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Abstract: Vulnerability of mountain ecosystems to climate change depends on the capacity of topo-
graphic variation to provide heterogeneous microclimates and rates of climatic change. Accurate
methods are therefore needed to assess climate at spatial resolutions relevant to ecological responses
and environmental management. Here, we evaluate a mechanistic microclimate model (30 m res-
olution; Microclima) and mesoclimate data (1 km; CHELSA) against in situ temperatures, finding
that both capture (whilst somewhat underestimating) variation well in observed ground-level max-
ima along a mountain ridge in 2011-13. We apply the models to estimate ecological exposure to
recent temperature changes for four mountain areas of the Iberian Peninsula, based on analogous
and non-analogous monthly maxima in 1980-1989 versus 2010-2019. The microclimate model re-
vealed fine-resolution exposure to non-analogous conditions that were concealed in mesoclimate
data, although whether exposure was greater at the micro- or mesoscale (and hence the types of
organisms or management decisions affected) depended on the topographic context of each mountain
range. Habitat type influenced microclimatic exposure, and hence may provide opportunities for
conservation adaptation. These results suggest that mechanistic models are potentially useful tools to
assess exposure to climate change at spatial resolutions that permit understanding and management
of biodiversity responses in mountain ecosystems.

Keywords: analogous climatic conditions; climate change exposure; mesoclimate; microclimate;
mountain ecosystems; refugia; spatial resolution

1. Introduction

Mountain ecosystems are a high priority for adapting conservation management
to climate change [1]. The rapid warming to which many high elevations have been
exposed threatens endemic species that are restricted to rare mountain climates and isolated
from locations that will be climatically favourable in the future [2,3]. Mountains at the
warm, “rear” edges of geographic ranges may also represent important reservoirs of
genetic diversity and adaptive potential because they have acted as refugia by supporting
persistent populations of species through glacial and interglacial climates [4]. In these
environments, microclimatic and mesoclimatic heterogeneity resulting from mountain
topography could buffer species against climate change by providing opportunities for
behavioural thermoregulation and fine-scale distribution shifts [5]. However, to establish
the capacity of mountains to act as refugia, and to prioritize additional management or
designation of protected sites to adapt their conservation, it is necessary to assess variation
in climatic conditions and rates of change at spatial scales that are relevant to the “valued
resources” (e.g., species or communities) that are threatened by ongoing climate change [6].

Until now, many assessments of observed and predicted species range shifts in re-
sponse to climate change have used coarse-scale (approximately 10-100 km) macroclimatic
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data, over broad geographic gradients such as latitude [7-9]. In reality, species experience
variation in climate at much finer spatial resolutions across their geographic ranges [10].
Mesoclimate (approximately 100 m—10 km) varies because of factors such as elevation,
topography, distance to the coast, and the weather patterns that these create [11-14], as
well as effects of land cover on shading and wind exposure [15,16]. Microclimate (<100 m,
or much finer resolutions depending on the size of the organism) is influenced by very
fine-scale variation in topography and land cover, and may have important effects on
organism performance and population dynamics [17-19].

Both macroclimate and mesoclimate are often determined with the same methodol-
ogy, by interpolations of weather station data using patterns such as lapse rates. Studies
that have sought to understand the ecological influence of climatic variation (e.g., [20,21])
have relied on data from national networks or online databases such as Worldclim [22]
or CHELSA [23,24]. At regional scales of mountain ranges, elevation is the main factor
determining temperature and precipitation, with the coldest and wettest climatic condi-
tions found at higher elevations [11,13]. However, cool and moist conditions can occur in
valley bottoms because of factors such as cold air pooling and hydrological accumulation,
whilst variation in topography and orientation creates isolated microclimates by interacting
with the physical processes of air flow and solar radiation [6,14,24,25]. These factors have
important effects on the responses of populations and communities to climate change: for
example, butterfly community composition in the Iberian Peninsula has responded less to
climatic warming and drying since 1980 in locations where greater topographic heterogene-
ity has reduced rates of climate change or permitted fine-scale species redistributions [26].

Accurate mesoclimatic and microclimatic data may therefore be important when
assessing ecological vulnerability to climate change in mountains and when prioritizing
locations or habitats for management or protection. In this context, interpolated data
may not be representative: partly because there are very few meteorological stations in
high mountains in most parts of the world [27]; and partly because complex topography
causes local temperature to vary substantially, resulting in mosaics of mesoclimatic and
microclimatic conditions that differ considerably from the macroclimate [19]. Recent
advances in mechanistic modelling now make it possible to estimate microclimate based
on topography and vegetation cover at the scales relevant to organismal exposure [28,29].
These models can be applied to any location at any time, and field validation shows that they
can provide accurate estimation of microclimatic conditions in isolated and topographically
diverse environments [30].

