The only obligation is to create an online account
by specifying some mandatory personal information (e.g., identity, date of birth, address,
contact number). After record declaration, a data validation procedure by a member of LPO
is used to control and filter out unlikely records, which means that each record submitted
must be validated to be added to the database. The dataset used in this study included
more than 7 million records collected by nearly 10,000 participants. It covered a time span
of 15 years (from 2005 to 2019) and a spatial extent of 32,000 km2, corresponding to the
administrative region of Pays-de-la-Loire in western France.

The data were prepared as follows: first, data collected and managed by several local
groups were aggregated so that each record was associated with a single observer identity.
Second, the aggregated dataset was checked so as to include only those records for which
the observed species, date and time, X, Y coordinates, as well as observer information were
available. Finally, the unified database was cleaned of incomplete and erroneous records.

2.2. Observer Profiles

Our aim was to define observer profiles based on an original set of metrics integrating
spatial, temporal, and content characteristics of recording. Since the dataset used covered
a period of 15 years, during which the objectives, methods and data collection tools
had greatly evolved, it was assumed that observer profiles had also evolved over time
leading to a certain heterogeneity in recording behavior [35]. We used the analysis of bird
records to deduce observer habits using metrics inspired by previous work on “engagement
characteristics” of participants in CS [7,28,33,34]. Initially 22 metrics were developed, of
which 11 were retained after exploratory analyses, principal components analysis (PCA),
and correlation tests. The table of the 22 metrics, the correlation matrix, and the PCA
plots on axes 1–2 and 3–4 of the 11 metrics are given for information in Appendix A.
These metrics provided information on three aspects of observer behavior: temporal habits
(T) (cumulative number of recording days, recording day frequency, recording effort,
percentage of records made during the week (Monday to Friday)), spatial habits (S) (spatial
amplitude, spatial density, minimum geometric extent), and record quality (C) (number of
records, species richness, Species Generalization Index (SGI), Species Synanthropy Index
(SSI)) (Table 1).
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Table 1. The 11 metrics used to analyze observer profiles, in three categories (temporal habits
(T), spatial habits (S), and record quality (C)), with their description and methods used for their
calculation.

Metric Code Metric Full Name Description and Calculation Method

T1 Total number of recording
days

Total number of days with at least one record
from the observer

T2 Recording day frequency
Number of days between the date of

registration and the date of the last record of
an observer/T1

T3 Recording effort Number of records made by an observer
(C1)/T1

T4 Percentage of records made
during the week

Number of records made from Monday to
Friday × 100/T1

S1 Spatial amplitude Number of 4 km2 cells in which an observer
made at least one record.

S2 Spatial density
Number of records made by an observer

(C1)/Area of the convex envelope of all the
records of that observer (S3)

S3 Minimum geometric extent
Area of the minimum geometric extent that

encompasses all the records from
one observer

C1 Number of records Total number of records made by an observer

C2 Species richness Total number of species recorded by
an observer

C3 Mean Species Generalization
Index (SGI)

Mean Species Generalization Index (Godet
et al., 2015) of a single observer’s records.
The higher the SGI, the more generalist a

species’ habitat affinity, independent of its
range and local abundance

C4 Mean Species Synanthropy
index (SSI)

Mean Species Synanthropy Index (Guetté
et al., 2017) of a single observer’s records.

The higher the SSI, the more urban “dweller”
the species. The lower the SSI, the more

urban “avoider” the species

Only observers with at least two recording days and five observations were retained
for analyses, i.e., 5896 observers out of a total of 9878. The objective of these thresholds was
to retain only observers who had shown a certain commitment to the program. Following
this, we explored similarities and differences in observation habits using hierarchical
cluster analysis (HCA) and Ward’s minimum increase of sum-of-squares (of errors) method,
without predefining a number of desired clusters. Observer profiles were identified from
the dendrogram by analysis of inertia. We used the partitioning with the greatest relative
inertia loss, identified with hierarchical clustering on principle components (HCPC).

2.3. Mapping the Naturalness Index (NI) of the Study Area

In order to interpret the spatial distribution of the recording, we chose to focus on the
degree of naturalness of the landscape (naturalness index). This integrated method posi-
tions landscapes on a relative, quantitative scale ranging from “pristine” to “urban” [36] or
more simply from “wild” to “not wild” [37]. This replicable method for assessing landscape
quality has been used in numerous studies worldwide [37–40] and it includes most of
the spatial variables already tested and cited in the introduction (proximity, accessibil-
ity/remoteness, habitat quality) facilitating comparisons with other work.

To quantify and map the naturalness index of the landscape, we adapted previous
methodology [37,40,41] to our regional context and to the available spatial data. Among
the four attributes generally used, we retained three: hemeroby of landcover (also called
naturalness of landcover), human impact on landscape, and remoteness from road access.
The fourth attribute, ruggedness, was excluded from our study because it was not relevant
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for the landscapes of our study area which are generally low-lying (maximum 416 m above
sea level).

