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Abstract: Invasive species are one of the main threats to biodiversity worldwide, and the Galapagos
Islands are no exception. With the need to control many invasive plant species, accurate distribution
maps of invasive plant species are crucial for cost-effective management actions. To guide the
selection of appropriate multispectral satellite imagery for this, we evaluated the effects that spatial
resolution has on the mapping accuracy of the most invasive plant species in Galapagos with different
“growth forms”: (1) tall tree: Cuban cedar (Cedrela odorata), (2) medium tree: guava (Psidium guajava),
and (3) shrub: blackberry (Rubus niveus). We developed a mapping methodology based on very
high resolution (VHR, WorldView-2) imagery and visual interpretation from orthophotos obtained
from unmanned aerial vehicles for training and validation. We then compared our VHR mapping
results with medium resolution (MR, Landsat) mapping results and calculated the overall accuracy
(OA) and Kappa from confusion matrices for each target species and resolution based on the visual
interpretation of Google Earth imagery. The results showed that the OA of the maps produced with
VHR was significantly higher than the ones produced with MR. The OA was higher for the tall tree
growth form, followed by the shrub and the medium tree growth form. Kappa estimates of <0.5
for MR for the medium tree and shrub growth forms demonstrated its unsuitability for accurate
mapping. While MR may be sufficient for mapping the tall tree growth form, we concluded that VHR
is indispensable for mapping the medium tree and shrub growth forms.

Keywords: Galapagos; invasive species; vegetation mapping; multispectral satellite imagery;
very high spatial resolution; medium spatial resolution

1. Introduction

Invasive species are a threat to global biodiversity, as they can adversely affect ecosys-
tems by displacing native and endemic species and altering ecosystem functions [1,2].
Preserving the integrity and biodiversity of ecosystems with high conservation values
requires management actions to control the spread of invasive species [3]. The costs of the
economic loss due to invasive species and their control are very high on a global scale, with
annual costs of an estimated USD 120 billion in the US [4], USD 14.45 billion in China [5],
and up to USD 626 million over 34 years in Ecuador [6]. Since funds for controlling these
species are often scarce, it is important to allocate funds to priority areas, requiring ac-
curate species distribution maps [7]. Such maps can help establish baseline ecosystem
conditions [8], localize and target early infestations [9], model invasion patterns, or monitor
management outcomes [10], all of which are essential to protect ecosystems threatened by
invasive species [2].

Remote sensing technologies offer an important resource for mapping vegetation [11].
Multispectral satellite images, i.e., images composed of multiple spectral bands containing
the amount of radiation of a range of wavelengths, have widely been used to characterize
vegetation according to its spectral properties [12–14]. Satellite sensors have different
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spatial resolutions, which are the ground representation of one pixel in the image. They
range from low resolution, where a single pixel encompasses several trees or plants, to
high resolution, where a tree or plant is represented by one or a few pixels [15]. Lower
resolutions are often used to map vegetation communities or ecosystems, whereas higher
resolutions are commonly used to map single species [16,17]. While higher resolution
imagery is costlier to acquire [17] and has a lower temporal frequency and geographic
coverage in tropical areas [16], it has the advantage of greater detail that enhances the
recognition of features. What allows the recognition of a plant species, apart from its
spectral characteristics, is a combination of several features visible from above, for example,
whether the plant species forms a tree crown, large monospecific stands, small patches
mixed with other species, or how dense its foliage is. In this study, we refer to these
characteristics as the “growth form” of the species.

Our research was conducted in the Galapagos archipelago, a UNESCO World Heritage
Site, which is known for its high endemism of species [18]. Sadly, the unique biodiversity
of terrestrial ecosystems is currently under threat from invasive plant species [8,19]. To
be able to prioritize management actions for these invasive species, accurate distribution
maps of individual species are required. Both very-high-resolution (VHR) and medium-
resolution (MR) satellite imagery have been used to map the extension of invasive and
other plant species in the Galapagos Islands in the past. For example, Trueman et al. [20]
used VHR imagery from the WorldView-2 imaging satellite to produce a spatial database
of canopy plant densities in the protected areas of the highlands of Santa Cruz Island. The
database consisted of manually delineated polygons, which included a density measure
for several vegetation cover classes. Rivas-Torres et al. [21] used MR from the Landsat 8
imaging satellite to develop an object-based methodology for mapping native and invasive
vegetation cover for the protected area on all islands in the archipelago, resulting in a
spatial database of vegetation units at an “ecosystem scale” that included units dominated
by invasive species. Laso et al. [22] mapped the agricultural zone, and a buffer surrounding
this area, on the inhabited islands, using a combination of high resolution (HR) PlanetScope
and MR Sentinel-2 satellite imagery.

The objective of our study was to advance this previous work by incorporating the
detailed information of VHR imagery to model the distribution and abundance of dominant
invasive plant species. Our goal was to show the effects that the spatial resolution of satellite
imagery has on the outcomes of vegetation mapping in the highlands of Santa Cruz in the
Galapagos National Park (GNP) area by comparing our maps produced with VHR imagery
with maps produced with MR imagery by Rivas-Torres et al. [21]. We hypothesized that
VHR imagery, apart from delivering more accurate results, was crucial for the mapping of
plant species with less distinctive growth forms. We argue that whereas lower resolution
could be suitable for the mapping of plant species with more distinctive growth forms,
higher-resolution imagery may be indispensable for the mapping of species with less
distinctive growth forms.

