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Abstract: Topographic wetness index (TWI) is used as a proxy for soil moisture, but how well it
performs across varying timescales and methods of calculation is not well understood. To assess
the effectiveness of TWI, we examined spatial correlations between in situ soil volumetric water
content (VWC) and TWI values over 5 years in soils at 42 locations in an agroforestry catena in
Fayetteville, Arkansas, USA. We calculated TWI 546 ways using different flow algorithms and digital
elevation model (DEM) preparations. We found that most TWI algorithms performed poorly on
DEMs that were not first filtered or resampled, but DEM filtration and resampling (collectively
called generalization) greatly improved the TWI performance. Seasonal variation of soil moisture
influenced TWI performance which was best when conditions were not saturated and not dry.
Pearson correlation coefficients between TWI and grand mean VWC for the 5-year measurement
period ranged from 0.18 to 0.64 on generalized DEMs and 0.15 to 0.59 for on DEMs that were not
generalized. These results aid management of crop fields with variable moisture characteristics.

Keywords: topographic wetness index; compound topographic index; soil moisture; soil moisture
regimes; SAGA wetness index; volumetric water content; flow algorithms; DEM filtration; DEM
resampling; seasonal soil moisture

1. Introduction

Soil moisture is among the most dynamic components of soils, changing and fluctuat-
ing seasonally and often daily in response to precipitation, evapotranspiration, infiltration,
and runoff [1,2]. Moisture content can vary both temporally and spatially in any soil land-
scape depending on environmental conditions, plant interactions, soil properties, cycles
of wetting and drying, and many other factors [1,3]. While soil moisture and temperature
fluctuate, these fluctuations may have predictable patterns that, when observed over time,
lend themselves to rational classification [4,5]. The concept of soil climate has been devel-
oped and geographically mapped to elucidate predictable patterns of moisture relating to
seasonal dynamics [4,6,7].

Soil moisture varies spatially within catenas or soil associations found within soil
climate regimes [8]. When considered at a field scale, moisture can show signs of predictable
organization due to the influence of gravity through topographical variation [8]. The
description of soil variability across geomorphic space includes documentation of soil
features associated with soil moisture variability across landform positions in the practice
of field pedology [9].

A quantitative tool for considering the spatial variability of soil moisture as influ-
enced by topography is the topographic wetness index (TWI) [10]. TWI is also referred
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to as the compound topographic index (CTI) and the topographic index (TI) by various
authors [11,12]. TWI is based on the concept of a steady-state distribution of surface mois-
ture across variable topography and is most relevant when conditions of infiltration rate
exceed storage capacity. The TWI is mathematically expressed with the following formula:

TWI = ln
[

A
tan β

]
(1)

where A is the specific catchment area of a portion of land, and β is the slope angle. The
catchment area represents the size of the area upstream per unit contour length that is
expected to contribute water to the pixel for which the TWI is being calculated. Slope
represents the tendency of land to shed water to lower adjoining areas, and the natural
logarithm scales the index to a more linear range [12,13]. In saturated conditions, moisture
on a soil surface will move downslope in physically predictable flow patterns governed by
gravity and flow dynamics [10,12,14]. When the elevation of a landscape is quantified in a
gridded digital elevation model (DEM) TWI can be calculated for each pixel or grid cell
representing a unit of the landscape and can be thought of as a parameter describing the
tendency of a cell to accumulate water [13].

TWI has been used in soil studies as an environmental correlative to the spatial vari-
ability of properties such as soil organic matter, soil nutrients, soil texture, and other soil
features [15–22]. Due to its depiction of flow as governed by gravitation and topography
through landscapes, it has recently been used for applications as various as fog occurrence
and prediction, radon modelling, corrosion potential for underground infrastructure, preci-
sion irrigation scheduling, archaeology of agrarian land use, productivity in silvopasture
systems, indication of animal grazing preference, soil microbiome diversity, flood predic-
tion, and wildfire occurrence [23–33]. While soil moisture measurements for extensive
geographic areas are costly or laborious, TWI gives an inexpensive quick view of potential
moisture patterns where other data may not be available.

Despite its widespread use and its correlation with environmental variables, TWI
has only rarely been tested to see how well it relates to measured soil moisture [34–41].
While some studies show correlation and usefulness of TWI [35,37,40], others detail the
shortcomings of relying on TWI as a proxy for soil moisture when conditions or site
characteristics are unfavorable, or when specific predictions of moisture content are the
goal [38]. Other researchers have found that the strength of correlation between TWI and
measured groundwater levels fluctuates with changing moisture conditions [34,39,41].

TWI can be calculated with various algorithms for both the catchment area (the
numerator) and slope (the denominator). Authors examining the sensitivity of the TWI to
an exhaustive list of flow algorithms and slope calculation methods found that the choice of
flow algorithm was the most influential choice regarding the correlation between TWI and
observed soil moisture [36]. Other authors evaluated the performance of flow algorithms
on an Apennine hillslope under controlled conditions and found that none of the flow
algorithms used were able to reproduce observed overland flow with sufficient specificity
and consistent sensitivity to match the observed flow path from a point source [42]. They
found that the correlation between calculated catchment area increased as the resolution
(w) of the DEM increased, thereby causing grid cell size to approach the average flow
width observed. In a study of TWI and soil moisture, researchers in Finland observed
episodic VWC at 5200 study plots using handheld time domain reflectometry sensors
in a single season on a mountain tundra landscape [38] and found that TWI was only a
modest proxy for soil moisture at the site and was highly influenced by the flow algorithm
and DEM resolution chosen. Other authors showed that the correlation between TWI
and VWC for a catchment in Australia was influenced by seasonal changes, rainfall, and
antecedent moisture conditions in a period of just over 1 year [43]. They showed that the
ln(a) index (the natural logarithm of the numerator of TWI), was the best univariate spatial
predictor of soil moisture for wet conditions at the site. To our knowledge, no studies of the
correlation between TWI calculations and VWC examine moisture observations for periods
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of more than one or two years. Most studies examine moisture content only in one or two
seasons, or in a few episodes involving measurements of some spatial intensity but little
temporal duration.