In this paper, we first evaluate the accuracy of 1 km resolution mesoclimate data
(CHELSA,; [23]) and a 30 m resolution microclimate model (Microclima; [28]) using ground-
level field measurements of temperature from a mountain ridge in 2011-13 [31]. We then
apply modelled mesoclimate and microclimate data to test the effects of spatial scale
on recent exposure to climate change in four mountain regions of central Spain. We
take an approach based on the occurrence of analogous versus non-analogous climatic
conditions [2] between two time periods (1980-89 and 2010-19). We define analogous
conditions as those that were present in both periods in a reference grid square, and non-
analogous conditions as those that were only present in the square during one of the two
time periods (conditions either lost or gained from one period to the other). We calculated
analogous and non-analogous conditions based on monthly temperature maxima across
grid squares centred on the mountain ranges: 6 x 6 km grid squares with microclimate
modelled at 30 m resolution; and 50 x 50 km squares with mesoclimate data at 1 km
resolution. We use these spatial extents and resolutions to represent different scales of
ecological observation or conservation management, e.g., ranging from an individual
population or metapopulation of a rare plant or insect (6 x 6 km square), through to
a system of insect metapopulations, or the home ranges of large vertebrates, or birds
undertaking elevation migrations (50 x 50 km square) (e.g., see [32] for an example of
the spatial scales at which a mountain mammal responds to climate change). We also use
the microclimate model to estimate differences in exposure to non-analogous conditions
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in three different habitats typical of the study regions (grassland, scrub and coniferous
woodland). Overall, we seek to validate the use of a mechanistic microclimate model
for Mediterranean mountain habitats, and to demonstrate how the scale dependence of
exposure to changing climates influences the capacity of mountains to act as refugia in
adapting conservation to climate change.

2. Materials and Methods
2.1. Study Area

The study included four Mediterranean mountain ranges at a similar latitude in the
central Iberian Peninsula, two in the Sistema Central (Sierras de Guadarrama and Gredos)
and two in the Sistema Ibérico (Sierras de Albarracin and Javalambre) (Figure 1). The
research was part of a project to understand the capacity of mountains to act as climate
change refugia, focused on these four regions because each has recent historical (1985-2005)
field data on butterfly distributions over elevation gradients [33,34]. The vulnerability
to climate change of biota in these locations is important for conservation because they
support many endemic species and species at their rear range margins: these species
are expected to suffer decreasing regional distribution sizes or extirpations as conditions
warm [35,36], partly because all four mountain ranges show decreases in area as elevation
increases [37]. To conduct our comparisons of mesoclimatic and microclimatic change, we
selected focal locations where historical butterfly sample sites were present at a comparable
average elevation in the centre of each system (1300-1500 m above sea level). These acted
as the focal grid cells (6 x 6 km) for microclimatic modelling in each system. We delimited
50 x 50 km grid cells around the centroid of each 6 x 6 km grid square to conduct our
mesoclimate analyses (Figure 1).
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Figure 1. Location of the four mountain regions in the Iberian Peninsula. Black polygons represent
50 x 50 km squares for mesoclimate analysis, centred on red 6 x 6 km squares for microclimate
analysis. Guadarrama inset: black triangles show locations of dataloggers for field validation
of temperatures.
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2.2. Mesoclimate and Microclimate Data

We estimated mesoclimatic conditions using the “Climatologies at high resolution
for the earth’s land surface areas” (CHELSA) dataset (www.chelsa-climate.org, accessed
date 23 January 2021) [23]. CHELSA downscales ERA-Interim climate data from the
European Centre for Medium-Range Weather Forecast, using temperature interpolations in
mountain regions based primarily on altitude. For our analyses, we extracted the monthly
minimum and maximum temperatures (°C) at 1 km resolution for our study locations from
version 2.1.

Microclimate modelling was carried out in the R package Microclima [28] using the ru-
nauto function to integrate the mechanistic physical models Microclima and
NicheMapR [38]. These models allow for the estimation of hourly temperatures at fine
spatial resolutions based on freely available high-temporal-resolution climate data [29]. In
order to model the effects of topography and/or vegetation on convection and radiation,
and hence the temperatures experienced near the ground, NicheMapR provides a vertical-
flow air and soil microclimate model, and with the resulting data, Microclima calculates
the effect of physical forcing on near-ground temperature. In our analysis, soil and canopy
albedo were set to 0.15 and 0.23 as default parameters. In Microclima, habitat type deter-
mines leaf area, and hence shading at ground level. We modelled microclimate based on the
three habitats with the highest coverage in the four 50 x 50 km cells: evergreen needle leaf
forest “H1”, open scrubland “H7” and short grassland “H10” [38] (see Figure 2). Coastal
effects were not implemented in the microclimate models to reduce computational time
and because the systems are continental mountains distributed at least 50250 km from the
coast. We estimated hourly temperatures 10 cm above the ground at 30 m resolution, and
then calculated average monthly daily minimum and maximum temperatures to compare
with the mesoclimatic (CHELSA) and datalogger temperatures.