2. Materials and Methods
2.1. Study Area

The Galapagos archipelago is located in the Pacific Ocean, approximately 1000 km west
of the South American coast on the equator (1◦40′ N–1◦36′ S, 89◦16′–92◦01′ W) (Figure 1a,b).
This archipelago comprises about 123 islands, of which only about 15 count as main
islands [23]. The largest islands have a climatic zonation, stretching from the dry lowlands
to the humid highlands [24]. Our study area is located on Santa Cruz Island, in the humid
highlands of the Galapagos National Park (GNP) (Figure 1c). The highest elevation on
this island is 864 m.a.s.l., and the mean annual precipitation between 1988 and 2018 was
1059 mm at 223 m.a.s.l. (0◦41′33” S, 90◦19′41” W) [25]. Because other studies have used
different boundaries for delimiting the “humid zone”, we present our delimitation method
in Appendix A. The humid zone is characterized by high biological productivity and by
housing many endemic species [18]. It is also the area colonized by the early settlers,
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who cultivated the land and introduced new plant species, many of which have become
invasive [26], especially following anthropogenic fires [27]. The first sustained agricultural
efforts in this area began in 1910 [28]. As other farmers arrived in subsequent decades,
cultivation and livestock activities continued to increase. The Galapagos National Park
(GNP) was established in 1959, and by 1974, 97% of the land area of the archipelago was
protected, while the remaining 3% was assigned to human settlements and agricultural use
(most of which is located in the highlands) [29].
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Figure 1. Study area and sources of satellite imagery. (a) The Galapagos archipelago with respect
to mainland Ecuador in South America; (b) the Galapagos archipelago (dark gray represents Santa
Cruz Island); (c) the study area in the humid zone of Santa Cruz Island (the green line delimits the
extent of the humid zone; the central polygon with a black border and inner crossed lines represents
the agricultural zone); (d) satellite imagery sources used for the very-high-resolution mapping in
this study. The area mapped using WorldView-2 (WV-2) satellite imagery captured in March 2016
is shown in red, February 2016 in pink, March 2015 in blue, March 2013 in purple, October 2011 in
ocher, and white spots represent areas covered with clouds, which were mapped using Google Earth
(GE) satellite imagery captured in March 2016.

2.2. Very-High-Resolution Species Mapping
2.2.1. Satellite Imagery

Very-high-resolution (VHR) images have a spatial resolution of 5 m or less, i.e., the
pixels represent areas smaller than 5 m × 5 m on the ground [16], and a tree or plant
is represented by one or a few pixels. In this study, we used VHR WorldView-2 (WV-2)
images. The WV-2 sensor has a spatial resolution of 0.5 m in the panchromatic band and
2 m in the spectral bands [13,30] and is among the few VHR multispectral sensors with
eight bands situated in the visible and near-infrared regions of the spectrum: Band 1,
Coastal (400–450 nm); Band 2, Blue (450–510 nm); Band 3, Green (510–580 nm); Band 4,
Yellow (585–625 nm); Band 5, Red (630–690 nm); Band 6, Red Edge (705–745 nm); Band 7,
Near-Infrared 1 (770–895 nm); and Band 8, Near-Infrared 2 (860–1040 nm) [15].

We used mainly cloud-free (<10% cloud cover) WV-2 satellite images acquired during
the hot and wet season in Galapagos, between February and March [31], for the years
2013, 2015, 2016, and, additionally, an image from the cool and dry season in October 2011
(Figure 1d). Images of the hot and wet season were preferred, since they are generally free
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of clouds and the vegetation is green and lush and at its maximum response level, allowing
for better spectral separability between the plant species [13]. For the southwestern part
of our study area, we were only able to obtain a mostly cloud-free image captured in
October 2011. However, we do not think that this affected the outcome of the mapping,
since the sole dominant invasive species in this area was the easily discernible Cuban cedar.
Pixels covered by clouds or cloud shadows in all images were masked out by manually
drawing their boundaries. The resulting gaps were then replaced by matching areas of
WV-2 images from earlier dates. For example, a cloud gap from a WV-2 image from March
2016 was replaced by the WV-2 image from February 2016. Cloud gaps for which no other
WV-2 image existed, as was the case for cloud-covered portions in the March 2015 and
October 2011 images, were replaced with Google Earth (GE) satellite imagery from 2016
(Figure 1d). In the cloud gaps evaluated with GE satellite imagery, target species were
manually delineated.

To obtain the spectral reflectance signatures of the plant species to map, the radiomet-
rically corrected digital numbers (DNs) of the WV-2 satellite imagery were transformed to
top-of-atmosphere (TOA) spectral reflectance, according to Updike and Comp [32], using
the satellite package [33] in the R 3.5.0 statistical software environment [34].

2.2.2. Segmentation for Object-Based Image Analysis

Very high spatial resolutions have enough detail to distinguish individual plants in
heterogeneous landscapes. However, when the pixel dimensions are smaller than the size
of individual tree crowns, there is an increase in the variability of the signatures of pixels
that cover the same tree [16]. Therefore, we adopted an object-based image analysis (OBIA)
approach that groups spatially and spectrally close pixels into objects, representing features
such as individual tree crowns, as it yields better results in species identification than
classification methods based solely on the spectral properties of the pixels [9,35]. Based on
pilot trials with different levels of segmentation, we used this approach with a two-level
segmentation on the panchromatic band using eCognition Developer 10.0, Trimble GmbH
(Munich, Germany). On the parent level, we generated object segments large enough to
contain homogeneous forest stands or tree groups of approximately 0.5 to 3 ha in size. On
the child level, we generated object segments approaching the size of single tree crowns or
small shrub stands of approximately 100 to 500 m2 in size.

2.2.3. Classification Model

To evaluate how different satellite imagery resolutions affect the mapping of plants
belonging to different growth forms, we chose the following invasive plant species: (1) tall
tree: Cuban cedar (Cedrela odorata), with a large crown and lush foliage with high photosyn-
thetic activity, (2) medium tree: common guava (Psidium guajava), with an irregular crown
and leaves with lower photosynthetic activity, and (3) shrub: blackberry (Rubus niveus),
forming a dense understory thicket, often covered by other vegetation. Cedrela odorata was
the tallest tree species in our study area at up to 20 m in height, Psidium guajava had up to
7 m in height, and Rubus niveus had up to 2 m in height. All of these species had originally
been planted in the agricultural zone and have now spread into the GNP [26].

There are multiple remote sensing classification models using satellite imagery, whereby
the user classifies training objects. Subsequently, an algorithm uses these data to predict
unclassified objects. For the classification of our target species, we chose a Random Forest
(RF) model, which is a nonparametric classification technique based on ensemble machine
learning [36]. Random Forest has been deemed as the classifier of choice by several studies
because of its ability to overcome overfitting limitations and to achieve the best overall
accuracy results compared to other models [12,37]. We used the mean reflectance of each
spectral band and the panchromatic band as our model parameters, since including all
spectral dimensions in WV-2 had a greater predictive power [38]. In addition, we included
the standard deviation (SD) in the panchromatic band to characterize vegetation textures,
as suggested by Berhane et al. [12]. Each child-level object inherited the SD from its parent-
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level object. The parent-level objects were large enough to differentiate the low SD in the
smooth texture of grass patches from the high SD in the rough texture of forested stands.
For each WV-2 satellite image, a separate RF model was trained. The statistical software
R 3.5.0 [34] and the packages caret [39], raster [40], and randomForest [41] were used for
the classification.