DEM map generalization influences TWI values through its influence on slope and
upstream contributing area, causing increases in TWI with increasing levels of gener-
alization [44]. Generalization involves removal of noise and non-noise high-frequency
components of a DEM so that excess information is reduced, thereby revealing important
features [11]. DEM maps are commonly generalized in two ways: resampling and filter-
ing [45,46]. Generalization through resampling involves choosing a grid cell size to which
available DEM data can be aggregated, usually through an averaging function. This aggre-
gating approach can be undertaken to provide a compromise between the coarsest legible
and the finest legible grid, and to find an appropriate level of detail that gives adequate
information density and minimizes computation time for the purpose chosen [45]. Similar
to resampling, filtering decreases local surface roughness, eliminates excess noise and
detail, and allows underlying processes to be portrayed without excess information [11,46].
Filtering, however, retains the initial data density without sacrificing resolution. After
resampling or filtering, the degree of DEM map generalization affects the values of TWI
obtained. For example, DEMs with larger pixels (lower resolution DEMs) have higher
values of TWI than DEMs for the same landscape with smaller pixels (higher resolution
DEMs) [40]. Lower resolution DEMs tend to have lower slope values as topographic detail
is lost as steeper slopes are averaged. Also, catchment area increases with increasing pixel
size [16,44]. Smooth filtered DEMs retain some topographic detail while reducing local
roughness [44,47]. The effect of filtering on flow algorithms can be important, in some cases
reversing flow direction of individual pixels, capturing a generalizable trend rather than
excessively noisy detail [48].

In this study we attempt to determine the sensitivities of flow algorithm settings,
DEM resolution, and DEM filtering for the calculation of the topographic wetness index
at a site used for grazing and agroforestry in Arkansas, North America. We assess TWI
calculation methods by examining their correlation to volumetric moisture content m3 m−3

(VWC) from a network of moisture sensors over time. By examining some of the possible
sensitivities of the TWI algorithm, we intended to find the algorithm calculation settings
that result in moisture values more closely correlated to the record of wetting and drying
that we see in the network of soil moisture sensors positioned in various locations at the site.

The research asks the question: Can the TWI, a stationary representation of surface
runoff, be used to assess soil moisture conditions that are dynamic with respect to time and
depth. We hypothesize that the TWI can be used as a proxy for soil moisture dynamics at
a soil landscape scale. Furthermore, we hypothesize that factors such as TWI algorithm,
grid resolution, temporal resolution, and placement of soil moisture sensors affect the
relationship between TWI and soil moisture.

2. Materials and Methods

The study site for this investigation was in Fayetteville Arkansas, USA at approx-
imately 36.09 degrees latitude and −94.19 degrees longitude (Figure 1). The climate is
considered humid subtropical in the Köppen-Geiger climate classification system [49]. The
annual total precipitation is around 1200 mm per year and mean annual temperature ranges
from 13–15 ◦C, with a pronounced cold winter and warm humid summer. The bedrock
geology is described as Mississippian and Pennsylvanian with depositions ranging from
shallow marine to terrestrial and is interpreted to “reflect the interplay of tectonics and
eustasy during the Mississippian-Pennsylvanian Periods” [50]. The study site is 9.9 ha with
soils that developed in the Springfield Plateau of the Ozark Highlands [51].
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Figure 1. Site of modelling and volumetric water content measurements. The white circles indi-
cate the locations of the soil moisture sensors. The green lines indicate elevation contours at the
specified elevations in meters. Elevation is color-coded with blues indicating lower values and reds
higher values.

Elevation for the site ranges from 379 to 387 m. Seventy-three percent of the land area
is classed as either “slope” or “footslope” with the Geomorphons landscape classification
algorithm and a further 25% classed as “hollow” or “valley” [52] with a mean slope of
3.3 percent rise, a 1st quartile slope of 2.2 percent, and a 3rd quartile of 4.2 percent. Median
slope is 3.1 percent.

The soil at the site is well-developed Ultisol with appreciable amounts of translocated
silicate clay and a moderately low degree of base saturation. Both the translocated silicate
clay and the fragic properties of some of the soils at the site lead to diminished infiltration
rates [53], thus heightening the potential influence of surface topography on moisture
movement through the landscape. The dominant soil series at the site is named Captina,
a fine-silty, semiactive, thermic, Typic Fragiudult developed in sloping uplands and old
stream terraces in a thin mantle of silty material and underlying colluvium and residuum
weathered from limestone, cherty limestone and dolomite or siltstone [54]. Also included
is Pickwick Silt Loam, a fine-silty, mixed, semiactive, thermic, Typic Paleudult developed
in silty material and old alluvium; Nixa, a loamy-skeletal, siliceous, active, mesic, Glossic
Fragiudult developed in colluvium and loamy residuum; and Johnsburg in the lower
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elevations of the site, a somewhat poorly drained fine-silty, mixed, active, mesic, Aquic
Fragiudult developed in silty material and underlying loamy residuum [54,55]. The primary
influence resulting in differentiation of the Aquic from the Typic Subgroup at the site is
topography, as climate and other soil forming factors are largely uniform at the relevant
spatial scale.

We obtained a 1 m resolution digital elevation model made with laser altimetry for
the research site from the USGS 3DEP program [56,57]. Data were acquired in January 2015
leaf-off conditions using LiDAR Riegl Q-680i sensor mounted on twin engine aircraft; the
nominal pulse spacing for acquisition was 0.7 m and the fundamental vertical accuracy was
tested at 8 cm [57]. Light-detection and ranging (LiDAR, or air-borne laser altimetry) bare-
earth returns were converted to 1-m elevation rasters through bilinear interpolation [56].
These DEM data are freely available to the public through the USGS website [57]. With
one exception, we used SAGA GIS (v. 2.3.2 and v. 8.0.1) [58] for processing DEM data,
hydrological correction using minimal modification depression breaching [59], calculating
flow algorithms, calculating slope [60], and calculating topographic wetness index. The
MFDmd flow algorithm (discussed below) was calculated in SimDTA, a software developed
for that purpose [61].