2.3.1. Landscape Hemeroby

The hemeroby concept provides a measure of anthropogenic impact on landscapes
and habitats using a scale, in which the highest values (ahemerob) correspond to “natural”
or undisturbed landscapes while artificial landscapes obtain the lowest values (metahe-
merob) [42,43]. To use the most recent and accurate data, a composite land cover map
from different thematic datasets related specifically to natural and semi-natural vegetation,
agriculture, forests, rivers, and human infrastructure was created. The details of the data
used are given in Appendix B. To create the composite layer map, each dataset was first
rasterized at 20 m then reclassified on a hemeroby scale and finally aggregated with the
other data, giving priority to the most precise and recent data in cases of overlapping. For
hemerobic reclassification, we applied a predefined hemeroby scale of landcover [43–45]
which we adapted to our landcover dataset. The hemeroby scale ranged from level 6
(“ahemerob”, i.e., no human impact) to level 1 (“metahemerob”, i.e., destroyed, originally
biocenosis). For each hemerobic level (1–6), we applied a second level of precision (1.1, 1.2,
. . . ) in order to consider the precision of the dataset used. The second level of hemerobic
classification was based on local, expert knowledge. The complete table of hemerobic
reclassifications is given in Appendix C. To account for the influence that the pattern of
land cover immediately adjacent to the observer has upon hemeroby, the average hemeroby
score of all cells within 250 m of the target cell was calculated as proposed by [37]. The final
hemeroby scale ranged from 1 to 255.

2.3.2. Human Influence on Landscape

The “human influence on the landscape” attribute was quantified and mapped by
two human presence proxies: human population and modern human artefact density.
Similarly to Müller et al. (2015), we first used human population density as a proxy for
human influence on landscape. To measure the population density, we used “Filosofi” data,
which are the most precise population data available in France, collected at household
level. To guarantee personal confidentiality, the French national institute of statistics and
economic studies (INSEE) makes the data available in aggregate form on a 200 m grid.
We used the Filosofi dataset for 2016, rasterized at a resolution of 20 m. The modern
human artefact indicator refers to the quantity of artificial structures within the visible
landscape, including railways, pylons, buildings, and other built structures. Similarly
to [37], a number of modern human artefacts were extracted from the BD TOPO (IGN)
and aggregated in a single dataset. The density calculation of the human modern artefacts
area was performed with the focal statistic tool (ESRI, ArcGIS Pro 2.). For each cell, this
tool calculates the location of a statistic in the neighborhood of a radius of 500 m circle
(0.7854 km2). The radius of the moving window was chosen by an empirical method and
according to [46]. We first tested three radial distances (500 m, 1 km, and 2 km) and kept the
best compromise between visual representation and the normal distribution of the resulting
data. The modern human artefacts map result is expressed in area of built-up land per
square kilometer. The two layers were aggregated with equal weighting and reclassified on
a relative scale from 1 to 255.

2.3.3. Remoteness from Roads and Paths

Remoteness from access is a very common indicator of naturalness maps (e.g., [37,38]
and [40]). Remote areas are important both for species sensitivity to human presence and
disturbance [47] and for the opportunity of solitude which some observers may seek [48].
We calculated the Euclidean distance in meters from all roads and paths including a buffer
of 1 km around our study site. Only motorways were not considered because we assumed
that it was not possible to go walking from these fenced roads. The remoteness from
access layer was reclassified on a relative scale from 1 to 255. To produce the final map of



Land 2022, 11, 2095 6 of 25

naturalness index, we computed the sum of the three layers (hemeroby of the landscape,
human influence on landscape and remoteness from access) with equal weighting. The
final map had a resolution of 20 m and the naturalness index ranged from 1 (minimum
naturalness index) to 255 (maximum naturalness index). All spatial analyses were carried
out with ESRI ArcGIS pro 2.7.

2.4. Statistical Analyses

An illustrated workflow of the data analyses is given in Figure 1.

Land 2022, 11, x FOR PEER REVIEW 6 of 24 
 

layer was reclassified on a relative scale from 1 to 255. To produce the final map of natu-
ralness index, we computed the sum of the three layers (hemeroby of the landscape, hu-
man influence on landscape and remoteness from access) with equal weighting. The final 
map had a resolution of 20 m and the naturalness index ranged from 1 (minimum natu-
ralness index) to 255 (maximum naturalness index). All spatial analyses were carried out 
with ESRI ArcGIS pro 2.7. 

2.4. Statistical Analyses 
An illustrated workflow of the data analyses is given in Figure 1. 

 
Figure 1. Sequence of data processing and analysis in three key stages (stage 1: effects of the mean 
NI on the spatial distribution of recording effort (RE), at regional scale ; stage 2: distribution of the 

Figure 1. Sequence of data processing and analysis in three key stages (stage 1: effects of the mean NI
on the spatial distribution of recording effort (RE), at regional scale; stage 2: distribution of the records
according to observer profiles (OP) and the RE classes; stage 3: effect of the mean NI on the RE of OP).
N.B. OP = observer profile, NI = naturalness index, RE = recording effort, RI = recording intensity.
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2.4.1. Testing the Effects of Naturalness Index on the Spatial Distribution of Recordings, at
Regional Scale