Figure 2. Photographs of habitats in the four mountain study regions. (A) Sierra de Gredos,
(B) Sierra de Guadarrama, (C) Sierra de Albarracin, (D) Sierra de Javalambre. The main habitat types
are: Hl—pine forest; H7—open scrubland; H10—short grassland.
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2.3. Field Validation of Mesoclimate and Microclimate

To evaluate the accuracy of the mesoclimate and microclimate models for mountains in
the central Iberian Peninsula, we used temperature data from Hobo Tidbit dataloggers from
a4 x 3 km ridge in the Sierra de Guadarrama from October 2011 to June 2013 (Figure 1;
see [31]). These loggers had been used to record effects of topography on the temperatures
experienced by larvae of the alpine grassland butterfly Parnassius apollo [31,39]. Twenty-five
loggers were placed at elevations of 1570-1890 m a.s.l. at ground level in the shade of
dwarf shrubs (5-10 cm vegetation height; mean 7.5 cm). In our previous study, spring
temperatures (during the period of larval growth) recorded by the loggers were negatively
related to elevation and positively related to modelled solar insolation (depending primarily
on aspect) [31]. To evaluate the accuracy of mesoclimate and microclimate models, we
calculated monthly minima and maxima (°C) from the hourly temperatures recorded by
the dataloggers. Because of loss or damage to some of the 25 dataloggers over the course of
21 months, the total sample size was 525 monthly temperatures (Supplementary Materials).

Georeferences of the dataloggers were used to determine the 30 m or 1 km resolu-
tion cell for comparison with the microclimate or mesoclimate models, respectively. To
perform comparisons between the data sets, Pearson correlations were performed and
the root-mean-squared error (RMSE) was calculated, following [30] (sample size for all
analyses = 525 datalogger months). The RMSE index quantifies the difference between a
set of predicted and observed values, indicating the absolute fit to the data, with lower
RMSE values representing closer fit between the predicted and observed values [30].

2.4. Exposure to Analogous and Non-Analogous Conditions

Reference periods for recent climate change exposure were 1980-89 and 2010-19. Tem-
peratures in the Iberian Peninsula have risen markedly since 1980 [26], and we used 1980-89
as our baseline period (i) because the earliest historical butterfly samples in the mountain
field sites assessed by our refugia project were from the 1980s; and (ii) because the latest
version of 1 km resolution temperatures (CHELSA) was available from 1979 onwards [23].
We used the twelve months of the year as units of analysis for exposure to analogous and
non-analogous conditions, because exposure during specific parts of annual life cycles
determines phenology and abundance responses (e.g., [40-42]). We conduct the analyses
using monthly maximum temperatures, relevant for growing season length and upper
tolerance limits for species at low-latitude or low-elevation range limits. For mesoclimate,
we extracted monthly maximum temperatures at 1 km resolution throughout each of the
four 50 x 50 km squares, using CHELSA data from 1980-89 to 2010-19 [23]. For microcli-
mate, we calculated monthly maxima by modelling hourly temperatures at 30 m resolution
throughout each of the four 6 x 6 km squares for 1980-89 and 2010-19, for each of the three
reference habitats representing a gradient from open (H10) through intermediate (H7) to
closed vegetation (H1) (Figure 2).

Thus, for 1980-89 we calculated the range of mean daily maxima for each month
(January, February etc.) in each pixel of the focal squares (30 m pixels in 6 km squares;
1 km pixels in 50 km squares). This gave the absolute minimum and maximum values
of maximum monthly temperature recorded anywhere in the square in the decade at the
spatial scale of study. We also calculated the full range of monthly maxima for 2010-19.
It was then possible to calculate for each month of the year whether each pixel showed
analogous or non-analogous conditions between the two decades. Pixels with “analogous”
temperatures were those whose temperature in 1980-89 fell within the full range of monthly
maximum temperatures in any pixel in the square for that month in 2010-19, and whose
2010-19 temperature was likewise present across the square in 1980-89. There were two
types of pixel with “non-analogous” temperatures: “lost”, where the temperature in 1980-
89 did not occur anywhere in the square in 2010-19; and “gained”, where the 2010-19
temperature had not occurred anywhere in 1980-89 (Figure 3). We therefore calculated the
total proportion of pixels that were “analogous” versus “non-analogous” (lost + gained)
for each month, in each square, and at each spatial scale (Supplementary Materials).
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Figure 3. Exposure to analogous and non-analogous maximum July temperatures from 1980-89 to
2010-19 in the Sierra de Gredos (A,C) and Sierra de Albarracin (B,D). Green represents analogous
conditions, while yellow indicates non-analogous “gained” conditions and purple represents non-
analogous “lost” conditions. (A,B): Mesoscale 50 km squares, 1 km resolution; (C,D): Microscale
6 km squares, 30 m resolution, modelled for H10—grassland.