Moisture sensors were installed within treatment blocks of a separate study designed
to examine the influence of the performance of pasture grasses between rows of trees and
cattle foraging behavior [31]. Moisture sensors were placed in locations within the grass
strips. Sensor locations were chosen by a field soil scientist to represent expected spatial
variability of soil moisture within the existing plot structure of the foraging study. Plots
were designed to study foraging behavior and forage performance in response to variable
fertility. Each plot was outfitted with one soil moisture sensor in a “wet” location, and one
in a “dry” location. The sensors were installed at 15 cm and 60–75 cm depths in 42 locations
or depths for a single hillslope site of 9.9 ha in April of 2017. In the last year of the study
more sensors were installed as the foraging study expanded, increasing the number of
sensors to 57 in January of 2021. In a few locations the deep sensors were placed at 45 or
70 cm because restricting layers prevented deeper installation. The temporal resolution of
the sensors was one reading every four hours and the number of VWC observations after
excluding outages and applying quality control was 274,681 readings for the 5-year period.
The TEROS 11 sensors estimate VWC using capacitance/frequency-domain technology
at 70-MHz frequency, which minimizes textural and salinity effects; accuracy is reported
to be ±0.03 m3/m3 with the factory calibration on a typical mineral soil; resolution is
0.001 m3/m3 (METER Group, Pullman, WA, USA). No special site-specific calibration was
performed [62]. Readings were logged on a Decagon EM50 data logger (METER Group,
Pullman, WA, USA).

Moisture data were interpreted and used in the following way. Any moisture readings
with greater than 0.5 m3/m3 volumetric moisture from a functional moisture sensor were
assumed to represent saturated soil and were imputed with the value 0.5 m3/m3. Similarly,
any moisture readings less than 0.03 m3/m3 from a functional moisture sensor were
assumed to represent dry conditions and were imputed to the value 0.03 m3/m3. These
values were chosen as the upper and lower range for saturated and dry mineral soils in
the study landscape based on the reported error of the sensors and the soil water retention
curves published by the National Cooperative Soil Survey Laboratory Data database of the
United States Department of Agriculture for the soils at the site [63]. More details of data
handling are given in the coverage of statistical methods below.

We prepared 21 digital elevation surfaces through filtering and resampling of the
source DEM for input into 26 topographic wetness algorithms, deriving a total of 546 topo-
graphical wetness index rasters for the site (Figure 2). The purpose of the generalization of
the DEMs through resampling or filtering was to test the degree to which generalization
provides control over excessive surface detail. Filtering was undertaken with either a sim-
ple circular averaging filter with an averaging kernel, or through a Gaussian filter kernel
(Figure 2). In both cases, the kernel was modified to various settings to test the sensitivity
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of the TWI to the degree of smoothing. The original unfiltered DEM, and DEMs resampled
to larger pixel sizes were also included for comparison. The low-frequency spatial filtering
was used to minimize high-frequency noise in the original DEM because “differentiation
of a signal increases noise manifestation in a derivative”, and noise in a DEM leads to
production of more noisy models of morphometric derivative attributes [11]. Unfiltered
DEMs were resampled to 2, 3, 4, 5, 7, and 10 m using averaging. The elevation value for the
2 m pixel was calculated by averaging the four 1m pixels that fell within its geographic
location. The 5 m pixel was assigned an average of the 25 pixels of the original 1 m DEM
that fell within its location, and the other resampled DEMs were calculated the same simple
way. The 1 m, unfiltered DEM was left unmodified before algorithm preparation.
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Figure 2. The process of preparing the 21 digital elevation models for the study site.

A common practice when preparing digital elevation models for hydrological terrain
analysis is flow path enforcement through the removal of spurious pits and peaks, typically
by filling a DEM [64,65]. This solves the problem of discontinuous flow as local micro
pits are “filled” so that flow within the structure of a landscape is given an outlet point,
and flow is not unrealistically disrupted by “disappearing” into pits. Filling pits at the
DEM for our research site resulted in excessive generation of flat depression surfaces and
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was considered unacceptable, as it changed elevations and eliminated real topographic
detail for about 66% of the study area. Instead, a DEM depression breaching algorithm was
chosen, which successfully eliminated closed depressions with minimal alteration of the
elevation model while enforcing continuous flow paths through carving [59,64].

Filtered DEMs were processed with averaging filters of either Gaussian or simple
circular shape. In the case of the circular filter, the average value of all pixels within a
circular moving window of a specified radius was assigned to the central pixel. The moving
window was set to 1, 2, 3, 4, 5, 7, and 10 pixels to give output DEMs on a continuum of
an increasing degree of smoothing to the initial elevation model. For Gaussian filtering a
given value of sigma was chosen to represent the shape of a three-dimensional Gaussian
curve. The values of sigma were chosen as 0.5, 1.0, 1.5, 2.0, 2.5, 3.5, and 5.0 pixels to cover
approximately the same area as the simple circular filter. The value of the central pixel
in the Gaussian filtration was assigned according to the standard Gaussian probability
density function.

The 26 algorithm settings chosen to calculate the topographical wetness index and ap-
plied to the 21 prepared (original, filtered, or resampled) elevation models for the site differ
primarily in their implementation of flow algorithms (Figure 3). Flow algorithms allow for
the calculation of the catchment area or A, the numerator in Equation (1). Catchment area
is calculated by tabulating the number of pixels that would contribute runoff flow to the
receiving pixel in a scenario in which no water is absorbed in the soil and flow is deter-
mined by gravity. Flow algorithms determine the direction of flow from higher elevation
pixels to lower elevation pixels [12,13]. They are broadly classed as single-direction flow
and multiple direction flow algorithms. Multiple-direction flow algorithms can be further
subdivided based on whether flow is limited to two or three receiving neighboring pixels.
A review of flow algorithms can be found in Wilson [13], but we will also summarize them
here. Figure 3 illustrates the flow algorithms and the decision points for various algorithm
settings tested in this study.
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Single-direction flow algorithms model flow from the source pixel to a single receiving
pixel typically determined by calculating the direction of steepest descent. These algorithms
were developed to aid in the extraction of drainage networks from digital elevation models
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and not necessarily for depicting variable soil moisture. They are the default option in
several GIS software applications, though they perform less well when flow dispersal is an
important feature of a landscape, or when ridges, peaks, and saddles are present [13,34].