Using GIS, a pre-existing 2 × 2 km grid used for French bird atlases was retained
for the analysis across the study area; cells encompassing less than 80% of regional land
cover (mainly boundary cells) were removed, leading to a grid of 7924 cells. First, mean
naturalness index (NI) was calculated for each cell. Second, the exact locations of bird
records were intersected with the regular grid (Figure 1). The number of records was
calculated within each cell and all cells were then divided into five classes of recording
intensity (RI) of equal intervals ranging from very low recording intensity to very high
(Figure 1). We retained five classes which corresponded to the best compromise between
a sufficiently large number for the analysis but small enough to guarantee a good, visual
mapped representation. Moreover, because only a few cells had a very large number
of records, the RI were log transformed to perform the classification with a normalized
data set. In order to test the effect of NI on RI classes, differences in mean NI between
classes of log RI were tested using non-parametric Kruskal–Wallis (KW) tests because of
heteroscedasticity of the data (Figure 1). Differences in mean NI were tested between each
combination of RI classes with Dunn’s post-hoc test of multiple comparisons using rank
sums. We used Bonferroni method to adjust the p-value for multiple comparisons.

2.4.2. Testing the Hypothesis of a Homogeneous Distribution of the Records among
Observer Profiles and Recording Intensity Classes

To test the hypothesis of a homogeneous distribution of the records according to
observer profile and RI class, a Chi square test was applied on a contingency table. This
table gathers the number of records of each observer profile in the different classes of RI. In
order to interpret the intensity and the direction of each relationship (positive or negative),
Pearson residuals were calculated and plotted.

2.4.3. Testing the Effect of the Naturalness Index on the Recording Intensity of Observer
Profiles at the 400 m2 Record Neighborhood Scale

To test whether naturalness index (NI) in the neighborhood of bird records could
explain recording intensity of the different observer profiles (OP), we calculated the mean
NI of the total records for each OP. Contrary to Section 2.4.1, NI was calculated at bird
record scale in order to directly consider the neighborhood around each recording point
(and not at the scale of the 4 km2 grid). For this, we used the highest resolution of the NI
map which is 20 m (i.e., 400 m2). For each OP, mean NI of record neighborhoods were
presented in violin plots to reflect the full distribution of the data, smoothed by a kernel
density estimator.

We then estimated a confidence interval (CI) of the NI means by bootstrapping method
replication. For each OP, we resampled, replacing the original samples 999 times. We used
the one.boot and perc function of the “simpleboot” R package for bootstrapping the mean
statistic and extracting the CI at 95%. We then plotted the distribution of NI means as a
histogram and added the initial sample NI mean and the CI boundaries (p = 0.05) for each
of the four OP.

To test the differences in mean landscape NI between the OPs, we also calculated the
CI for the pairwise comparisons. We used the two.boot function from the “simpleboot”
package to bootstrap the difference between means of OP with 500 resamples and extract
the CI at 95%. This number of bootstrapping was the maximum supported by the memory
of our computer given the size of the original samples. We then plotted the distribution of
differences as a histogram and added the initial sample mean and the confidence interval
boundaries (p = 0.05) for each of the pairwise comparisons.

Finally, to ensure that the observed differences were not linked to the lack of data in
some parts of the study area, this analysis concerned only the high and very high RI classes.
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In addition to the R functions and packages already mentioned, we also used the
following packages for our analyses and graphs: “ade4”, “corrplot”, “ggplot2”, “ggpubr”,
“graphics”, “questionr”, “rstatix”, “vcd”.

3. Results
3.1. Four Observer Profiles

We found that the 11 metrics used to describe observer habits clustered participants
into four distinguishable groups. Inertia analyses revealed that this classification best
optimized the trade-offs between the number of groups and the within group sum of
squares. The dendrogram of the distance matrix of records and the analysis of the loss
of relative inertia as a function of the number of groups are given for information in
Appendix A (Figures A2 and A3).

Based on analysis of each group’s metrics we named the four observer profiles as
follows: “garden-watchers”, “beginners”, “naturalists”, and “experts” (Table 2).

Table 2. A summary of variation in metrics between observer profiles across the dataset as a whole.
N.B. All 15 years of data over the entire region are pooled in this analysis. When mean is given,
standard deviation is added as (sd).

Observer Profiles

Metric Code Metric Full Name Garden-Watchers Beginners Naturalists Experts

NO Number of observers of
this profile 1207 2741 1812 136

%O Percentage of observers of
this profile 20.47 46.49 30.73 2.31

NR Total number of records
contributed by this profile 36,741 234,281 2,244,306 3,665,869

%R Percentage of records
contributed by this profile 0.59 3.79 36.31 59.31

T1 Mean number of recording
days per observer 4.68 (4.46) 15.30 (33.99) 133.32 (239.93) 1578.66 (929.48)

T2 Mean recording day
frequency per observer 238.05 (265.16) 28.02 (46.94) 86.80 (105.03) 4.92 (11.02)

T3 Mean recording effort
per observer 7.14 (3.78) 5.31 (3.42) 11.30 (13.29) 17.1 (13.30)

T4 Percentage of records made
during the week 20.69 (23.8) 70.41(22.20) 60.56 (23.94) 64.33 (12.45)

