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Abstract: Under the constraints of resources and the environment, improving the urban ecological
well-being performance (EWP) is a fundamental requirement and inevitable choice for urban ecologi-
cal civilization construction and sustainable development. In this paper, 36 Chinese major node cities
along the Belt and Road were selected as the research area, and an EWP evaluation index system was
constructed. The two-stage Super Network Slack-based measure (Super-NSBM) model was used to
evaluate the static EWP from 2011 to 2018, and the Malmquist–Luenberger productivity index was
used to evaluate the dynamic EWP. It was found that: (1) The EWP value of 36 Chinese major node
cities along the Belt and Road from 2011 to 2018 did not reach effectiveness, with Sanya, Shenzhen,
and Haikou being the top three performers. (2) In terms of two-stage efficiency, the ecological eco-
nomic efficiency in the first stage was significantly lower than the economic well-being efficiency in
the second stage, which indicated that the low ecological economic efficiency was the main reason for
the low average value of the EWP. (3) From the dynamic analysis results, the Malmquist–Luenberger
productivity index experienced a fluctuating upward trend, and the technical change was the main
factor for the improvement in the EWP. Finally, policy recommendations were proposed based on the
above findings. This study will contribute to the sustainable development of Chinese major node
cities along the Belt and Road, and can provide a reference for other Belt and Road regions.

Keywords: ecological well-being performance; the Belt and Road; Chinese major node cities; Super-NSBM
model; Malmquist–Luenberger productivity index

1. Introduction

The “Silk Road Economic Belt” and “21st Century Maritime Silk Road” (short for
the B&R) are major initiatives for China to build a new pattern of all-round opening up
and to deeply integrate into the world economic system. It is an important initiative to
strengthen mutually beneficial cooperation among regions along the route and promote
regional stability and development [1]. The Chinese major node cities along the B&R have
geographical location advantages and have the ability to gather and radiate international
and domestic elements, which are important economic, trade, and cultural hubs within
the Belt and Road regions [2]. However, these cities are at different levels of economic
development, facing the serious situation of ecological degradation and urban diseases,
as well as the burden of promoting the development of environmental industries and the
ecological transformation of industries [3,4].

China has issued the Guidance on Promoting Green Belt and Road Construction, the
Belt and Road Ecological Environmental Protection Cooperation Plan, and other documents
in recent years, which have made green development the core status and important task
of the Belt and Road construction. Green development not only reflects the process of
adapting natural environment protection to economic and social development, but it also
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reflects the process of transforming natural resources into economic benefits and human
well-being [5]. The EWP refers to the efficiency of converting natural consumption into a
well-being level [6–8]. The EWP mirrors the sustainable development degree of a region or
country, which shows that the paradigm of sustainable development has changed from
weak sustainable development to strong sustainable development [9,10]. To avoid the
phenomenon of the inefficiency of converting natural consumption into a well-being level
in the urbanization process, an effective and comprehensive urban EWP evaluation is
required [11]. It is of great practical significance to evaluate the EWP of Chinese major
node cities along the B&R to improve the level of green development and promote the
implementation of the Belt and Road initiative.

The existing research on the EWP mainly focuses on two aspects: (1) As for the EWP
evaluation, the evaluation methods mainly include the ratio method, data envelopment
model (DEA) [6], stochastic frontier approach (SFA) [12], and other methods. (2) The
relationship between the EWP and other influencing factors [13–16]. To sum up, the relevant
literature has rich research achievements; however, there are still some shortcomings. Most
of the literature is focused on the static measurement and single-stage evaluation research
of the EWP, and few studies conducted a multi-stage and dynamic evaluation of the EWP.
In addition, the existing literature mainly studied the country as a whole or on a province
scale, while rarely exploring the EWP of Chinese major node cities along the Belt and Road.