The deterministic single-flow (D8) algorithm routes flow from the central pixel to the
lowest of its surrounding 8 grid cells [14]. It was the first flow algorithm developed and is
the simplest and the quickest to calculate. The stochastic single-direction flow algorithm
(Rho8) includes a random element into the assignment of flow directions designed to
reduce grid bias [13,66]. Output from Rho8 is different each time it is run, unless specifying
a pseudorandom number generator seed. Aspect-driven kinematic routing (KRA) assigns
flow to cardinal directions while specifying flow direction continuously [67]. KRA calculates
contributing area by summing the number of flow paths passing through a grid cell.

In multiple flow direction algorithms flow is dispersed to multiple downslope pix-
els [68]. The first of these algorithms are limited in the number of receiving pixels. In the
deterministic infinity (Dinf) algorithm flow direction is assigned to each cell by a continu-
ous value from 0 to 2π. The vector describing flow direction determines the proportions
of flow that are distributed to two receiving pixels on the two sides of the drainage flow
direction vector [69]. The Braunschweiger multiple flow direction (Braun) algorithm limits
flow to three receiving pixels, routing outflow to the cell with orientation nearest to the
aspect of the source cell and its two neighboring cells [38,70]. The Digital Elevation Model
Networks (DEMON) flow routing algorithm involves the use of best-fit planes through the
four corners of a pixel and allows flow to two receiving pixels [71].

Multiple-flow algorithms that direct flow to all eight surrounding pixels include
the multiple flow direction (MFD), multiple triangular flow direction (MDinf), multiple
flow direction with maximum downslope gradient adjustment (MFDmd), and the SAGA
Wetness Index (SWI). The Mass Flux (MF) algorithm (not examined in this paper) divides
each grid cell into four quarters and defines a continuous flow direction for each depending
on the elevation of the whole pixel and two of its cardinal neighbors; flow from each quarter
of the central pixel is then allowed to flow into one or two of its cardinal neighbors [13].

In the multiple flow algorithms MFD [68,72,73], MDinf [74], MFDmd [61], and SWI [75]
the fraction of a pixel’s flow (d) moving to a neighboring cell (NBi) is calculated with:

dNBi =
tan(βNBi)

v × LNBi

∑8
j=1 tan(βNBi)

v × LNBj
(2)

where L is the draining contour length and v is the flow dispersion exponent [13,38,76]. As
the v-value increases more of the fraction of flow proceeds to the steepest slope resulting
in a higher degree of flow convergence. Different authors have recommended different
values for the constant v-value. The original algorithm also included a different L-value for
flow routed to diagonal vs. cardinal directions, but this is not implemented in the SAGA
software used in this study and similar studies [36,38].

Quinn [68] used a v-value of 1.0 while Freeman [72] recommended a v-value of 1.1,
and Holmgren [73], working at elevation sites with steeper relief recommended values
between 4 and 6. It has been recommended to use higher values of v in landscapes with
steeper slopes and lower values in less sloping landscapes [76]. Qin et al. [77] developed
the MFDmd algorithm which implements a dynamic v-value based on local slopes for each
pixel by calculating v in Equation (2) with the function:

v = f (e) = 8.9 × min(e, 1) + 1.1 (3)

where e is the maximum downslope gradient and min(e, 1) is the minimum of e and 1.
The coefficient 8.9 is set so that f(e) will be close to 1.1 in flat areas and as high as 10 in
steeply sloping areas. This implementation of the algorithm takes the task of defining the
value of v away from the user, possibly leading to more consistent results across landscapes
with various magnitudes of slope. Furthermore, it confers the advantage that the user
need not define a single v-value in landscapes characterized by both flat and sloping
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areas together [77]. The authors of this algorithm indicated that its implementation in the
SAGA-GIS software had at least one error and they offered to run the elevation models for
our study in their own software program, SimDTA (Qin 2022, personal communication,
January 15). This is the only flow algorithm implemented for this study that was not done
in SAGA-GIS.

The MDinf triangular multiple-flow direction algorithm directs flow using triangular
facets similar to Dinf and behaves similarly in most landforms, but it allows flow to diverge
in multiple directions when landforms direct divergent flow, where more than one steepest
downslope direction from a cell occurs, such as on divergent hillslopes, ridges, saddles,
and summits [12]. Where flow divergence is allowed, the MFD flow algorithm of Quinn is
used, and values of v govern flow divergence partitioning. In the current study, the MDinf
algorithm tended to be among the best at matching observed soil moisture. In our results,
its output was not highly influenced by the v-values chosen, presumably because v-values
are only relevant in areas where flow divergence occurs in the algorithm with divergent
downward sloping directions from a given pixel.

The SAGA Wetness Index (SWI) is an implementation of the v = 1.1 multiple direction
flow algorithm that iteratively modifies the catchment area based on a function of local
slope and the flow accumulation of pixels adjacent to each pixel [71,74]. The SWI concept
assumes that pixels adjacent to one another will have influence through “suction” or lateral
moisture movement due to soil porosity and that this influence increases in flatter terrain.
The flow accumulation is thus calculated using the upstream contributing area and the
MFD given in Equation (2), but then adjacent pixels were assumed to contribute additional
flow accumulation units locally based on the formula:

SCAM = SCAmax

(
1
t

)β exp (t)β

f or SCA < SCAmax

(
1
t

)β exp (t)β

(4)

SWI = ln
(

SCAM
tan β

)
(5)

where SWI is the saga wetness index, SCAM is a modified specific catchment area, t is the
so-called “suction factor,” a parameter entered by the user, SCAMax is the maximum stable
value for SCAM obtained through the iterations, and β is slope. The iterative algorithm
allows adjacent pixels to contribute flow and continues for as long as the modified specific
catchment area is less than the new modified specific catchment area. Increasing slope
values and increasing t values both diminish the influence of adjacent pixels, thereby
lessening the modification of the original specific catchment area. In the Saga GIS software,
the default t value is set to 10 but can be modified by the user. In the original publication
introducing the SWI, the equation above is given with a constant value of 15 (where
the value t is placed in the above equation) [75] (Böhner and Selige, 2004). The formula
parsed above was confirmed with the developers of the algorithm (J. Böhner 2021, personal
communication, 2 November 2021). Following other authors [38], we tested the sensitivity
of the t factor for its influence on the correlation between the SWI and observed soil
moisture. While some authors [38] found that higher values of t led to greater coefficients of
determination between the SWI and the observed soil moisture the highest value they chose
to examine was t = 256. We increased our tested values by doubling orders of magnitude
from t = 10 to t = 1064. This high value was chosen as the endpoint because the output of
SWI rasters began to converge when t values were set between t = 1032 and t = 1064.