S1 Mean spatial amplitude of
record (km2)s 1.86 (2.29) 4.43 (6.61) 45.27 (57.63) 427.08 (214.65)

S2 Spatial density of records 2.20 (10.39) 6.65 (21.34) 41.05 (149.02) 2.55 (4.46)

S3 Minimum geometric extent 6.39 (8.52) 27.39 (50.49) 464.60 (352.78) 1982.24
(543,557.36)

C1 Mean number of records
per observer 30.43 (29.01) 85.47 (30.44) 1238.57 (2647.86) 26,954.91

(30,357.36)

C2 Mean species richness
per observer 14.78 (7.88)) 19.67 (16.10) 87.97 (61.47) 257.38 (55.64)

C3 Mean Species
Generalization Index (SGI) 29.36 (2.96) 29.29 (4.03) 30.67 (2.08) 30.45 (0.63)

C4 Mean Species Synanthropy
index (SSI) 42.22 (14.45) 36.23 (24.10) 16.17 (11.26) 17.68 (8.28)
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3.1.1. Garden-Watchers

Garden-watchers represented 20.47% of observers and only 0.59% of total records.
Garden-watchers had few recording days, which were widely spaced in time but very
spatially concentrated (less than two 4 km2 cell on average). Members of this group were not
necessarily beginners (they had been registered for more than 2 years on average), the vast
majority recorded mainly at weekends (80% of records), and mostly synanthropic species.

3.1.2. Beginners

The beginners represented the biggest group in terms of numbers of observers (46.49%)
but collected only 3.79% of total records. They were new to CS; they had been registered
on average less than a year but had a fairly high level of activity. On the other hand, they
made only a few records per recording day. The records were distributed among 4 km2

cells on average; they were therefore not limited to the home base but covered a small part
of the study area. The beginners were clearly distinguishable from the other profiles by a
minority of records made during the week (20.69%). Finally, the species observed were on
average less generalist than the other groups (generalization index = 29.29) but relatively
synanthropic (index of synthropy = 36.23).

3.1.3. Naturalists

Naturalists formed around a third of observers (30.73%) and a third of records (36.31%).
These were experienced observers, who had been registered for an average of 5 to 6 years.
Their observations were distributed among 45.27 4 km2 cells on average. This suggests
naturalists observe not only around the home base, but also at a fairly stable list of sites,
since the density of records is much higher (41.05) than for the other observer profiles.
Finally, this was the profile with the lowest mean of synanthropic species records but the
highest mean of generalist species records.

3.1.4. Experts

Only a small proportion of observers (136 observers i.e., 2.31%) formed this group but
they collected the majority of all records (59.31%). They were distinguished by their senior-
ity (registered10 years on average) and a large number of recording days (mean = 1578).
They recorded the most frequently (every 4 or 5 days) and made many recordings per day.
They covered an average of 427 cells (i.e., 10 times more than the naturalists). In addition,
they recorded both rare and common species, more closely resembling professional, pro-
tocoled recording. They recorded a large number of species but the birds observed were
often generalist species (SGI = 30.45).

3.2. The Naturalness of the Pays-de-la Loire Region

At the scale of the Pays-de-la-Loire region, we found an average hemeroby of 127.28
(sd 60.11), an average human influence of 247.23 (sd 12.01), and a remoteness from access
of 7.26 (sd 8.16). With an aggregation of the three attributes, we created the naturality index
(NI) map (Figure 2). We found an average NI of 128.15 (sd 14.48). However, NI is far from
homogeneous across the study area. We found a higher NI on the eastern and northern
part of the territory (dark greens patches are mainly forest areas) and along the Loire river
(with lakes and associated wetlands). Conversely, the patches of low naturalness index
corresponded to the region’s main cities: Nantes (to the west), Angers (to the east), Laval
(to the north west), and Le Mans (to the north east).



Land 2022, 11, 2095 10 of 25Land 2022, 11, x FOR PEER REVIEW 10 of 24 
 

 
Figure 2. Maps of (a) landscape hemeroby; (b) human influence; (c) remoteness from access; and (d) 
naturalness index (NI) generated by the aggregation of attributes i, ii, and iii. The NI map is given 
on a relative 1–255 scale at a resolution of 20 m. 

3.3. Mean Naturalness Index (NI) Varied between Classes of Recording Intensity (RI) 
Mean NI differed significantly between classes of RI (KW, P = 1.38 × 10−8). Less-visited 

areas had higher mean naturalness than intensely visited areas (Table 3). We found a mean 
naturalness of 129.6 (sd = 7.35) for very low RI class; 128.6 (sd = 7.50) for low RI class; 128.1 
(sd = 9.70) for moderate RI class; 127.3 (sd = 13.03) for high RI class and 125.5 (sd = 13.40) 
for very high RI class. 

Table 3. Descriptive statistics of records in each RI class. 