2.5. Statistical Analysis

We sought to test whether the scale of observation affected exposure to non-analogous
temperatures for mountain taxa, and whether exposure differed among the four mountain
regions or in different seasons of the year. We conducted generalized linear models (GLM)
with the proportion of pixels showing analogous conditions as the response, using quasi-
binomial error because data were bounded between 0 and 1 and the relationship between
residual deviation and residual degrees of freedom indicated overdispersion [43]. The
independent variables (all categorical) were scale (microclimate or mesoclimate), region
(Gredos, Guadarrama, Albarracin or Javalambre) and season. In initial models, we grouped
the months as winter (December—February), spring (March-May), summer (June-August)
and autumn (September-November), but found that model performance was improved
by grouping the autumn and winter months together: the results presented therefore
include season as a three-factor variable (combining spring and summer months did not
improve the models). We also tested for interactions: between scale and region, to assess
whether effects of scale on exposure to non-analogous conditions were consistent among
the mountain ranges; between scale and season; and between season and region. We
calculated all possible models based on the inclusion and exclusion of the explanatory
variables and interactions, and ranked these using the quasi-AIC criterion (QAIC). We
selected the most parsimonious model based on the lowest QAIC, also considering models
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that were within two QAIC units of the best model as well-supported if they included
fewer explanatory terms [44].

For the main comparisons of mesoclimatic and microclimatic exposure to non-analogous
conditions, we present results using microclimate modelled for two of the reference habitats:
H10 (short grassland) and H1 (pine forest). We conducted an additional GLM to test the
effects of habitat type on microclimatic exposure. In this case, the explanatory variables
were habitat type (pine forest “H1”, open scrubland “H7” and grassland “H10"), region,
season and the respective interaction terms.

3. Results
3.1. Field Validation of Mesoclimate and Microclimate Data

For monthly maxima, both the 1 km resolution mesoclimate data and the 30 m res-
olution microclimate model were closely correlated with field measurements of temper-
ature (n = 525; r = 0.89 and 0.86, respectively) showing that the relative variation over
time and among the different datalogger locations was well-captured by both models
(Figure 4). However, the temperature range of monthly maxima was much greater for
the field measurements (minimum —1.4, maximum 63.4 °C), particularly during summer
months (June-September) when there was little overlap of field-recorded monthly maxima
with the microclimate model, or, especially, the mesoclimate data (Figure 4). Nevertheless,
the microclimate model captured a greater overall range of monthly maxima (total range
30.5 °C, minimum 2.1, maximum 32.6) than the mesoclimate data (23.7 °C, 3.1-26.8), and
the absolute values of the field measurements were marginally closer to the microclimate
model (RMSE = 8.17) than to the mesoclimate data (RMSE = 9.74). The modelled micro-
climate and mesoclimate data were very closely correlated (r = 0.96) and had very similar
absolute values (RMSE = 3.65).

Mesoclimate Microclimate

1—J
]
! I
! '
Jan Apr Jun Oct Jan Apr Aug Oct Jan Apr Jun Oct Jan Apr Aug Oct Jan Apr Jun
2012 2012 2092 2012 2013 20132013 2011 2012 2012 2092 2012 2013 20132013 2011 2012 2012 2092 2012 2013 20132013
Date Date

Date

Figure 4. Field validation of monthly maximum (above) and minimum (below) temperatures (°C)
in the Sierra de Guadarrama. Temperatures from October 2011 to June 2013 are shown for the
25 dataloggers (left column, blue points), associated 1 km resolution mesoclimate data (centre,
orange) and 30 m resolution microclimate data (right, green). Lines show loess curves.

Field-recorded monthly minima were again closely correlated with the mesoclimate
data (r = 0.95) and microclimate model (r = 0.90) (Figure 4). However, the absolute values of
modelled microclimate temperatures had a broader range and were much lower (minimum
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—26.3, maximum 1.3 °C) than the mesoclimate data (minimum —6.0, maximum 13.1) and
field measurements (minimum —4.1, maximum 15.2). Consequently, fit with the field
minimum temperatures was much closer for mesoclimate data (RMSE = 2.2) than for the
microclimate model (RMSE = 16.4).