Statistical Analysis

We used TWI calculated with each of the 546 different outputs from flow algorithms
and DEM preparations to predict soil moisture (VWC) at several different temporal resolu-
tions at point locations corresponding to the soil moisture sensors. We used the following
time periods and constraints:
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1. Mean VWC for each month (April 2017–December 2021). A moisture-sensor-month
combination was only included if the sensor gave readings for at least 10 unique days
during that month.

2. Mean VWC for each year (2017–2021). A sensor-year combination was only included
if the sensor gave readings for at least 7 unique months, in each of which there were
at least 10 unique days of readings.

3. Grand mean VWC for the entire measurement period.
4. Mean VWC by day during three months in the water year representing recharge,

saturation, and use periods in the water year, represented in November, April, and
September for the years 2017, 2018, 2019, 2020, and 2021.

For every combination of period and algorithm, we generated four sets of predicted values:

1. We fit a linear regression of VWC on TWI using data from all sensors with valid
readings for the given time slice, then used that regression to generate predicted
values for all sensors.

2. We fit a linear regression of VWC on TWI and the depth of the sensor using data with
valid readings during the time slice, then used that regression to generate predicted
values for all sensors.

3. We fit a linear regression of VWC on TWI using spatially blocked cross-validation
(CV). Each cross-validation had as many folds as there were sensors used to fit the
regression. For each CV fold, we omitted all data points from a single sensor (1
to 3 data points depending on how many moisture probes were connected to the
logger). The sensors attached to a single logger are spatially adjacent, making this is a
conservative approach to address potential spatial autocorrelation in soil moisture
unrelated to TWI. Within each fold, we fit the regression to all data except for the
value(s) from the held-out sensor, then predicted the value(s) from the held-out sensor.
We combined the predicted values from each CV fold, resulting in a vector of predicted
values corresponding to all observed values.

4. We fit another linear regression using spatially blocked CV in the same way as above
but included both TWI and depth of the moisture sensor as predictors.

For each of the above four sets of predicted values, we took the Pearson correlation r
between observed values and predicted values (combining predictions across all CV folds
in the latter two cases) as a metric of prediction performance.

All data processing and model fitting was done using R software, version 4.1.2. Models
were fit with the lm() function.

In the more successful iterations of the TWI settings, higher values of TWI correspond
to greater degrees of wetting and greater consistency of moistness throughout the measure-
ment period while lower values of TWI correspond to drier areas. Ambient drying and
wetting conditions at the site represented continuous levels of establishment and disrup-
tion of a steady state of moisture conditions and therefore greater or lesser topographical
organization of soil moisture [41].

3. Results

Soil volumetric water content at observation points at the site fluctuated daily and
seasonally, with some abrupt influxes corresponding to daily precipitation events followed
by more gently sloping episodes of decrease or drying-out (Figure 4). In most water
years, the lowest average values for VWC were found near the end of the growing season
in September or October when soil moisture use and evapotranspiration were greatest.
Following this, a recharge period from October to January or February led to increases in
VWC, reaching saturated conditions before the latest spring frost date and the onset of
increased evapotranspiration in May. Moisture sensors at locations with higher TWI values
consistently showed higher VWC, but the magnitude of the difference varied with season
and apparent rainfall events (Figure 4).
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Figure 4. Daily median soil moisture values at 15 cm. Shaded regions represent the 25th and 75th
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dashed line represents the median VWC for the sensors in locations with TWI values less than 7.4
(using D8 algorithm) [14].

TWI and soil moisture at the site were positively correlated, with median monthly
Pearson correlation coefficients of 0.50 across all algorithms for the models that include a
depth component, indicating that TWI has some predictive power for determining areas at
the site more prone to retain moisture than other areas.

The most influential single factor for model performance at all time resolutions was
DEM generalization. We refer here to filtering and resampling as map generalization. TWI
algorithms that were run on DEMs that were generalized through resampling to coarser
pixel sizes or through Gaussian or simple circular filtering provided a better fit to measured
moisture than non-generalized DEMs, or DEMs taken from the initial LIDAR dataset at
1 m pixel resolution with only the depression breaching algorithm applied before TWI
calculation (Figure 5).

Annual average VWC compared to TWI values extracted for the point locations of the
moisture sensors showed wide variation in model performance, with Pearson correlation
coefficients ranging from 0 to nearly 0.8 (Figure 6). In almost all cases, overall model
performance improved substantially when the original DEM was resampled to coarser
pixel sizes or when it was filtered with a Gaussian or a simple circular smoothing filter
to remove or generalize surface detail. Lower correlations occurred disproportionately
with iterations of TWI that were applied to DEMs that had not been filtered or resampled.
On DEMs that were not generalized, 85% of the cross-validated models had r values
less than 0, indicating no reliable performance with respect to spatial prediction of soil
moisture at the site. On maps that were generalized, performance improved to 79% of
cross-validated models with r values greater than 0, indicating some predictive capability.
Model performance also improved when moisture sensor depth was included, though the
improvement was most marked when initial performance was poor. The best performing
models without depth showed little improvement when depth was included, while the
poor performing models, such as those with r values below 0.3 improved much more.

Generalization through increasing the pixel size by resampling resulted in a linear
increase in median TWI performance when DEM pixel size was increased from 1 to 7 m
and a slight decrease from 7 to 10 m (Table 1). Generalization through filtering the 1 m
DEMs with a simple circular averaging filter also improved model performance with the
highest performance reported for the 5 and 7 m radius filter windows, with a slight decline
at the 10 m radius. Gaussian filtering showed a similar effect, with the best performance at
3.5 sigma and a small decline at 5.0 sigma.
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Figure 5. Selected output examples of TWI. Each row shows the effect of increasing a single factor on
a set of TWI calculations. Terms used: v = convergence index value; w = pixel resolution; t = SAGA
wetness index suction factor; r = Pearson correlation between TWI and average observed soil moisture;
σ = standard deviation (meters) of the Gaussian curve used for DEM filtration.