For each object, we calculated the Normalized Difference Vegetation Index (NDVI),
an index used to identify and measure live green vegetation, with values ranging from
−1 to 1 [42]. Negative values indicate clouds, water, and snow; values close to zero
indicate bare soil, and positive values vegetated areas. Values close to 1 indicate the highest
density of green leaves. Because our target species of Cuban cedar, guava, and blackberry
had an average NDVI greater than 0.6, this model was only applied to objects above
this threshold. Pasture areas and tree patches of avocado (Persea americana), red quinine
(Cinchona pubescens), and rose-apple (Syzygium jambos), which were visually recognizable
from the satellite imagery, were manually delineated and excluded from the model to
avoid spectral confusion. To better distinguish our target species from other vegetation,
all main species present in the humid zone of Santa Cruz were included in the model.
Because we were not only differentiating between species, but also between the different
phenology stages of a species, we hereafter refer to these as “classes” and not species.
Sixteen classes representing the dominant plant species visible in the study area were
included: Cuban cedar, guava, blackberry, Scalesia (Scalesia pedunculata), Miconia (Miconia
robinsoniana), bracken (Pteridium arachnoideum), dry bracken, glorybower (Clerodendrum
molle), Croton (Croton sp.), manchineel tree (Hippomane mancinella), guayabillo (Psidium
galapageium), “Cuban cedar 2” (Cuban cedar with young and bright colored leaves), “green
moss” (trees with crowns dominated by green moss and liverwort epiphytes), “mixed
vegetation” (patches where a single dominant species could not be defined), and “shadow”
(various types of vegetation obscured by shadows). To determine the suitability of the
assigned classes, we calculated their Jeffries–Matusita distance (JMD). The JMD is a spectral
separability measure that can be used to quantify similarities between classes [43]. The JMD
values range from 0 to 2, with values < 1 suggesting poor separability, and values closer
to 2, high separability [12]. We calculated the JMD for all classes in the model generated
for the WV-2 image from March 2016. We chose this image because it covered the largest
area in our study area, with a high presence of all target species. After initial classification,
some objects were reclassified based on a ruleset described in Appendix B.

Training and validation points were marked by the Global Positioning System or
interpreted visually from orthophotos obtained from unmanned aerial vehicles, which had
a spatial resolution of <6 cm. For each model, an equal number of sample points per class
was assigned, so that all classes were equally represented [38]. We used 200 sample points
per class, of which 140 sample points were used to train the model and 60 to validate the
classifications. When a model class could not be represented by 200 points, fewer sample
points were used, maintaining a 7/3 ratio between the training and validation points. If
there were less than 100 sample points to represent a class, we did not include this class in
the RF model of that image. This happened when a class was not present within the area
covered by an image. For example, there was no Miconia within the area covered by the
WV-2 image from March 2013, so this class was not included in the RF model of that image.
This scenario did not come up with any of our target species. Validation points from each
WV-2 satellite image were used to calculate a confusion matrix. The overall accuracy (OA),
Kappa, and class sensitivities derived from these confusion matrices were used to describe
the performance of their corresponding classification model. OA is the number of correctly
classified points divided by the total number of validation points in each model. Kappa
compares the difference between the accuracy of the model with the accuracy expected
by chance [44,45]. Class sensitivity is the ratio of correct positive predictions, divided by
the total number of positive predictions of each class. Finally, the weighted average of
each metric was calculated. As a weighting factor, we used the area covered by each WV-2
image, divided by the study area mapped using WV-2 images.
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2.3. Comparison of Very-High and Medium-Resolution Species Distribution Mapping
2.3.1. Medium-Resolution Species Distribution Resource

Pixels in MR imagery are a few tens of meters in size and each one encompasses
several individual trees or plants [15]. To represent MR maps in our study area, we used
the results published by Rivas-Torres et al. [21]. The authors mapped the ecosystems and
invasive species in Galapagos, using multispectral Landsat 8 imagery pansharpened at
15 m spatial resolution. The main image used for Santa Cruz was captured in March 2016,
and cloud-covered gaps were replaced with an image captured in February 2015. The
images were segmented though OBIA and objects were classified with a fuzzy membership
function. To demonstrate how spatial resolution affects the quality of the mapping results,
we overlapped and compared our maps using VHR with the maps generated by Rivas-
Torres et al. [21] for each target species.

2.3.2. Validation of Mapping Results

A comparison of the map accuracy for VHR and MR was performed using the OA and
Kappa of a traditional confusion matrix. A total of six confusion matrices were computed,
one for each target species and resolution type (MR and VHR). For each target species, we
performed a Z-test between VHR and MR confusion matrices, following Moity et al. [44].
A |Z| value ≥ 1.96 indicated a statistically significant difference between the classification
performed with both resolution types. Each confusion matrix was based on 100 validation
points. Half of these points were placed at random in areas of predicted presence and
the other half in areas of predicted absence of the target species. Validation points from
areas of predicted absence were no further than 200 m away from areas of predicted
presence. No point was located within the areas mapped using Google Earth imagery,
areas manually delineated as pasture or avocado patches, or areas within 2 m of any of
the training objects used for the VHR mapping (see Appendix C for the location of these
points). All points were validated by visual interpretation of the VHR WV-2 satellite images
shown in Figure 1d. Since MR maps only included units dominated by a species, we based
our comparison of validation of MR and VHR results on the following considerations:
(a) for MR results, a radius of 15 m around the validation point was visually interpreted
to determine whether the species dominated that area or not and (b) to validate areas of
predicted presence in VHR maps, validation points were located within areas where more
than 50% of the area was occupied by the species in a 15 m window. Thereby, we excluded
areas from the validation, which would otherwise be impossible to detect with a 15 m
resolution imagery. By the same logic, only areas where 0% of the area was occupied by the
species in a 15 m window were used to validate the absence of a species (see Appendix C
for the delimitation of these areas).