Classes of 
RI Log Values of RI 

Number of 2 
km2 Cells (n) 

NI Mean NI Standard 
Deviation NI Median 

Very low [0–2.228]  314 129.6 7.35 127.30 
Low [2.228–4.456] 2457 128.6 7.50 126.50 

Moderate [4.456–6.684] 3780 128.1 9.70 126.27 
High [6.684–8.912]  1239 127.3 13.03 126.58 

Very high [8.912–11.14] 134 125.5 13.40 125.90 

Multiple comparison tests revealed that NI was significantly higher in classes of low 
recording intensity than in classes of high recording intensity. Except for very high/high, 

Figure 2. Maps of (a) landscape hemeroby; (b) human influence; (c) remoteness from access; and
(d) naturalness index (NI) generated by the aggregation of attributes i, ii, and iii. The NI map is given
on a relative 1–255 scale at a resolution of 20 m.

3.3. Mean Naturalness Index (NI) Varied between Classes of Recording Intensity (RI)

Mean NI differed significantly between classes of RI (KW, P = 1.38 × 10−8). Less-
visited areas had higher mean naturalness than intensely visited areas (Table 3). We found
a mean naturalness of 129.6 (sd = 7.35) for very low RI class; 128.6 (sd = 7.50) for low RI
class; 128.1 (sd = 9.70) for moderate RI class; 127.3 (sd = 13.03) for high RI class and 125.5
(sd = 13.40) for very high RI class.
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Table 3. Descriptive statistics of records in each RI class.

Classes of RI Log Values
of RI

Number of
2 km2 Cells (n) NI Mean NI Standard

Deviation NI Median

Very low [0–2.228] 314 129.6 7.35 127.30
Low [2.228–4.456] 2457 128.6 7.50 126.50

Moderate [4.456–6.684] 3780 128.1 9.70 126.27
High [6.684–8.912] 1239 127.3 13.03 126.58

Very high [8.912–11.14] 134 125.5 13.40 125.90

Multiple comparison tests revealed that NI was significantly higher in classes of low
recording intensity than in classes of high recording intensity. Except for very high/high,
high/moderate, and very high/moderate pairwise combinations, all other combinations
were significantly different (Figure 3 and Appendix D).
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3.4. Numbers of Birds Recorded Varied among Recording Intensity Classes and Observer Profiles

The number of bird records differed significantly among RI classes and observer pro-
files (X2 = 205,254, p < 0.05). The standardized Pearson residuals show strong associations
(both positive and negative) between RI and OP. The expert profile showed a strong positive
association with the very high recording intensity class whereas the three other observer
types (garden-watcher, beginner, and naturalist) showed strong negative relationship with
this very high RI class. Conversely, the expert profile was negatively related to high and
moderate RI classes, whereas the naturalist and beginner profiles were positively associated
with these two classes. Garden-watchers were also positively related to the moderate and
low recording intensity classes (Figure 4 and Appendix E).
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Figure 4. Relationships between observer profiles and recording intensity in terms of numbers of
bird records. Matrix of residuals from the Pearson’s Chi-squared tests of association, using “corrplot”
package in R. Blue indicates an over-representation, and red indicates an under-representation. Circle
diameter is proportional to numbers of birds recorded for each observer profile/recording intensity
class combination.

3.5. More Specialist Observers Record in Landscapes of Higher Naturalness Index

Depending on OP, NI varied in 400 m2 landscapes neighboring bird records (Figure 5).
We found a mean neighborhood NI of 110.33 [95% CI: 110.15–110.50%] for garden-watchers,
113.69 [95% CI: 113.62–113.76%] for beginners, 128.18 [95% CI: 128.15–128.20%] for natural-
ists, and 129.55 [95% CI: 129.53–129.57%] for experts. The histogram of mean NI and the
CI boundaries (p = 0.05) obtained from the 999 bootstrapping resampling are available in
Appendix F (Figure A4).
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Figure 5. Shapes of violin represent the kernel density of the NI data records for the four OP
(garden-watchers, beginners, naturalists, and experts). Boxplots with medians are given within
violin plot.

For the four OPs, we observed a majority of records in areas of intermediate natural-
ness. However, while garden-watchers and beginners recorded mostly in areas of low NI,
these were the areas avoided by naturalists and experts.
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We found the differences in NI to be relatively small between naturalist and expert
records (1.37) as well as between garden-watcher and beginner records (3.37). In contrast,
differences in NI were strong between naturalist—expert and garden-watcher—beginner.
The plots of the six pairs of differences as histograms with the initial sample mean and
the confidence interval boundaries (p = 0.05) are given for information in Appendix F
(Figure A5)

Focusing on the most visited areas of the study site (high or very high recording
intensity classes), we found that 4,465,633 records (corresponding to 80.86% of the total
records) were concentrated in 5492 km2 (corresponding to 17.32% of the study area). In
these areas, we found that mean record neighborhood NI differed according to observer
profile (Figure 6). In the high RI class, we found the same pattern as at the scale of all RI
classes combined, i.e., mean NI increased from garden-watchers to beginners to naturalists
and then experts. However, in the very high RI class, it was the naturalists’ records which
had a higher mean neighborhood NI than the experts. The means of NI of the records of
the four observer profiles are given for each RI class in Appendix F (Figure A6).
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4. Discussion
4.1. Towards a Better Understanding of Observer Profiles

This study has built upon the framework proposed by [33], which uses clustering
of temporal, behavioral metrics to distinguish the types of participant in environmental
CS programs. We added spatial metrics and, as suggested by [28] and initiated by [7],
we developed quality metrics based on indices of species specialization [49] and synan-
thropy [50] to better assess not only the numbers but also the types of bird species recorded
by participants.