Therefore, the objectives of this paper are: (1) to construct an EWP evaluation indi-
cator system by selecting a sample of 36 Chinese major node cities along the B&R, and
to conduct a static evaluation of the EWP by using the two-stage Super-NSBM model
with undesirable output; (2) to conduct a dynamic evaluation of the EWP by using the
Malmquist–Luenberger productivity index; and (3) to propose the countermeasures and
relevant policy references for improving the EWP.

The contributions of this study are as summarized. First, the two-stage Super-NSBM
method with undesirable output was used to evaluate the static EWP of Chinese major node
cities along the Belt and Road, which can solve the problems that the “black-box operation”
of the traditional DEA method. Second, the Malmquist–Luenberger productivity index was
used to compare the EWP, which can help to explore the dynamic changes in urban EWP.
Third, 36 Chinese major node cities along the B&R were selected as the research object,
which, to a certain extent, makes up for the lack of research on the EWP in this region.
This paper provides recommendations for the construction and sustainable development
of urban ecological civilization, which can promote the high-quality economic and green
development of Chinese major node cities along the Belt and Road.

2. Literature Review

Daly first proposed the EWP as the ratio of services to throughput [17–19]. The EWP
reflects the efficiency of converting ecological resources into human well-being [20], which is
an effective tool for measuring sustainable development [21]. The EWP integrates economic
growth, ecological protection, and social well-being improvement, and the essence of the
EWP lies in obtaining the maximum social well-being with the least transformation of
ecological resource inputs [22,23].

In the evaluation system structure of the EWP, an important problem is the measure-
ment of the well-being level. Generally speaking, well-being mainly includes objective
well-being and subjective well-being [24]. Objective well-being usually involves economic
stability, education, and medical security, which reflects people’s basic economic and en-
vironmental needs. In contrast, subjective well-being reflects people’s views and feelings
about their environment. In the existing relevant literature, objective well-being indicators
are mainly divided into three types: the first type is the indicator based on gross domestic
product (GDP). The second type is a single indicator, such as life expectancy at birth, infant
mortality, and so on. The third type is the human development index (HDI) issued by
the United Nations Development Programme. The HDI is one of the most widely used
objective well-being indicators, including education, health care, and economic dimensions.
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Regarding the evaluation of the EWP, there are three main methods, namely, the
ratio method, the DEA method, and the SFA method. For example, Moran et al. chose
the ratio of ecological footprint (EF) per capita to the HDI for characterizing the EWP,
and then measured the sustainable development level between low-income countries and
high-income countries [25]. The EWP was commonly measured as the ratio of subjective
well-being to the EF [26]. Zhang et al. used the ratio method for measuring the EWP of
82 countries [20]. Long et al. evaluated the sustainability level of the four island regions
in China based on the EF and HDI [27]. Feng et al. used the ratio method to analyze the
EWP, and they explored the relationship between the EWP and industrial structure green
adjustment and green total factor productivity in China [28]. Wang et al. [29] used the ratio
method, the Dagum Gini coefficient, and the Logarithmic Mean Divisia Index method to
explore the EWP trend of 30 Chinese provinces and its influencing factors.

Many scholars used the DEA method to evaluate the EWP. For example, Iram et al.
used the DEA model to study energy efficiency and its impact on carbon dioxide emissions
and the economic environmental efficiency in some countries of Economic Co-operation
and Development (OECD) economies [30]. Cracolici et al. adopted the DEA model to
evaluate the level of sustainable development of Italian regions [31]. Yao et al. studied the
spatiotemporal evolution and trend prediction of the EWP in China’s 30 provinces [32].
Zhou et al. adopted the Super-slack-based measure (Super-SBM) model, the spatial Durbin
model, and the Tobit regression model to study the EWP of 30 Chinese provinces [33].
Wu et al. used the Super-SBM model and entropy weight models to access the EWP of
78 cities in western China [34]. Hu et al. used the Network DEA to explore the urban
EWP of the spatio-temporal trend of the Yangtze River Delta [35]. Song et al. utilized the
Super-SBM model to study the EWP of 30 Chinese provinces, and used the spatial Durbin
model to explore the relationship between the digital economy, environmental regulations,
and the EWP [36]. Wang et al. used the Super-NSBM model and DEA window analysis to
evaluate the EWP of Poyang Lake Area [37].