2.3.3. Species Cover Area

For each growth form, we calculated the species cover area obtained from our VHR
maps and from MR maps by Rivas-Torres et al. [21], as well as the area where both maps
overlapped. To estimate the percentage of the area gained or missed using MR imagery,
we divided the area mapped with MR imagery by the area mapped with VHR imagery,
and subtracted it from 1. To obtain a measure for the spatial similarity between the maps
produced with both resolutions, we divided the area where MR and VHR overlapped by
the total area mapped with VHR and/or MR. Thus, a 0% value would indicate that the
maps do not overlap and a 100% value would indicate that the maps are identical.

Additionally, for each growth form, we compared the overall area mapped with VHR
and MR imagery as polygons of different sizes, ranging from ≤0.25 ha (small), >0.25
to 10 ha (medium), >10 to 50 ha (large), and >50 to 100 ha (very large). This gave us
information about the contribution of smaller or larger polygons to the area estimated in
both VHR and MR imagery.
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3. Results
3.1. Very-High-Resolution Species Mapping

We produced five RF models generated from five WV-2 satellite images. The per-
centage contribution of each WV-2 image to the study area mapped with WV-2 is shown
in Table 1. This percentage was used as a weighting factor to calculate the weighted
averages of OA (also shown in Table 1), Kappa, and class sensitivity of the three target
species, derived from the confusion matrices generated with the validation points from the
RF model of each WV-2 image. Complete confusion matrices are shown in Appendix D
(Table A1). The resulting OAs ranged from 85% to 87% (86% weighted average), and their
corresponding Kappa ranged from 0.83 to 0.86 (0.85 weighted average). The class sensitivity
of our target species was highest for the tall tree growth form (Cuban cedar), ranging from
83% to 97% (90% weighted average), intermediate for the shrub growth form (blackberry),
ranging from 77% to 90% (86% weighted average), and lowest for the medium tree growth
form (guava), ranging from 67% to 86% (79% weighted average). Raster files of the maps
produced with VHR imagery can be found in the Supplementary Materials section.

Table 1. Overall accuracies and Kappa obtained from confusion matrices calculated with the valida-
tion points from the Random Forest (RF) model developed for each WV-2 satellite image, as well as
the sensitivity of the three target species. Weighted averages were calculated using the percentage
that each image occupies in the area mapped, using WV-2 images as the weighting factor. Complete
confusion matrices are included in Appendix D.

March
2016

February
2016

March
2015

March
2013

October
2011

Weighted
Average

Overall accuracy 87% 88% 85% 85% 86% 86%
Kappa 0.86 0.87 0.83 0.83 0.84 0.85

Tall tree (Cuban cedar) sensitivity 92% 82% 96% 85% 97% 90%
Medium tree (guava) sensitivity 84% 81% 86% 67% 77% 79%

Shrub (blackberry) sensitivity 85% 77% 78% 83% 90% 86%
Percentage of the image in the

study area mapped using WV-2
satellite images (Weighting factor)

41.2% 0.9% 14.2% 19.9% 23.8%

The similarity between the model classes can be observed from the Jeffries–Matusita
distance (JMD) values shown in Table 2. This table was generated based on the training
points from the WV-2 March 2016 satellite image, which was used to evaluate the similarity
between the model’s classes, because it covered the largest percentage of the study area.
The results indicated that no class combination had poor separability, as all JMD values
were between 1 and 2. The highest separability measure was 1.41, with 81% of all possible
class combinations reaching this value. The remaining 19% ranged from 1.28 to 1.40. Only
half of those class combinations involved at least one of our target species, which were:
guava and mixed vegetation, guava and Scalesia, guava and green moss, blackberry, and
Cuban cedar 2, blackberry and Scalesia, blackberry and green moss, and blackberry and
bracken. This last pair had the lowest separability among these class combinations.

The mean NDVI values calculated from training points in the WV-2 March 2016
satellite image ranged from 0.68 to 0.85. The values were 0.86 for Cuban cedar 2, 0.85 for
Cuban cedar, 0.79 for blackberry, 0.77 for bracken, 0.77 for glorybower, 0.77 for guayabillo,
0.76 for Scalesia, 0.75 for guava, 0.75 for Miconia, 0.73 for manchineel tree, 0.72 for Croton,
0.70 for shadow, and 0.68 for mixed vegetation.

3.2. Comparison of Very-High and Medium-Resolution Species Distribution Mapping
3.2.1. Comparison of Species Distribution Maps

The maps in Figure 2a–c show the distribution of the target species mapped with either
VHR or MR or both. The maps for tall tree (Cuban cedar) (Figure 2a) exhibit a large and
easily discernible area where both VHR and MR maps overlap. In the maps for medium
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tree (guava) (Figure 2b) and shrub (blackberry) (Figure 2c), the overlap between VHR and
MR is only discernible in zoom insets.

Table 2. Jeffries–Matusita distance (JMD) table calculated from the spectral values of the training
samples taken from WV-2 image captured in March 2016. JMDs involving guayabillo were derived
from a JMD table calculated from the March 2013 WV-2 image, because the guayabillo samples were
not sufficiently represented in the March 2016 image.
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Cuban cedar
Cuban cedar 2 1.35
Blackberry 1.41 1.40
Guava 1.41 1.41 1.41
Mixed vegetation 1.41 1.41 1.41 1.38
Bracken 1.41 1.41 1.33 1.41 1.40
Glorybower 1.41 1.41 1.41 1.41 1.41 1.41
Guayabillo 1.41 1.41 1.41 1.40 1.28 1.40 1.40
Scalesia 1.41 1.41 1.39 1.40 1.41 1.41 1.41 1.38
Green moss 1.41 1.41 1.40 1.40 1.41 1.41 1.40 1.40 1.37
Miconia 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41
Manchineel tree 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.39 1.41
Dry bracken 1.41 1.41 1.41 1.41 1.35 1.41 1.41 1.41 1.41 1.41 1.41 1.41
Croton 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.40 1.41 1.40 1.41 1.41 1.41
Shadow 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41

Cuban cedar 2: Cuban cedar with young leaves. Dark gray: classes with lower separability, including at least one
of the target species. Light gray: classes with lower separability, including none of the target species.