3.2. Exposure to Non-Analogous Temperatures

Given the better fit of the microclimate model to field-measured temperature maxima,
analyses of analogous and non-analogous conditions are based on monthly maxima. We
present results for microclimate models based on representative closed (H1—pine forest)
and open (H10—short grassland) habitats.

The proportion of 1 km squares in the 50 x 50 km regions that maintained analogous
monthly maxima from 1980-89 to 2010-19 (mesoclimate analysis) varied from 50-100%
(Figure 5). Variation among months in exposure was widest in Albarracin (50-100%
analogous) and Gredos (59-97%), and much less in Guadarrama (79-100% analogous) and
Javalambre (86-100%).
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Figure 5. The percentage of pixels showing analogous temperatures between 1980-1989 and 2010-
2019. Mesoclimate data—1 km resolution in 50 x 50 km cells; microclimate models—30 m resolution
in 6 x 6 km cells for Hl—pine forest and H10—grassland. Points show % analogous monthly maxima
for the four regions; coloured bars show means per season in each region. Box plots show median
and interquartile range for all data at meso- or microscales for the respective habitats.
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In general, the microclimate analysis using 30 m pixels in 6 x 6 km focal squares
was able to detect areas of non-analogous monthly maxima (both lost and gained condi-
tions) that were missed by the mesoclimate data (Figure 4). The proportion of pixels that
maintained analogous maxima varied markedly among the regions. Exposure was least in
Gredos, where monthly analogous maxima ranged from 85-100%. Monthly variation in
exposure was much wider in the other three regions, with analogous conditions ranging
from 0-96% in Albarracin, 20-95% in Javalambre, and 47-100% in Guadarrama, depending
on month and habitat type (Figure 5).

The most parsimonious models for variation in monthly analogous conditions were
generally consistent whether using the microclimate model based on H1 (pine forest) or
H10 (short grassland) (Table 1). The selected models included effects of scale, region,
season (spring, summer and autumn/winter) and the interaction between scale and region.
Overall, exposure was greatest in Albarracin (most negative coefficient), and least in
Gredos (reference category: all other regions had negative coefficients) where exposure at
the microscale was minimal. Exposure to non-analogous conditions was greater for the
microclimate analysis (Figure 5), but with an interaction with region (positive coefficients
with Guadarrama, Albarracin and Javalambre, because exposure at the mesoscale was
greater in Gredos). The region:scale interaction was not present in the best model if Gredos
was removed from the analysis.

Table 1. Generalized linear models for the proportion of analogous monthly maximum tempera-
tures between 1980-89 and 2010-19. Reference categories are Region—Gredos; Scale—Microclimate;
Season—Autumn/Winter. The best model was selected based on a quasibinomial error term us-
ing quasi Akaike information criterion (QAIC). For H10, QAIC of null model = 166.49, QAIC of
model shown = 104.40, QAIC of next-best model = 105.50 (including an additional Region:Season
interaction). For H1, QAIC of null model = 121.7, QAIC of model shown = 103.6, QAIC of next-best
model = 105.4.

Residual

Model Devi Residual DF Deviance DF Factor Coefficient (£S.E.)
eviance
H1—Pine forest
Null 979,888 95
Intercept 4.07 *** (40.53)
. Albarracin —4.32 *** (£0.55)
Region 501,952 92 477,935 3 Guadarrama —2.05 *** (£0.56)
Javalambre —2.87 *** (£0.54)
Scale 457,320 91 44,633 1 Mesoclimate —2.16 * (+£0.84)
Spring —1.12 #* (£0.27)
Season 383,453 89 73,867 2 Summer —0.86 ** (+0.27)
Albarracin 4.70 *** (4+1.15)
Region:Scale 326,851 86 56,602 3 Guadarrama 3.41* (+1.41)
Javalambre 4.55 ** (+1.53)
H10—Short grassland
Null 626,672 95
Intercept 3.74 ** (£0.54)
. Albarracin —3.26 *** (+0.55)
Region 416,599 92 210,073 3 Guadarrama —2.14 *** (4£0.57)
Javalambre —2.48 *** (£0.56)
Scale 401,853 91 14,746 1 Mesoclimate —2.21 * (£0.85)
Spring —0.77 ** (£0.25)
Season 358,896 8 42,957 2 Summer 0.15 M5 (+0.28)
Albarracin 3.64 ** (£1.15)
Region:Scale 317,410 86 41,486 3 Guadarrama 3.49 * (+1.41)
Javalambre 414 ** (+£1.54)

Significance of coefficients: *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. = not significant, p > 0.10.
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It is notable that temperatures decreased for several spring and summer months. For
both habitat types, exposure to non-analogous conditions was greatest in spring months
(March-May). For habitat H1 (forest), summer months also showed greater exposure to
non-analogous temperatures than autumn/winter. The deviance explained by the models
(Pseudo R?) ranged from 49% for H10 (grassland) to 66% for H1 (pine forest), suggesting
that the effects of scale, region and season were captured more clearly for microclimate
modelled using habitat H1.