The four observer profiles we obtained are partially comparable with those of other
studies. For example, the experts, who represented only 2.31% of the volunteers but 59.31%
of records, could correspond to so-called “super users” described by [7]. Ref. [28] also found
a repeated pattern across datasets and taxonomic groups of a few volunteers contributing
many records and many volunteers contributing few records and this is referred to as the
80:20 rule [51]. In our study also, beginners contribute very few records but form the largest
group of observers.
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Using temporal metrics alone, ref. [28] distinguished three volunteer profiles: “dab-
bler”, “steady”, and “enthusiast”. By adding a “distance of recordings from home” spatial
variable, ref. [34] distinguished “one-session volunteers” who travelled least and com-
mitted the shortest amount of time, “long-term volunteers” who travelled furthest and
committed the most time and “short-term volunteer”, mid-way between the two other
types. By introducing quality metrics in our study, we obtained classes that reflected not
only differences in temporal and spatial engagement (e.g., sedentary garden-watchers
versus mobile experts) but also differences relating to observer expertise (e.g., beginners
versus naturalists).

Such groupings are useful in the case of CS programs with numerous and diverse
participants, such as opportunistic bird CS programs. However, for other taxonomic groups
and programs, dividing participants into clear types may not be appropriate. For example,
ref. [7] suggested that volunteers in an opportunistic butterfly recording CS program could
be classed along four continuous scales of recording intensity, spatial extent, recording
potential, and rarity recording. Another important limit of profiling is that it is static
whereas we can assume that volunteers will move from one profile to another over time.
It is possible that beginners or garden-watchers will develop their skills through practice,
observe more species, less generalist and synanthropic species, ultimately evolving to
become naturalists or possibly experts.

Despite these limits and as demonstrated by [28], observer profiling can be used in
comparisons between CS programs but also, as we have seen in this study, for analysis
within a single CS program. It could also be useful for long-term programs that are
experiencing a change in participant profiles. As mentioned by [31], there has been a
noticeable shift toward people collecting and providing data with limited training and little
or no direct social interaction with experts or other citizen scientists, before submitting
them via an online reporting platform. In addition, during pandemic lockdowns certain
forms of participation in CS increased, generating more data and more data heterogeneity.
These recent and rapid transformations have sometimes taken managers of long-running
CS programs by surprise, and they need tools to manage and analyze these new data. In
this study we focused on how observer profiling can be used to better understand spatial
biases in recording effort and intensity.

4.2. Spatial Bias in CS Recording Intensity at Regional Scale: Influence of Landscape Naturalness

At regional level, we observed that well-known spatial patterns explained variation in
recording effort. Our results showed that the most frequented sites in terms of recording
intensity (RI) had lower average naturalness index (NI) (lower than less frequented sites and
even lower than the overall regional average). We also found that the most frequented sites
(cells with high or very high RI) were close to towns and easy to access (i.e., close to roads)
(see map, Figure 3). This result is similar to studies by [12,19,24,26,27], conducted at a range
of spatial scales, in several regional contexts, and involving a diversity of CS programs
(taxonomic groups, observer profiles). The tendency toward intense recording activity in
accessible and urbanized areas therefore constitutes a relatively well-documented bias.

4.3. Relationships between Observer Profiles and Landscape Naturalness at Finer Scale

While regional scale recording intensity was mostly driven by spatial patterns of
proximity and accessibility, a closer look at the scale of record neighborhood revealed
different preferences in landscape naturalness among observer profiles. Thus, although all
observer profiles mainly visited the same broad scale areas, they did not frequent the same
sites within those areas. In areas of high or very high RI, experts and naturalists tended to
seek areas of higher NI which was not the case for garden-watchers and beginners. The
different profiles therefore appeared to complement each other in terms of spatial coverage.
This result is of particular importance as it could be used by organizers of CS programs
wishing to improve spatial homogeneity in recording.
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4.4. Implications and Future Directions

Increasingly, knowledge of observer profiles is being used to improve CS data quality
for analytical purposes. Commonly, data are filtered to reduce bias and improve subsequent
predictive modelling of species distributions [52]. Correcting bias linked to variation in
participant expertise has for example successfully been used to improve species distribution
models based on CS data [53].

Knowledge of observer profiles could also help CS organizers to guide particular types
of observer with known observing habits and spatial preferences toward areas which may
be under-recorded. Completing existing CS databases with a more guided approach is
often necessary before data can be fully exploited [52]. Such knowledge may also be used
to adjust future recruitment strategies toward particular observer profiles, depending on
program objectives.

It could be interesting to further analyze the reasons for observer profile prefer-
ences. A considerable body of literature is concerned with human perceptions of nat-
uralness [38,54–57]. Interdisciplinary collaboration with the human and social sciences
should lead to a deeper understanding of landscape preferences and related bird recording
habits [58].