3.2.2. Comparison of Validation Confusion Matrices

The confusion matrices calculated for each target species and imagery resolution
produced consistently better results for maps generated with VHR imagery than with MR
imagery, with higher OA and Kappa estimates (Tables 3–5). For each target species, a
comparison between the VHR and MR confusion matrices showed statistically significant
differences at p < 0.05, with |Z| values ≥ 1.96 (Tables 3–5). This is an indication that the
VHR maps were significantly more accurate than the MR maps. In the VHR and MR maps,
the highest OA corresponded to tall tree (Cuban cedar) (92% VHR, 81% MR), the lowest
OA corresponded to medium tree (guava) (76% VHR, 47% MR), and an intermediate OA
corresponded to shrub (blackberry) (82% VHR, 63% MR). The percentage difference in
the OA of the models produced with VHR and MR was 29% for medium tree (guava),
19% for shrub (blackberry), and 11% for tall tree (Cuban cedar). All Kappa estimates
were > 0.5 in VHR, yet for MR only tall tree (Cuban cedar) presented a Kappa > 0.5. For
shrub (blackberry), the Kappa was only 0.25 and for medium tree (guava), it reached a
negative value.

3.2.3. Species Cover Area

To obtain the cover area of each target species (Table 6), we used the maps shown
in Figure 2. The areas modeled with VHR were consistently larger than those modeled
with MR. For both resolutions, the largest area was covered by tall tree (Cuban cedar), an
intermediate area by medium tree (guava), and the smallest area by shrub (blackberry).
The more/less the areas of VHR and MR overlap, the higher/lower were the percentages
of “spatial coincidence”. Tall tree (Cuban cedar) had the highest percentage of spatial
coincidence area between VHR and MR (52%), divided by the area mapped with either VHR
or MR or both. For medium tree (guava) and shrub (blackberry), the spatial coincidence
area was smaller than 5%.

Additionally, Figure 3 shows the comparisons of the overall area mapped for each
growth form for both resolutions, using different size polygons. With the medium (>0.25 to
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10 ha) and large (>10 to 50 ha) polygons, the overall areas mapped for both resolutions were
relatively similar. However, with the small (≤0.25 ha) and very large (>50 ha) polygons,
the differences in the areas mapped with both resolutions increased. MR mapping did not
consider small polygons (≤0.25 ha), while using VHR mapping, these polygons contributed
220 to 555 ha to the overall area. These polygons represented more than 60% of the overall
area mapped for the medium tree (guava) and shrub (blackberry) growth forms. In contrast,
with very large polygons (>50 ha), 196 ha of medium tree (guava) growth forms were
mapped using MR imagery and none using VHR imagery. Similarly, 1247 ha of tall tree
(Cuban cedar) growth forms were mapped using MR, compared to 146 ha using VHR
imagery, which represents an increase of 213 ha (14%).
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(Cuban cedar), (b) the medium tree growth form (guava), and (c) the shrub growth form (blackberry).

Table 3. Very-high-resolution (VHR) and medium-resolution (MR) confusion matrix obtained for the
tall tree growth form (Cuban cedar).

Very High Resolution Medium Resolution

Pr
ed

ic
ti

on

Reference

Pr
ed

ic
ti

on

Reference

Presence Absence Presence Absence

Presence 47 5 Presence 45 14

Absence 3 45 Absence 5 36

Overall accuracy (OA): 92% Overall accuracy (OA): 81%

Kappa: 0.84 Kappa: 0.62

|Z| value: 2.28 (≥ 1.96: Statistically significant difference at p < 0.05)
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Table 4. Very-high-resolution (VHR) and medium-resolution (MR) confusion matrix obtained for the
medium tree growth form (guava).

Very High Resolution Medium Resolution

Pr
ed

ic
ti

on

Reference

Pr
ed

ic
ti

on

Reference

Presence Absence Presence Absence

Presence 32 6 Presence 8 11

Absence 18 44 Absence 42 39

Overall accuracy (OA): 76% Overall accuracy (OA): 47%

Kappa: 0.52 Kappa: −0.06

|Z| value: 4.21 (≥ 1.96: Statistically significant difference at p < 0.05)

Table 5. Very-high-resolution (VHR) and medium-resolution (MR) confusion matrix obtained for the
shrub growth form (blackberry).

Very High Resolution Medium Resolution

Pr
ed

ic
ti

on

Reference

Pr
ed

ic
ti

on

Reference

Presence Absence Presence Absence

Presence 37 5 Presence 25 12

Absence 13 45 Absence 25 38

Overall accuracy (OA): 82% Overall accuracy (OA): 63%

Kappa: 0.64 Kappa: 0.26

|Z| value: 3.01 (≥ 1.96: Statistically significant difference at p < 0.05)

Table 6. Area (ha) modeled for tall tree (Cuban cedar), medium tree (guava), and shrub (blackberry)
growth forms, using very-high-resolution (VHR) and medium-resolution (MR) satellite imagery.

Tall Tree
(Cuban Cedar)

Medium
Tree (Guava)

Shrub
(Blackberry)

Area modeled with VHR
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4. Discussion

Our study compared the outcome of mapping performed with very-high-resolution
(VHR) and medium-resolution (MR) satellite imagery. We mapped three invasive plant
species with different growth forms on Santa Cruz Island, Galapagos: tall tree, medium
tree, and shrub. As expected, we found that for each growth form, VHR imagery produced
models with significantly higher overall accuracy (OA) and Kappa estimates than those
resulting from the models produced with MR imagery. Several studies have compared
the effects of spatial resolution on the mapping of land cover classes or individual species.
Müllernová et al. [46] demonstrated that higher-resolution imagery detected Heracleum
mantegazzianum (giant hogweed) plants more reliably. Another study from the Interior
Atlantic Forest in Paraguay found that satellite imagery of higher resolution delineated
land cover classes better and identified smaller patches with greater accuracy [17]. A study
from south-eastern Brazil showed that higher spatial resolution was better at detecting
land cover classes and estimating the total load of suspended solids in water bodies [47].
What is novel about our study is that we carried out a comparison of the mapping results
using VHR and MR imagery across an array of different growth forms. We showed that the
map resulting from MR imagery of the tall tree growth form (Cuban cedar) was moderately
similar to the one resulting from VHR imagery. However, we also found that for the
medium tree (guava) and shrub (blackberry) growth forms, the maps based on MR imagery
widely diverged from those produced with VHR imagery.