We added an additional intermediate habitat type (H7—open scrubland) for our com-
parison of the effects of habitat on modelled microclimatic exposure. The differences in
exposure among habitats were not sufficient to overcome the differences in microclimatic
exposure among regions: irrespective of habitat type, the proportion of analogous condi-
tions was greatest in Gredos, followed by Guadarrama, Javalambre and then Albarracin
(Figure 6). For the two regions in the Sistema Ibérico (Javalambre and Albarracin), in
which fewer pixels maintained analogous conditions, exposure was greatest for H1 (pine
forest), intermediate for H7 (scrub) and least for H10 (grassland). The most parsimonious
model for variation in analogous monthly maxima at the microscale included effects of
region, habitat type (least exposure for H10—grassland) and season (greatest exposure in
spring) (Table 2). There were no interactions of region with habitat or season in the final
model, which explained a comparable proportion of deviance to the models comparing
microclimatic and mesoclimatic data (Pseudo R? = 0.55).

Table 2. Generalized linear model for the proportion of analogous monthly maximum tempera-
tures between 1980-89 and 2010-19 for modelled microclimate in three reference habitat types: H1
(pine forest), H7 (open scrubland), H10 (short grassland). Reference categories are Region—Gredos;
Habitat—H1—pine forest; Season—Autumn/Winter. The best model was selected based on a quasib-
inomial error term using quasi Akaike information criterion (QAIC). QAIC of null model = 281.55,
QAIC of model shown = 142.39, QAIC of next-best model = 144.14.

Residual

Model R Residual DF Deviance DF Factor Coefficient (+S.E.)
Deviance
Null 2,158,894 143
Intercept 3.56 *** (£0.44)

. Guadarrama —2.12 *** (£0.45)
Region 1,135,085 140 1,023,809 3 Albarracin —3.67 % (+0.44)
Javalambre —2.65 *** (£0.44)

. Short grassland 0.52 * (+£0.22)

Habitat 1,091,680 138 43,405 2 Open scrubland 0.41 T (£0.21)
Spring —0.90 *** (£0.21)
Season 966,869 136 124,812 2 Summer —0.21 7 (10.22)

Significance of coefficients: *** p < 0.001, * p < 0.05, * p < 0.10, n.s. = not significant, p > 0.10.
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Figure 6. The percentage of 30 m pixels showing analogous modelled microclimate temperatures
from 1980-89 to 2010-19 for three reference habitat types in the four focal mountain 6 x 6 km cells.
Each panel shows one region, with data grouped by habitat type: pine forests “H1”, scrublands “H7”
and grasslands “H10”. Coloured bars show mean for each season and habitat; habitats joined in each
region by dotted lines. Box plots show median and interquartile range across all months in each
habitat type.

4. Discussion

The ecological importance of mountain biodiversity and its potential vulnerability to
climate change mean that reliable methods are needed to estimate climatic conditions in
mountain regions. Our results indicate that mesoclimate data and a microclimate model
can provide relatively accurate measures of spatial and temporal variation in temperatures
experienced in a Mediterranean mountain range, but care is required in their interpreta-
tion and application to conservation. For example, absolute temperatures experienced
near to the ground show considerable fine-resolution variation related to topography and
vegetation, as demonstrated by our field-recorded temperatures [31]. Furthermore, we
show that the spatial resolution and extent of climatic data, as well as the time of year and
habitat of interest, have important implications for modelled exposure to changing climatic
conditions. Scientists and environmental managers seeking to assess the vulnerability to
climate change of mountain taxa or ecosystems, and to prioritize climate change refugia
for conservation, therefore need to interpret climatic data at spatial scales that are appro-



Land 2022, 11, 2052

12 of 16

priate for the valued conservation resource or associated management decision that are
being assessed.