Varying the flow algorithms for calculating catchment area influenced model perfor-
mance at predicting annual soil moisture to different degrees (Figure 7). In general, the
multiple flow direction algorithms outperformed single-direction algorithms when run on
the initial 1 m DEM, unmodified except for hydrologic correction. The best performances
of TWI models on the unmodified DEM were from the SAGA Wetness Index with a suction
factor in the range of t = 104 to t = 1016. When elevation models were resampled to 7 m,
however, single-flow algorithms performed at a similar or sometimes better level. The
D8 algorithm applied to a resampled 7 m elevation model gave the best performance for
predicting annual soil moisture of all algorithms. Filtering was a better strategy for map
generalization when using multiple flow direction algorithms while resampling was better
for single-flow direction algorithms.

Correlations between VWC and TWI were sensitive to seasonal variation and pre-
sumed antecedent moisture conditions relating to spikes in VWC from precipitation events
(Figure 8). Daily VWC during recharge showed good correlation to TWI in November
of 2017, 2018, and 2020. In November of 2019 and 2021, however, VWC was relatively
high, and correlations were lower than in the other months. During the saturation period
when soils are wettest, before the onset of seasonal evapotranspiration in May, correlations
between TWI and VWC were high except in the two wettest months with highest median
VWC, 2020 and 2021. Presumably, even though moisture conditions were high in the other
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years, there was enough drying time or time for topographic redistribution of moisture
to maintain high correlations with TWI. In 2020 and 2021, however, moisture conditions
were at their highest and topographic organization of moisture did not occur as reliably,
making correlations between TWI and VWC relatively low. In September, when evapo-
transporative demand is at its strongest, correlations between TWI and VWC were high.
The exception here was again 2020 and 2021, in which very low values of VWC likely led
to low correlations between TWI and VWC. In dry conditions, soil texture may govern
soil moisture to a greater degree than topography, and the spatial correlation between soil
moisture and topography reduces at both the dry and wet end of field conditions [41].
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Figure 6. Relationship between TWI and measured annual soil moisture for all models examined.
Black dots represent models without any cross-validation. Cyan dots represent models run on
generalized DEMs with cross validation. Red dots represent cross-validated models that run on
DEMs with no initial generalization. Dots are set to a transparency level such that darker colors
represent greater density of data points.
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Table 1. Pearson correlation coefficients between average TWI from all tested algorithms and observed
monthly moisture volumetric water content average values. The coefficients shown are the mean r
values of TWI models with measured monthly mean soil moisture.

Model with Surface
Measurements Only Model with Depth Cross-Validated

Model with Depth

DEM resolution (w) r r r
1 0.202 0.328 −0.135
2 0.355 0.453 0.129
3 0.412 0.501 0.210
4 0.418 0.504 0.231
5 0.449 0.534 0.282
7 0.449 0.536 0.287
10 0.432 0.520 0.251

SSC window a

Radius (m) r r r
1 0.251 0.371 −0.031
2 0.307 0.411 0.053
3 0.347 0.444 0.099
4 0.406 0.493 0.196
5 0.419 0.503 0.215
7 0.422 0.507 0.232
10 0.403 0.492 0.199

Gaussian filter b

Sigma (m) r r r
0.5 0.261 0.366 −0.043
1.0 0.327 0.424 0.075
1.5 0.353 0.447 0.112
2.0 0.389 0.478 0.169
2.5 0.403 0.491 0.184
3.5 0.409 0.495 0.200
5.0 0.407 0.495 0.208

a Simple smooth circular filter window applied to a 1 m DEM. b Gaussian filter applied to a 1 m DEM.

Map generalization improved TWI moisture prediction by allowing flow patterns
to coincide with surface moisture as it encounters and responds to landform features
(Figure 9). The site is characterized by side slopes which funnel water toward a primary
central valley-shaped drainage area, which directs water further downslope toward a
channel at the southern end of the site (Figure 9A). When the TWI D8 flow algorithm
was run on the w = 1 m DEM, the convergent valley zone did not represent unified flow
accumulation. Instead, flow converged in multiple very small flow lines pertaining to the
noise and roughness of surface topography (Figure 9B). Many of the flow lines do not
converge to a dominant central flow area as would be expected by the landform figure,
but flow is instead directed south as relatively independent lines that have little influence
on directly adjacent drier areas. Once these flow lines reach the valley area from upper
sloping areas, they still do not converge into a single dominant flow zone. As the pixel
size (w) is increased through resampling, however, flow lines do converge and become
larger in magnitude in valley areas (Figure 9C). Likewise, when the elevation model is
filtered before application of the TWI D8 flow algorithm, flow lines follow the general trend
of the shape of the landscape instead of discrete portions directed by surface roughness
(Figure 9D). After generalization, either through resampling or DEM filtration, the grand
mean correlation (r) between the TWI with D8 flow increased from 0.17 to 0.61 and 0.64,
respectively, for the ~5 years of observation.
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Figure 7. Correlation between TWI calculated with several flow algorithms and the measured mean
soil moisture for the 5-year measurement period. Terms used: Braun = Braunschweiger Reliefmodel;
D8 = deterministic 8 cell; DEMON = digital elevation model networks; Dinf = deterministic infin-
ity; KRA = aspect-driven kinematic routing; MDinf = multiple triangular flow direction; “MFD,
v = 1.1” = Multiple flow direction with convergence factor v = 1.1; MFDmd = multiple flow direction
with maximum downslope gradient adjustment; Rho8 = stochastic single-direction flow algorithm;
“SWI, t = 10”, “SWI, t = 10ˆ4”, and “SWI, t = 10ˆ16” = SAGA wetness index with a suction t-factor
value of 10, 104, and 1016 respectively.
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Figure 8. (left) Selected months for all available years representing recharge (November), saturation
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at all depths and the topographic wetness index calculated with the D8 algorithm [14] on a 7 m
resampled DEM for selected months. Each boxplot summarizes the data distribution of daily values
for the given month.
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σ = sigma of the Gaussian curve for Gaussian filtering. Higher visualizations of TWI in (B–D), are 
darker blue, but TWI is shown on a unique relative scale for each image. 
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to larger pixel sizes, the best t factors were t = 1016, 1032, and 1064. As t was increased, its 
influenced was diminished and the output from SWI more closely resembled output from 
MFD v = 1.1 algorithm (but r values were slightly higher for SWI with t values > 108 than 
for TWI MFD v = 1.1). The best performing configurations for SWI were those applied to 
DEMs that had been either resampled to 3 m to 7 m pixel resolution, or filtered with a 
Gaussian filter of 2 sigma to 2.5 sigma, or a simple circular smoothing filter of 4 to 5 m. In 
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resampled DEMs performance increased with increasing suction factor until t = 1016 for 
the DEMs resampled to the 3 to 7 m pixel sizes. 