A model performance comparison for each growth form and resolution revealed the
best OA results for the tall tree growth form (Cuban cedar) (92% VHR, 81% MR), followed
by the shrub (blackberry) (82% VHR, 63% MR) and the medium tree (guava) (76% VHR,
47% MR) growth forms. The weighted average of class sensitivities produced with VHR
imagery was also highest for the tall tree growth form (Cuban cedar) (90%), followed by
the shrub (blackberry) (86%) and the medium tree (guava) (79%) growth forms. Kappa
estimates ≥ 0.5 were obtained for all VHR models and for the MR model for the tall tree
growth form (Cuban cedar) only. The Kappa estimates showed that these models had a
likelihood of accuracy ≥ 50% better than expected by chance alone [45], thus indicating
the models’ suitability. The highest Kappa estimate was obtained for the VHR maps of the
tall tree growth form (Cuban cedar) (0.84), followed by the VHR maps of the shrub growth
form (blackberry) (0.64), the MR maps of the tall tree growth form (Cuban cedar) (0.62), and
the VHR maps of the medium tree growth form (guava) (0.52). While the MR model for the
tall tree growth form (Cuban cedar) did not perform as well as the VHR model, its Kappa
estimate showed that it still performed ≥ 50% better than by chance alone. Moreover, the
OA for this MR model was only 11% lower than that for the VHR model (Table 3). In
contrast, the OA for the shrub (blackberry) model based on MR imagery was 19% lower
than the one based on VHR imagery (Table 5). The OA for the medium tree (guava) model
based on MR imagery was as much as 29% lower than the one based on VHR imagery
(Table 4). Furthermore, the Kappa estimates revealed the unsuitability of MR imagery for
mapping the medium tree (guava) and the shrub (blackberry) growth forms. The VHR and
MR maps of these last two growth forms occupied different spatial distributions, with an
overlap of as little as 2.1% of the total area mapped with VHR and/or MR.

The diverging spatial distributions for the medium tree (guava) and shrub (blackberry)
growth forms in maps produced with VHR and MR imagery (Figure 2b,c), and the low
Kappa estimates (<0.5) for these MR models (Tables 4 and 5), showed that the MR area
estimates were unreliable. Reliable estimates of the area covered by invasive species are
crucial to help assess the extent of an invasion and to plan the resources needed to control
these species [48,49]. However, while higher resolutions usually provide the most accurate
estimates, there are cases where lower resolutions can deliver comparable results. For
example, when comparing forest cover in eastern Paraguay, only marginal differences
were encountered between the MR and VHR total area estimates [17]. We found a similar
result when mapping the tall tree growth form (Cuban cedar) produced by MR, which
underestimated the area by only 6.9% (Table 6). The comparability of MR and VHR maps
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for the tall tree growth form is further evidenced by the similar spatial distribution of both
maps and the ≥0.5 Kappa estimates in the models produced with both resolutions (Table 3).

The similarity between the maps of the tall tree growth form (Cuban cedar) produced
by VHR and MR (Figure 2a) was probably due to the fact that most of the space occupied
by Cuban cedar consisted of large monospecific stands, which were primarily detected
with very large polygons. Only a minor portion was detected with the small polygons
exclusively present in VHR maps (Figure 3a). The high accuracy in detecting the tall tree
growth form (Cuban cedar) with MR imagery can be explained by the distinctiveness of this
plant species from others. Cuban cedar was the tallest tree in our study area, had the largest
crown, and was hardly ever shaded by other vegetation. During the wet season, the crowns
were lush green, resulting in a high photosynthetic activity and a mean NDVI of 0.85, the
highest among the classes analyzed. The high JMD also evidenced the distinctiveness of
Cuban cedar compared to all other classes.

The spatial distributions of the medium tree (guava) and the shrub (blackberry) growth
forms were more scattered (Figure 2b,c). Most of their overall area was detected by small
polygons (≤0.25 ha) with VHR imagery, but not with MR imagery (Figure 3b,c). Similar
results were encountered for the mangrove mapping in Galapagos, where MR mapping
was unable to detect 60% of the mangrove distribution because 85% of the mangrove
patches were smaller than 0.5 ha [44]. These results highlight the need to use VHR imagery
to map small vegetation patches. This is particularly crucial at the early stages of plant
invasions, when effective control or even eradication might still be possible [50,51].

The medium tree growth form (guava) was the most difficult to discern from other
vegetation and its OA was the lowest of the growth forms for both resolutions (76% VHR,
47% MR). We believe that this was due to the difficulty in differentiating guava from
other classes in the study area. Indices such as the Normalized Difference Vegetation
Index (NDVI) have been used for coarse differentiation between native and non-native
vegetation [21,52]. However, the mean NDVI obtained for guava in our study was rel-
atively low and similar to other vegetation types, so a clear separation was impossible.
Jeffries–Matusita distance (JMD) values for guava, mixed vegetation, Scalesia, guayabillo,
and green moss were very low and confirmed the spectral similarity between these classes.

Modeling the distribution of the shrub growth form (blackberry) proved to be chal-
lenging because much of the blackberry was hidden in the understory and only visible
at the top layer of vegetation as small patches. Additionally, blackberry has a spectral
similarity to the native bracken (Pteridium arachnoideum), which makes separating both
species difficult. Additional drone footage could be used to help distinguish the two classes
and to further improve the model.

Other studies also show that VHR outperforms MR in land cover classification, achiev-
ing higher OA and detection of small units [17,44,53]. Satellite imagery with lower spatial
resolution is dominated by pixels that present a mixed signature average across multiple
objects and, therefore, it is typically used to study ecological systems and map broad vege-
tation communities from regional to landscape scales [15,16]. At a higher spatial resolution,
individual objects, such as tree crowns or small patches of plants, are recognizable [15,54]
and, therefore, it is the preferred resolution for classifying individual species such as in-
vasive species, or for biodiversity assessments in general [9,14,15]. However, using MR
to classify invasive species can be a cost-effective way to provide an overview of areas
dominated by these species [21].