4.1. Field Validation of Microclimate Model

Mechanistic models have recently been developed that permit fine-resolution estimates
of microclimate for regions without detailed coverage of meteorological stations [28,29],
and their use has been validated for remote and topographically variable environments [30].
We show for a mountain ridge in the central Iberian Peninsula that temperatures estimated
at 30 m resolution using the model Microclima led to a wider range of monthly maxima than
1 km resolution mesoclimate data, and the microclimate model also showed lower absolute
differences than mesoclimate data from field measurements. The modelled temperature
range was not as wide as that recorded by dataloggers at ground level, with measured max-
ima at ground level exceeding modelled temperatures, especially during summer (Figure 4).
There can be large errors in the empirical measurement of temperatures in sunny microen-
vironments (such as at ground level in summer), which make it difficult to draw firm
conclusions from direct comparisons between observed and modelled temperatures [44]. In
this respect, results from mechanistic models are less affected than field data by fine-scale
variation in factors such as shading and vegetation height, which are challenging to control
for in-field assessments of microclimate [44]. Thus, the microclimate model could be a
useful tool to estimate the relative effects of temporal and fine-resolution spatial variation
in topography on the temperatures experienced by organisms near the ground, with the
proviso that temperatures experienced are highly sensitive to very fine-scale variation
in microtopography and vegetation, and that the models could underestimate absolute
exposure to extreme maximum temperatures.

The application of the microclimate model for estimating minima again led to close
correlations with observed variation in temperature over space and time, but led to substan-
tial underestimates of the absolute values (Figure 4). Our measurements of field minimum
temperature seldom went below zero, likely because of insulation by snow cover in winter,
and the buffering effects of shrub cover and leaf litter on nighttime temperatures [39]. In
contrast, the range and absolute values of monthly minima from the mesoclimate data were
very close to those recorded by the field measurements, although the coarse resolution
(1 km) of these data would preclude their application for estimating fine-resolution varia-
tion in minima. For study organisms in which fine-spatial-resolution variation in minima
are important, in situ reference data can be used to help parameterize the microclimate
model. Recent developments to the Microclima model have incorporated the effects of
soil moisture, and ongoing refinements are being implemented to account for the effects of
snow cover on temperature [30] (.M.D. Maclean, pers. comm.).

4.2. Exposure to Non-Analogous Temperatures over Time

One method to estimate the exposure of organisms or ecosystems to climate change
is to consider the proportion of the landscape in which conditions present in one period
are maintained in another (analogous), versus locations where conditions are lost from the
landscape or novel conditions appear (non-analogous). Based on monthly temperature
maxima, we found differences in exposure to non-analogous conditions depending on the
mountain region, the scale of analysis, the season of the year, and habitat type. Understand-
ing how these effects operate could be important to inform assessments of climate change
vulnerability for different species or locations.

Climatic conditions and rates of climate change are heterogeneous over space, and
are influenced at meso- and microscales by factors such as regional weather patterns,
elevation, distance to the coast, geology, and topographic factors such as shading, as-
pect and slope [12,19]. In our results, the study region with the narrowest elevation
range (Albarracin, Figure 1) showed low proportions of analogous temperatures between
1980-89 and 2010-19 at both meso- (1 km resolution in 50 km squares) and microscales (30 m
resolution in 6 km squares), despite having considerable internal topographic variation.
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We interpret that the changes to broader regional conditions in some months were so
marked that these overwhelmed the capacity of local microclimatic variation as a buffer. It
is interesting to note that in some months for locations in this region, temperature decreases
between the two decades led to monthly maxima that were below the lowest maxima
recorded in 1980-89.

The scale of analysis had a clear influence on detection of non-analogous conditions:
in the central 6 x 6 km cells used for microclimate modelling, both lost and gained non-
analogous temperatures were detected at 30 m resolution, but were missed using data
at 1 km resolution (see Figure 4 for Sierra de Albarracin). Greater climatic variability is
detected at the fine scale due to the effects of topographic variation on physical processes of
air movement and solar radiation [14,24,25]. The proportion of non-analogous conditions
increased at the microscale compared with the mesoscale in three of the regions (Guadar-
rama, Albarracin and Javalambre), but not in Gredos. In contrast, in Gredos, expanding the
assessment to a 50 x 50 km cell at 1 km resolution (mesoscale) led to increased estimates
of exposure to non-analogous temperatures. Gredos was the region with the broadest
elevation range across the mesoscale, with a ridge and plateau in the northern half and
lower elevation plains in the south (Figure 1), and at the microscale it also showed a steep
elevation gradient with relatively little internal topographic variability (largely a system of
steep south-facing slopes rising to high elevations). Warming therefore led to a relatively
uniform mesoscale shift, with novel hot conditions gained in the low-elevation southern
half of the square, but cool conditions mainly maintained across high elevations (Figure 4).
The regional topographic context, alongside broader prevailing changes to the climate,
therefore influences the scale dependence of exposure to non-analogous conditions.