Figure 9. (A) Landform classification using GEOMORPHONS algorithm [52] and TWI. The output
of the GEMORPHONS algorithm color coded to show landscape classes. (B) TWI calculated with
the D8 algorithm at high resolution. (C) TWI calculated after resampling. (D) TWI calculated after
filtering. Terms used: w = pixel resolution; r = Pearson correlation between soil moisture and TWI;
σ = sigma of the Gaussian curve for Gaussian filtering. Higher visualizations of TWI in (B–D), are
darker blue, but TWI is shown on a unique relative scale for each image.

The suction factor (t) of the SAGA Wetness Index influenced the correlation between
SWI and grand mean VWC (Figure 10). At the smallest pixel resolution, w = 1 m, values
of t between 10 and 104 gave the best performance; however, when DEM was resampled
to larger pixel sizes, the best t factors were t = 1016, 1032, and 1064. As t was increased, its
influenced was diminished and the output from SWI more closely resembled output from
MFD v = 1.1 algorithm (but r values were slightly higher for SWI with t values > 108 than
for TWI MFD v = 1.1). The best performing configurations for SWI were those applied
to DEMs that had been either resampled to 3 m to 7 m pixel resolution, or filtered with
a Gaussian filter of 2 sigma to 2.5 sigma, or a simple circular smoothing filter of 4 to 5 m.
In the cases of filtered DEMs of 1 m resolution, performance improved with increasing
suction factor values until t = 104, with a modest decrease thereafter (Table 2). In the case of
resampled DEMs performance increased with increasing suction factor until t = 1016 for
the DEMs resampled to the 3 to 7 m pixel sizes.
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Figure 10. Influence of the suction factor (t) on the performance of the SAGA wetness index at DEM
generalized to different grid cell resolutions (w). Pearson correlation between observed grand mean
moisture and index value is indicated by “r”.

Table 2. Pearson correlation between grand mean VWC for the measurement period 2017–2021 and
SAGA Wetness Index with increasing t values after DEM filtration.

Gaussian DEM Filtration

———- sigma ———-
Suction Factor (t) 0.5 1.0 1.5 2.0 2.5 3.5 5.0

— r —
1 × 101 0.422 0.444 0.458 0.439 0.459 0.450 0.456
1 × 102 0.507 0.542 0.562 0.565 0.577 0.562 0.512
1 × 104 0.573 0.568 0.580 0.581 0.584 0.582 0.557
1 × 108 0.562 0.534 0.553 0.573 0.576 0.568 0.541
1 × 1016 0.489 0.514 0.547 0.579 0.583 0.573 0.541
1 × 1032 0.513 0.521 0.548 0.579 0.583 0.573 0.541
1 × 1064 0.399 0.521 0.548 0.579 0.583 0.573 0.541

Filtration with simple circular averaging filter
———- filter radius, m ———-

Suction Factor (t) 1 2 3 4 5 7 10
— r —

1 × 101 0.425 0.437 0.435 0.435 0.453 0.444 0.454
1 × 102 0.513 0.533 0.553 0.564 0.577 0.550 0.492
1 × 104 0.585 0.565 0.577 0.581 0.589 0.577 0.537
1 × 108 0.546 0.516 0.556 0.578 0.579 0.563 0.516
1 × 1016 0.558 0.479 0.553 0.584 0.583 0.565 0.516
1 × 1032 0.548 0.492 0.554 0.584 0.587 0.564 0.516
1 × 1064 0.548 0.492 0.554 0.584 0.587 0.564 0.516
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4. Discussion

Factors influencing soil moisture at the field scale are multiple and include precipita-
tion, vegetation variability, solar incidence and shading effects, variation in soil properties
such as porosity, soil structure, and soil texture [3,78]. To improve our estimates of soil
moisture, ancillary and measured data pertaining to these factors should be included in
future efforts. Including variables such as soil properties, other terrain variables, and
reflectance data would likely have led to improvements of modeled moisture. Soil moisture
is rarely as spatially organized as topography, and authors have noted improvement in
soil moisture models through use of a weighted combination of indices, rather than a
single index [34,41]. Authors found improvement of the relationship between soil moisture
and terrain indices when including a simple solar radiation simulation and soil property
estimates along with the TWI [34]. The influence of vegetation type on soil moisture at
the site is unknown, but we assume the influence of precipitation and topography to be
dominant because while vegetation exerts local control on moisture, topography leading to
surface and subsurface lateral flow has been characterized as exerting non-local control [3].

The strength of correlation between TWI and measured soil moisture fluctuates over
time. Some authors reported that the degree of correlation between soil moisture and to-
pography lessens at very dry and very wet field conditions [41]. At very dry times moisture
may relate more to soil texture than topography, while at very wet times moisture is likely
limited by soil porosity, which often does not vary greatly at the field scale [41]. Other
authors showed that the relationship between TWI and soil moisture varied seasonally,
depending on days after rainfall and period of the hydrologic year [34].