Since observer profiles in our study integrated spatial metrics, we have seen that
part of the bias in recording is related to spatial distribution of naturalness gradient in
our study area. The Pays-de-la-Loire region is relatively heavily urbanized with little or
no wilderness. The population density is of 120 inhabitants/km2, the road network is
dense, and rural landscapes have been transformed by agriculture. In such contexts, the
naturalness index (NI) is used to quantify a gradient of human modification the NI [59,60],
and can enable us to highlight even subtle variation in human pressure [40] but no observer
is ever completely remote from towns or roads. In other regional contexts landscape types,
areas of high NI and species richness may be under-recorded, even by experts, due to very
low accessibility [29]. CS programs should consider landscape configuration and areas of
probable under or over-sampling, at the program planning stage.
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Appendix A

We first performed exploratory analyses (correlations and principal components anal-
yses (PCA)) on a set of 22 metrics (Table A1, Figure A1). Following these analyses, we
retained 11 metrics (see Table 1).
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Table A1. The 22 metrics calculated to analyze observer profiles, in three categories (temporal habits
(T), spatial habits (S), and record quality (C)), with their description and methods used for their
calculation.

Metric
Code Metric Full Name Description and Calculation Method

T1 Total number of recording
days

Total number of days with at least one record
from the observer

T2 Recording day frequency Number of days between the date of registration
and the date of the last record of an observer/T1

T3 Recording effort Number of records made by an observer (C1)/T1

T4 Percentage of records made
during the week

Number of records made from Monday to
Friday × 100/T1

T5 Percentage of records made
during the week-end

Number of records made from Saturday to
Sunday × 100/T1

S1 Spatial amplitude Number of 4 km2 cells in which an observer
made at least one record.

S2 Spatial density
Number of records made by an observer

(C1)/area of the convex envelope of all the
records of that observer (S3)

S3 Minimum geometric extent Area of the minimum geometric extent that
encompasses all the records from one observer

S4 Standard Distance
Measures the degree to which features are

concentrated or scattered around the geometric
mean center

C1 Number of records Total number of records made by an observer
C2 Species richness Total number of species recorded by an observer

C3 Mean Species Generalization
Index (SGI)

Mean Species Generalization Index (Godet et al.,
2015) of a single observer’s records. The higher
the SGI, the more generalist a species’ habitat

affinity, independent of its range and
local abundance

C4 Mean Species Synanthropy
index (SSI)

Mean Species Synanthropy Index (Guetté et al.,
2017) of a single observer’s records. The higher
the SSI, the more urban “dweller” the species.
The lower the SSI, the more urban “avoider”

the species

C5 Naturalist Index Number of programs in which the volunteer
participates (in addition to that of the birds)

C6 Duration of active
participation

Number of days between the date of registration
and the date of the last observation made

C7
Percentage of records made
during “oiseaux des jardins”

protocol

Percentage of records made during the specific
“oiseaux des jardins” protocol

C8 Percentage of records made
within a structured protocol

Percentage of records made following an expert
structured protocol

C9 Mean rarity of
recorded species

Following a notation of the rarity of the species
present in the study area, mean of the rarity of
the observations was calculated per volunteer

C10 Percentage of records of “rare”
and “very rare” species

Number of records of “rare” + “very rare”
species × 100/total records

C11
Percentage of records of
“common” and “very

common” species

Number of records of “common” + “very
common” species × 100/total records

C12 Mean Species
Abundance Index

Mean of “Species Abundance Index” (SAI)
(Godet et al. 2015) of a single observer’s records

C13 Mean detectability index
Mean of the detectability index of observer

records. Detectability = Number of records of
each species/total number of records
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We then applied the ascending hierarchical cluster analysis (AHC) to define observer
profiles (Figures A2 and A3). We retained the second best clustering result (four groups) so
as to be able to distinguish and analyze a reasonable number of different profiles.
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Appendix B

Table A2. Spatial databases and indicators used for each of the three naturalness attributes.

Attribute Indicator Database and Source

Hemeroby of the
landscape Degree of hemeroby index.

BD TOPO® Version 3.0 (IGN) wich
include BD_vegetation, BD_Bati,

BD_transport; BD Forêt® Version 2
(IGNF); Registre Parcellaire
Graphique; BD forêt (IGNF);

Indicateur « Naturalité estimée des
cours d’eau » (ONB, CEREMA);

BD TOPAGE®

Human impacts

Density of constructions or
other artefacts, density of

population, artificial light at
night

BD TOPO® Version 3.0 (IGN),
INSEE (filosofi dataset)

https://www.insee.fr/fr/
metadonnees/source/serie/s1172,

accessed on 1 December 2020

Remoteness from access Remoteness from road and
pathway BD TOPO® Version 3.0 (IGN)

Appendix C

Table A3. Hemerobic reclassification table used for construction of the hemerobic landscape layer.