Rates of climate change have varied throughout the year in the Iberian Peninsula [11],
and we recorded greater exposure to non-analogous temperatures in spring and summer
than in autumn and winter (Figure 5). Understanding seasonal variation in climate change
exposure is important because different behaviours and stages of growth or life cycles are
sensitive to climatic conditions at different times of year. For example, the phenology of
many butterfly species in central Spain is most sensitive to temperature variation in spring,
immediately before annual adult emergence [45]. Shifts in phenology, alongside local shifts
in distribution, could compensate for the monthly exposure to non-analogous climates that
we have identified. However, most butterfly species analysed in north-east Spain have
not shifted their flight periods since the 1990s because of cooling temperatures during the
months that are critical for phenological sensitivity [41].

4.3. Implications for Adapting Conservation to Climate Change

Observed or expected exposure to climate change represents an important component
of climate change vulnerability assessments for prioritizing conservation among biota
and geographic locations [6]. The highly idiosyncratic responses to climate change that
have been shown by co-occurring species [46] could result partly from the fact that, as
we demonstrate, exposure to non-analogous conditions varies markedly among regions,
seasons of the year, habitat types and spatial scales. Climate change impact assessments
at coarse scales (>10 km resolution), such as in most bioclimate models to date [7], might
give a broad idea of changing climatic favourability (e.g., [47]) but will miss important
differences between taxa and geographic locations at the landscape scales that are important
in planning and managing in situ conservation [48].

We show that there has been marked local variation in exposure to changing tem-
peratures in the past three decades within and among mountain landscapes at both 1 km
and 30 m resolution. Evidence of how exposure varies at these scales can be employed to
help understand ecological responses and adapt management decisions to climate change.
Across a mountain landscape, mesoclimatic (100 m-1 km) information allows for the identi-
fication of sites (e.g., systems of ridges or valleys) where topography is most likely to buffer
the effects of climate change and therefore enable the persistence of metapopulations of
threatened insects, or home ranges of more wide-ranging organisms such as mammals or
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birds. Within these landscapes, microclimatic models (<100 m) permit the identification of
specific topographic features (e.g., hollows, talus slopes) that provide isolated or unique
conditions. Such locations may be targeted for ecological surveying for threatened taxa, or
habitat management to maintain suitable biotic conditions, and following such approaches
for monitoring to test whether in situ management has allowed population persistence or
recovery. Plants and sedentary invertebrates may be able to adjust their distributions or
behavioural thermoregulation at the scales where microclimate models can now assess ex-
posure, and monitoring such responses for highly threatened species can help conservation
managers to assess the efficacy of ongoing conservation adaptation to climate change.

Our results indicate that estimates of climate change exposure are scale-dependent.
Therefore, the scale of analysis to inform vulnerability assessments depends in part on the
focal “valued resource” [6]. However, complementary climate change exposure assessments
at more than one spatial scale could be especially valuable when planning management for
protected areas or regions in which multiple threatened species or communities—or indeed
multiple metapopulations of focal species—occur [32], combined with validating refugial
predictions using empirical ecological, genetic or physiological data [49]. In regions such as
mountains with high levels of mesoclimatic and microclimatic variation, these assessments
could allow important zones to be highlighted, and within these, microrefugial locations to
be pinpointed for the protection and management of localized populations threatened by
climate change.

5. Conclusions

Relatively accurate sources of mesoclimatic and microclimatic data are now available
to fulfil the urgent need to assess climate change exposure in mountain regions. These
models can reduce the investment of time and resources in temperature-recording devices
in regions lacking in meteorological stations, and this work shows how the models can be
validated using dataloggers in focal sites to support their application [28,30,44]. Our results
for Mediterranean mountains in the Iberian peninsula show that measuring and modelling
exposure at these complementary spatial scales can provide important information to
understand ecological responses to climate change. Above all, we recommend that planners
and managers conduct exposure assessments at scales that are relevant to organisms,
ecosystems and their conservation management in a changing climate.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1and11112052/s1, The supplementary material files include data
presented in the work, with Supplementary Metadata file to explain data in the remaining datafiles.
Supplementary File 1 contains the temperature maxima and minima from dataloggers used to validate
the associated mesoclimatic and microclimatic data. Supplementary File 2 contains the information
on the number of gained, lost and analogue conditions corresponding to the mesoclimatic and
microclimatic data for the four regions. Supplementary File 3 contains the information utilized to
model the differences in analogue conditions between scales. Supplementary File 4 contains the data
to model the differences in analogue conditions between habitats. This supplementary material is
intended to permit reproducibility of the results presented.
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