Despite a lack of a high degree of correlation between TWI and spatial patterns of
moisture in some studies [38], TWI remains useful for several reasons. Soil moisture is
difficult and expensive to measure, while TWI is easy to calculate when DEM datasets
are available. TWI almost always shows some relationship to measured soil moisture,
indicating that it has some predictive power, especially when examined at appropriate scale
and resolution (Figure 5). TWI can aid in the sampling design of placing moisture sensors
in optimized locations, thereby maximizing the amount of information obtained from the
limited resources of moisture monitoring opportunities [79]. Examining the relationships
among the factors of TWI model development such as degree of generalization, choice
of flow algorithm, and resolution and scale remains pertinent because TWI continues to
be used as a soil moisture proxy. The current study shows that generalization techniques,
whether resampling to coarser pixel sizes, or smooth or Gaussian filtering of LIDAR 1m
DEMs, significantly improved the relationship between TWI and measured soil moisture at
the study site.

The groundwater table is sometimes thought of as a subdued version of surface
topography [48], and a filtered DEM surface can be considered a subdued version of the
original surface because rough and angular components are replaced by averages calculated
over a spatial window. A resampled DEM, likewise, involves taking a spatial average over a
specified distance, thus subduing topographic detail in favor of any underlying topographic
trend. Performance of most variations of the TWI was poor at the site unless generalization,
either through filtering or resampling, was first applied. This poor performance is explained
somewhat by excessive surface detail leading to overly particularized flow patterns that did
not match the overall landform elements of the site. Conversely, as filtration and resampling
were applied to the DEM, a subdued version of the local topography emerged, allowing for
more generalized depiction of surface moisture that better matched the observed data. The
sole exception to the poor performance of algorithms on non-generalized DEMs was the
application of the SAGA Wetness Index with low values of the t-factor (greater influence
of t). While it may seem possible to construe this as indication of good performance by
SWI, better performance was given by other algorithms after first applying a generalization
technique to the DEM, either filtering or resampling. The SWI allows for flow in adjacent
pixels to influence each other through a suction factor, thereby providing a generalizing
or filtering effect, smoothing out excessive flow particularization much as a smoothing or
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Gaussian filter when applied to a DEM before application of a TWI. The SWI applied the
smoothing iteratively and concurrently with the calculation of SWI, perhaps making initial
DEM map generalization less necessary.

The locations and number of moisture sensors at the study site were determined
according to the needs of a study design pre-dating the current study [31]. A larger
network of sensors at a greater spatial density would likely have been better for assessing
spatial relationships among TWI output and measured moisture. Furthermore, targeting
the spatial variability of the site by placing sensors according to stratified random sampling
or conditioned Latin hypercube sampling strategy would likely have improved the spatial
moisture estimates by better exploring the range and structure of the ancillary (TWI)
variable [79].

One somewhat surprising finding of this study is that the D8 algorithm, which is
the most rudimentary flow algorithm used here, performed well when the DEM was
generalized through filtering or resampling. D8 is susceptible to grid bias, depicting flow
only in 8 cardinal and ordinal directions, and does not allow flow to disperse to multiple
pixels, making flow look “unrealistic” and choppy. Nevertheless, when the DEM was
appropriately generalized D8 provided a better correlation to observed soil moisture than
several other algorithms. Some authors [42] found that the best performance for flow
algorithms occurred when pixel resolutions matched the average flow width of applied
moisture. Likewise, we found that the D8 algorithm was among the best performing
algorithms when pixel resolution matched the width of the landform valley feature at
the center of our site or when the DEM was first filtered using a filtration window that
likewise provided an equivalent amount of generalization, resulting in flow convergence
that matched the pattern of the landform classification.

The Pearson correlation coefficients demonstrated the presence of relationships be-
tween TWI and soil moisture. However, their values and influencing factors point to
many uncertainties at multiple scales. The resampling to coarser scales while improving
the correlation values potentially increases the discrepancies in scale between measured
soil moisture at a point and TWI calculated for a grid cell. Also, the uncertainty of the
relationship between measured soil moisture and calculated TWI values at a point and
pixel, respectively, is further compounded by the influence of filtering and flow algorithms
for predicting soil moisture over an extended area beyond the point measurement and
individual pixels.

5. Conclusions

The motivation for this study was to assess methods of calculating the topographical
wetness index by observing the correlation between TWI values and the values of measured
soil moisture over time at a single study site but not to produce the most accurate model of
field soil moisture variability. By limiting our scope to a single terrain derivative examined
at multiple scales we were able to discern which scales of observation and which algorithm
settings provided a better match to measured soil moisture at the site over time. Further
study will allow us to use the best performing algorithm settings at appropriate scales of
observation along with other model factors such as vegetation, solar radiation, and other
terrain variables, to better account for soil moisture variability at the site.

Contrary to our expectations, map generalization was more important than the choice
of flow algorithm for capturing topographically influenced spatial patterns of moisture
at the site. All flow algorithms except SWI produced unacceptable results when the
DEMs were not prepared through appropriate generalization. Most flow algorithms were
able to produce useful model output that related index values positively to spatially
variable moisture patterns after map generalization through filtration or resampling. We
recommend that in cases where topographic detail should be retained, filtration is the
preferred generalization technique. In other cases, where data reduction is necessary
for processing efficiency, resampling should provide the better generalization option. In
most cases, high-resolution DEMs depicting the soil surface at a 1 m resolution should
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be generalized in some way before application of TWI algorithms for a more accurate
depiction of topographic controls on soil moisture.

Conclusions of this study should be observed within context, as the spatial extent
of the soil moisture observations was limited compared to similar studies. The temporal
resolution of the moisture readings, however, provided a unique and in-depth view of
the seasonality of the fit between measured moisture and TWI algorithm settings. These
seasonal variations should encourage researchers to observe antecedent moisture conditions
relative to expected seasonal patterns when they plan soil moisture sampling strategies.

The sensitivity of the correlation values to moisture conditions during the transitions
from wet to dry and vice versa, increases the usefulness of TWI especially for topographi-
cally responsive areas. For example, the TWI could guide management decisions such as
schedules for fertilizer applications, planting, and use of machinery, especially in rainfed
agriculture on sloping areas around the world. However, for very dry and wet conditions as
well as flat areas, TWI usefulness for soil moisture predictions at finite temporal resolutions
should likely be considered as complimentary to other soil moisture monitoring devices
and techniques.
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