Multispectral VHR imagery is not free to use and the costs can be unaffordable when
management resources are scarce [55,56]. Multispectral MR imagery with global coverage
is currently available at no cost, thanks to programs such as the joint NASA/USGS Landsat
and the European Space Agency Sentinel. Therefore, MR imagery is an asset for low-
to middle-income, but highly biodiverse countries such as Ecuador. Multispectral VHR
imagery can also be prohibitive in terms of the increased computer power needed to
analyze this type of imagery compared to MR, increasing the cost of the analysis [46,57].
Cost is an important factor when choosing the source resolution for mapping. Hopefully,
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with increasing technological advances, VHR programs will eventually provide free access
to their imagery databases for academia and conservation.

One potential limitation of our study is that differences in the mapping results en-
countered could also have been caused by other factors besides spatial resolution, such
as different acquisition dates of the imagery or the classification methods used. However,
the acquisition dates for the MR and VHR imagery were very similar for most of the
study area. The classification methods used with VHR imagery were similar to those used
with MR imagery in that both used an object-based image analysis approach. However,
they were different in the statistical classification method applied and in the segmentation
methodology. For example, the segmentation methodology applied on VHR imagery pro-
duced segments that represented single trees, which would not be a discernable segment
unit in MR. While we compared the results obtained with slightly different classification
methods, we argue that classification methods are not always directly transferable across
spatial resolutions. Therefore, we believe that a comparison of the results obtained with
the methodology best suited for each resolution is still very relevant for understanding the
strengths and limitations of different spatial resolutions in the mapping of different plant
growth forms.

Future studies on the effects of using different spatial resolutions will improve our
understanding of the outcomes of vegetation mapping, as will the exploration of different
classification methods. Given the promising results obtained in this study, we recommend
testing the ability of VHR imagery to detect other important plant species with similar
growth forms in Galapagos and expanding the mapping to the rest of the islands in the
archipelago, as well as to similar ecosystems around the world.

5. Conclusions

Our study suggests that MR can be a suitable resource to map the distribution of
plant species with growth forms that contrast well with their environment and form large
monospecific stands, such as the tall Cuban cedar tree. However, for other plant species
with smaller growth forms that contrast less with their environment, MR imagery did not
provide reliable results. Despite the fact that MR imagery is more accessible, we recommend
the use of VHR imagery in the case of problematic invasive species that are difficult to
distinguish from other species, such as guava and blackberry.

The VHR maps resulting from this study did not only show the distribution of the
invasive species, but also their abundance. This feature is essential to prioritize management
actions to control these invaders, especially when funds to do so are scarce. If management
decisions were based on inaccurate maps, control costs could exceed VHR mapping costs
in the long run, thus minimizing overall management success [17,58]. As plant invasions
are rapidly changing due to dynamic processes such as often relatively rapid changes
in species distribution and abundance [59], the results from this study also provided a
baseline for tracking the spread of invasive species over time. In addition, they help identify
cases where species of a certain growth form can be mapped using more accessible lower-
resolution imagery. Finally, the results of this study can be applied to other parts of the
world, where invasive plant species are plentiful and management decisions have to be
chosen wisely [60].
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Appendix A

Delimitation of Study Area

The delimitation of the “humid zone” is artificial, since this zone has a core area that
expands outwards from very humid to less humid conditions in a natural gradient. Due to
the prevailing south-easterly winds, the humid zone covers more surface on the windward
south side of the island, since it is exposed to more humid air. Here, the vegetation
develops at a lower elevation (180 m), compared to the leeward side that receives less
humidity (560 m) [61]. To delimit our study area in an objective way, we used image
segmentation and NDVI, taking advantage of the characteristic NDVI profile of the humid
zone vegetation [21]. We first segmented our imagery into objects between 5 and 15 ha.
Object segments with an NDVI greater than 0.6 and overlapping with the area identified
as the humid zone by Trueman et al. [20] or Rivas-Torres et al. [21] were classified as part
of our study area. Isolated “humid zone” objects, outside the area identified by these
authors, were removed. Objects that were encapsulated within the humid zone, but had
an NDVI lower than 0.6, were added to the study area. We defined our study area as
one continuous polygon to simplify data handling. The NDVI 0.6 threshold was chosen
because previous studies showed that NDVI mean values higher than 0.6 denote sites
of dense vegetation cover characteristic of the humid area [21], which in turn reflects
higher photosynthetic activity, enabling better differentiation of species by their spectral
characteristics. A shapefile of our study area can be found in the Supplementary Materials
section.

Appendix B

Reclassification

In the last step of our classification model, some objects were reclassified based on their
spatial proximity to other objects belonging to classes with similar spectral characteristics.
The spectral similarity between classes was qualified by their JMD distance. For example,
if the JMD between classes A and B was low, and the JMD between classes B and C was
also low, then B was reclassified as A’ or C’ if it shared a border greater than 50% with A or
C (Figure A1).
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Appendix C

Location of Validation Points in Areas Dominated by a Species or Where a Species Was Absent

Figure A2 shows the location of the validation points from each target species and source
resolution (VHR or MR). A georeferenced list of these points can be found in the Supplementary
Materials section. The downscaled VHR maps indicate the presence of a species in terms of
its abundance (0%: Absent, 0–50%: Present, and >50%: Dominant). To generate these maps,
we downscaled our original VHR results to a 15 m resolution so that the VHR results were
comparable to MR. The resulting raster file revealed the relative abundance of each target species
in values from 0% to 100% for each pixel. This transformation was computed dividing the
number of 0.5 m× 0.5 m pixels where a species occurred by the total number of 0.5 m× 0.5 m
pixels in a 15 m × 15 m window. Maps generated with MR imagery only show areas of
dominant presence. The validation points from sites of absence fall in areas of absolute absence
in no more than a 200 m radius of areas of dominant presence (area shown in light gray).
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Figure A2. Validation points from maps generated with very-high-resolution (VHR) imagery (red for
areas dominated by a species in more than 50% and light red for areas with a presence between 0%
and 50%) and medium-resolution (MR) imagery (blue for areas dominated by a species) for: (a) tall
tree growth form (Cuban cedar); (b) medium tree growth form (guava); and (c) shrub growth form
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Appendix D

Confusion Matrices for VHR Imagery

Table A1. Complete confusion matrices calculated with the validation points from the Random Forest
(RF) models of each WorldView-2 (WV-2) image.