The SFA model and other methods are usually used for evaluating the EWP. For
example, Dietz et al. used the SFA model to analyze the EWP of 135 nations [38]. Xiao et al.
selected 30 provinces in China as research objects, and measured the EWP through the
improved SFA model [12]. Xu et al. took 57 cities in the Yellow River basin as geographical
units, and revealed the evolution of the EWP from the provincial and municipal levels by
using the SFA method [39]. Some scholars also used the regression method. Knight and
Rosa used the non-standardized residual term of the regression function to measure the
EWP [40]. There are also other evaluation methods of the EWP such as the vertical and
horizontal opening grade method [41] and so on.

The literature has discussed the indicators and methods of measuring the EWP, but
there are still the following shortcomings. (1) From the perspective of research objects,
most previous studies on the EWP have focused on countries and provinces, but there are
few studies focused on the EWP of Chinese major node cities along the B&R. (2) From the
aspect of method, although some studies have used the DEA methods to evaluate the EWP,
the traditional DEA models treat the whole EWP transformation process as a “black box”,
and usually conduct single-stage DEA efficiency measurements without identifying the
effectiveness of each stage. (3) From the aspect of study contents, most of the studies only
analyze the statical EWP evaluation, but few studies conduct dynamic analyses of the EWP.

Therefore, the two-stage Super-NSBM model with undesirable output and the Malmquist–
Luenberger productivity index were selected to evaluate the EWP of Chinese major node cities
along the B&R from 2011 to 2018. The references and policy suggestions were provided for
the green construction of the Belt and Road.
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3. Methods and Materials
3.1. Methods
3.1.1. Super-NSBM Model Considering Undesired Outputs

The traditional DEA model is based on a radial perspective for efficiency evaluation. It
requires all inputs and outputs to be scaled down or expanded in the same proportion and
cannot cover slack variables, which usually leads to high measurement results. In order
to address this shortcoming, Tone proposed the SBM model considering slack variables
in 2001, which can realize the specific slack degree of each input–output indicator in the
single-stage DEA efficiency evaluation [42]. The non-angle and non-radial characteristics
of the SBM model avoid the bias brought in by the angle and radial selection [43,44]. Then,
the Super-SBM model was constructed to solve the problem of effective sorting. However,
the traditional DEA model and the SBM model for single-stage efficiency measurement are
to evaluate the production process as a “black box”, which cannot effectively evaluate the
real efficiency of the system operation [45].

The Super-NSBM model with undesired output can evaluate the efficiency of overall
decision-making unit and sub-stage efficiency. It distinguishes output into desirable and
undesirable output, and provides an effective method to solve the undesirable output
problem [46]. Therefore, this paper applies the Super-NSBM model with undesirable
outputs to measure the EWP. The equations are as follows:
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In Equations (1) and (2), mk and vk denotes the number of inputs and outputs of the
k stage, respectively. φk denotes the number of intermediate indicators. (k, h) denotes
the connection from k stage to h stage. x represents the input, y represents the output, z
represents the intermediate output, λk represents the model weight of the k stage, and ωk
represents the weight of the k stage. sk− denotes the slack variables of input indicators,
sgk and sbk denote the slack variables of desirable and undesirable outputs, respectively.
The two-stage efficiency evaluation was chosen for this study, so that k = 2. At the
same time, the weights of each stage are set equally since the first and second stages are
equally important.