Hemerobic Class Type Class Level 1 Land Cover Class Level 2 Data Source

Ahemerobic Almost no human
impacts 7 -

Oligohemerobic Weak human
impacts 6

Mudflat 65 BD_TOPO

River level 5 65 Naturalité Rivière
CEREMA

Undeveloped
natural water

surface
65 BD_Topage

wooded area 60 BD_végétation
Dense hardwood

forest 65 BD_végétation

Mixed dense forest 65 BD_végétation
wooded 60 BD_végétation

dense hardwood
forest 65 BD_foret

Mixed dense forest 65 BD_foret
Dense forest

without canopy 60 BD_foret

heathland 60 BD_foret
woody heathland 60 BD_végétation

summer heathland 60 RPG

Mesohemerobic
Moderate human

impact 5

River level 4 55 Naturalité Rivière
CEREMA

Natural water
surface arranged 55 BD_Topage

hedgerows 50 BD_végétation
sparse forest 55 BD_végétation

hardwood sparse
forest 55 BD_foret

mixte sparse forest 55 BD_foret
sparse forest

without canopy 55 BD_foret

https://www.insee.fr/fr/metadonnees/source/serie/s1172
https://www.insee.fr/fr/metadonnees/source/serie/s1172


Land 2022, 11, 2095 20 of 25

Table A3. Cont.

Hemerobic Class Type Class Level 1 Land Cover Class Level 2 Data Source

β-euhemerobic
Moderate-strong
human impacts 4

River level 3 45 Naturalité Rivière
CEREMA

artificial water
surface 45 BD_Topage

unknown water
surface 45 BD_Topage

fallow 40 RPG
permanent
grassland 50 RPG

temporary
grassland 40 RPG

herbaceous
formation 45 BD_foret

dense conifer
forest 40 BD_foret

dense conifer
forest 40 BD_végétation

sparse conifer
forest 40 BD_foret

α-euhemerobic
Strong human

impacts 3

River level 2 35 Naturalité Rivière
CEREMA

wheat crop 35 RPG
corn 35 RPG

barley cultivation 35 RPG
other cereals 35 RPG

rapeseed 35 RPG
sunflower 35 RPG

other oilseeds 35 RPG
Proteaginous 35 RPG
fiber plants 35 RPG

seeds 35 RPG
nuts 35 RPG

flower vegetable 35 RPG
grain legume 35 RPG

feed 35 RPG
orchards 30 RPG

vine 30 RPG
arboriculture 30 RPG

orchard 30 BD_vegetation
vine 30 BD_vegetation

poplar grove 35 BD_végétation
poplar grove 35 BD_foret

Polyhemerobic Very strong human
impacts 2

River level 1 20 Naturalité Rivière
CEREMA

graveyard 20 BD Topo_bati
sports field 20 BD Topo_bati
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Table A3. Cont.

Hemerobic Class Type Class Level 1 Land Cover Class Level 2 Data Source

Metahemerobic
Excessively strong

human impacts 1

buildings 10 BD Topo_bati
linear

constructions 10 BD Topo_bati

one-off
constructions 10 BD Topo_bati

surface
constructions 10 BD Topo_bati

pylon 10 BD Topo_bati
aerodrome 10 BD Topo_transport
transport

equipment 10 BD Topo_transport

airfield runway 10 BD Topo_transport
roads 10 BD Topo_transport

railroads 10 BD Topo_transport

Appendix D

Table A4. Dunn’s test of multiple comparisons using rank sums and Bonferroni p adjustment method.

Pairwise Comparison Statistic p Adjusted p Significance
Level

Very low

Low 2.86 4.23 × 10−3 4.23 × 10 × 10−2 **
Moderate 4.80 1.54 × 10−6 1.54 × 10−5 ****

High 4.42 9.59 × 10−6 9.59 × 10−5 ***
Very High 4.01 5.86 × 10−5 5.86 × 10−4 ***

Low
Moderate 4.27 1.91 × 10−5 1.91 × 10−4 ****

High 3.10 1.89 × 10−3 1.89 × 10−2 **
Very High 2.74 6.11 × 10−3 6.11 × 10−2 **

Moderate
High 0.07 9.38 × 10−1 1.00 ns

Very High 1.50 1.31 × 10−1 1.00 ns

High Very High 1.48 1.37 × 10−1 1.00 ns
** p < 0.01, *** p < 0.001, **** p < 0.0001.

Appendix E

Table A5. Pearson residuals from the Chi2 test of homogeneous distribution of records.

Observer
Profile Very Low RI Low RI Moderate RI High RI Very High RI

Garden-
watchers

1.29 73.62 115.58 −5.26 −90.87
N = 11 N = 2405 N = 15,166 N = 15,206 N = 2381

Beginners 3.47 19.04 103.46 106.96 −196.63
N = 71 N = 4969 N = 59,041 N = 134,161 N = 24,017

Naturalists
5.86 4.93 52.16 127.82 −181.24

N = 551 N = 35,514 N = 383,607 N = 1,036,256 N = 569,777

Experts −5.68 −16.55 −80.39 −128.54 204.3
N = 538 N = 51,429 N = 503,526 N = 1,306,254 N = 1,377,581
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Figure A5. Histogram plots mean differences between each pair of observer profiles ((A) garden-
watcher vs beginner; (B) garden-watcher vs naturalist; (C) garden-watcher vs expert; (D) beginner vs
naturalist; (E) beginner vs expert; (F) naturalist vs expert) obtained by 500 bootstraps of the original
samples. Dotted lines are the confidence interval boundaries (p = 0.05) and the central line is the
initial sample mean.
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