March 2016

Reference

C
ub

an
ce

da
r

C
ub

an
ce

da
r

2

Bl
ac

kb
er

ry

G
ua

va

M
ix

ed
ve

ge
ta

ti
on

Br
ac

ke
n

D
ry

br
ac

ke
n

C
ro

to
n

Sc
al

es
ia

G
re

en
m

os
s

M
ic

on
ia

G
lo

ry
bo

w
er

M
an

ch
in

ee
lt

re
e

Sh
ad

ow

Pr
ed

ic
ti

on

Cuban cedar 55 4 0 0 0 0 0 0 0 0 0 0 0 0

Cuban cedar 2 3 54 0 0 0 0 0 0 0 0 0 0 0 0

Blackberry 0 2 50 0 0 1 0 0 3 0 0 0 0 0

Guava 1 0 0 48 5 0 0 0 1 0 0 0 2 0

Mixed vegetation 0 0 0 5 39 0 3 0 0 0 1 0 2 0

Bracken 0 0 4 0 0 55 0 1 0 0 0 0 0 0

Dry bracken 0 0 0 0 16 0 57 0 0 0 0 0 0 0

Croton 0 0 1 0 0 0 0 55 4 1 0 0 0 0

Scalesia 0 0 2 2 0 1 0 2 50 6 0 0 0 0

Green moss 0 0 1 2 0 3 0 1 1 47 0 5 16 0

Miconia 0 0 0 0 0 0 0 0 0 0 59 0 0 0

Glorybower 0 0 0 0 0 0 0 1 0 0 0 55 0 0

Manchineel tree 0 0 1 0 0 0 0 0 0 6 0 0 40 0

Shadow 1 0 0 0 0 0 0 0 1 0 0 0 0 60

Sensitivity (%) 92 90 85 84 65 92 95 92 83 78 98 92 67 100

Overall Accuracy (OA): 87%

Kappa: 0.86
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Cuban cedar 49 5 0 1 0 0 0 0 1 0 0 0 0

Cuban cedar 2 7 52 4 0 0 0 0 0 0 0 0 0 0

Blackberry 0 3 46 0 0 9 0 1 2 0 0 0 0

Guava 1 0 0 48 8 2 0 0 6 1 0 0 2

Mixed vegetation 2 0 3 7 52 3 0 0 1 0 1 0 2

Bracken 0 0 7 0 0 42 1 1 2 1 0 0 0

Dry bracken 0 0 0 1 0 0 58 0 0 0 0 0 0

Croton 0 0 0 0 0 0 0 52 0 0 0 0 0

Scalesia 0 0 0 0 0 2 0 1 47 1 0 0 0

Green moss 1 0 0 2 0 0 0 0 0 57 0 5 16

Miconia 0 0 0 0 0 0 1 0 0 0 59 0 0

Glorybower 0 0 0 0 0 2 0 1 1 0 0 95 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 0 40

Sensitivity (%) 82 87 77 81 87 70 97 93 78 95 98 92 67

Overall Accuracy (OA): 88%

Kappa: 0.87
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Table A1. Cont.
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Cuban cedar 50 4 0 0 1 0 0 0 0 0 0 0 0

Cuban cedar 2 3 44 4 0 1 0 0 0 3 0 0 1 0

Blackberry 1 7 47 0 0 9 0 0 5 0 0 0 0

Guava 2 0 0 51 11 0 0 0 0 0 0 0 0

Mixed vegetation 1 2 0 6 41 0 1 0 0 0 0 2 1

Bracken 0 1 5 0 1 47 0 0 1 0 0 0 0

Dry bracken 0 0 2 0 1 1 56 2 0 0 2 0 0

Croton 0 0 0 0 0 0 0 51 0 0 0 3 1

Scalesia 0 0 1 0 0 1 0 0 44 2 0 0 0

Green moss 2 1 1 2 1 2 1 0 6 58 0 0 0

Miconia 0 0 0 0 0 0 1 0 0 0 49 1 0

Glorybower 0 1 0 0 2 0 1 5 0 0 0 53 0

Shadow 1 0 0 0 1 0 0 0 0 0 0 0 55

Sensitivity (%) 83 73 78 86 68 78 93 88 75 97 96 88 96

Overall Accuracy (OA): 85%

Kappa: 0.83
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Cuban cedar 51 5 1 0 0 0 0 0 0 0 0 0

Cuban cedar 2 7 55 0 0 0 0 0 1 0 0 2 0

Undefined 2 0 55 0 0 2 0 1 2 0 0 1

Blackberry 0 0 0 10 0 0 0 2 0 0 2 0

Guava 0 0 0 0 12 0 0 1 0 3 1 0

Mixed vegetation 0 0 4 0 1 48 0 0 3 1 0 0

Croton 0 0 0 0 1 0 53 6 1 0 2 0

Scalesia 0 0 0 0 0 1 0 19 1 0 0 0

Green moss 0 0 0 0 1 1 0 5 47 0 0 0

Guayabillo 0 0 0 0 3 8 0 2 0 56 3 0

Glorybower 0 0 0 0 0 0 0 5 1 0 50 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 54

Sensitivity (%) 85 92 92 83 67 80 88 45 84 93 83 98

Overall Accuracy (OA): 85%

Kappa: 0.83
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Table A1. Cont.
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Cuban cedar 58 0 0 0 1 0 0 0 0 0 0 0

Blackberry 0 54 0 0 2 0 0 8 2 0 0 0

Guava 0 0 44 14 0 0 0 0 0 1 2 0

Mixed vegetation 1 0 10 43 1 0 0 0 0 0 4 1

Bracken 0 0 0 0 17 0 0 0 0 0 0 0

Dry bracken 0 0 0 0 0 41 0 0 0 0 0 0

Croton 0 0 0 0 0 0 58 1 0 0 0 0

Scalesia 0 1 0 0 0 0 0 46 10 0 0 0

Green moss 0 1 1 3 2 0 1 4 47 0 0 0

Miconia 0 0 0 0 0 0 0 0 0 57 0 0

Glorybower 0 4 1 0 0 1 1 3 1 0 3 0

Shadow 1 0 1 0 0 0 0 0 0 0 4 59

Sensitivity (%) 97 90 77 72 74 98 97 74 78 98 23 98

Overall Accuracy (86%)

Kappa 0.84
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