3.1.2. Malmquist–Luenberger Productivity Index

The Super-NSBM model can evaluate the EWP statically for production technologies
over a period of time. However, the production process is a long-term continuous activity,
where the production technology is constantly changing. The Malmquist index has many
advantages, such as the possibility of decomposition and so on. However, the Malmquist
index cannot effectively calculate the efficiency of production with undesirable outputs.
Chung et al. proposed the Malmquist–Luenberger productivity index (MLPI) [47], which
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is an extension of the Malmquist index and includes the directional distance function of
undesirable outputs. Therefore, the MLPI is chosen for dynamic evaluation of the EWP.
The MLPI from period t to period t + 1 is calculated as follows:

MLt+1
t =

 1 +
→
D

t

o(xt, yt, bt; yt,−bt)

1 +
→
D

t+1

o (xt+1, yt+1, bt+1; yt+1,−bt+1)

× [1 +
→
D

t

o(xt, yt, bt; yt − bt)]

[1 +
→
D

t

o(xt+1, yt+1, bt+1; yt+1,−bt+1)]


1
2

(3)

where (xt, yt) and (xt+1, yt+1) denote the input and output of t and t + 1 period as the
desirable output and the undesirable output, respectively; Dt

o and Dt+1
o denote the distance

function of t period and t + 1 period, respectively.
The MLPI can be decomposed into the Malmquist–Luenberger Efficiency Change (EC)

and the Malmquist–Luenberger Technical Change (TC):

MLt+1
t = ECt+1

t × TCt+1
t (4)

If ML > 1, it indicates that the efficiency of the production unit is increasing in both
periods (period t to period t + 1). If ML < 1, it indicates the efficiency of the production
unit is decreasing. If ML = 1, it indicates that there is no change in the efficiency of
the production unit during this period. If EC > 1, it indicates that technical efficiency is
improved, and vice versa. If TC > 1, it indicates that the technical level is improved, and
vice versa.

3.1.3. The Overall Research Method

The overall research method mainly includes three research phases. Firstly, the index
system for evaluating the EWP was constructed. Secondly, the two-stage Super-NSBM
model was selected to statically evaluate the EWP of 36 Chinese major node cities along the
B&R from 2011 to 2018. Finally, the MLPI was adopted to conduct a dynamic evaluation of
the EWP. The flow chart of the research methods is shown in Figure 1.
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3.2. Indicator Selection of the EWP
3.2.1. Indicator System Structure

The EWP means obtaining the maximum level of human well-being with the mini-
mum resource and environmental consumption. Figure 2 reflects the EWP relationship of
two-stage input–output, namely the composition of the ecological economic transforma-
tion system and economic well-being transformation system. In the first stage (ecological
economic efficiency), ecological inputs are transformed by the ecological economic transfor-
mation system to obtain the output. Economic growth is only an intermediate means, not
the ultimate goal [48]. In the intermediate indicators, the economic development level is the
desirable output of the first stage and the input of the second stage, which is represented
by per capita GDP. The wastewater, waste gas, and solid waste are selected as undesirable
outputs of intermediate indicator. In the second stage (economic well-being efficiency), the
final output of economic well-being transformation system is the human well-being level.
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Figure 2. Network structure of two-stage ecological well-being transformation system considering
undesirable outputs.

According to the study of Fu et al. [49], the EWP consists of two parts: ecological
economic efficiency (GDP/EI) and economic well-being efficiency (WB/GDP), indicating
that both ecological economic efficiency and economic well-being efficiency should be
emphasized in the construction of ecological civilization. Referring to previous litera-
ture [50,51], the EWP can be expressed by the following formula:

EWP =
WB
EI

=
GDP

EI
× WB

GDP
(5)

where EWP denotes ecological well-being performance. WB denotes well-being. EI
denotes ecological input, namely, the amount of resource and environmental consumption.
GDP denotes the level of economic development.



Land 2022, 11, 1928 7 of 19

3.2.2. The EWP Evaluation Index System

(1) Input indicators
Considering the increasingly prominent problems of land resources, water resources,

and energy supply in the current urbanization process, land, water, and energy consump-
tion are included in this paper. In the selection of ecological input indicators, the total
urban water supply and the total social electricity consumption are selected to measure
the urban water resources and energy input indicators [52]. The area of urban construction
land is selected to reflect the land resource input indicator.

(2) Intermediate indicators
Due to economic growth being only an intermediate means [51], the GDP per capita is

represented to reflect the desirable output of the intermediate indicator, which is charac-
terized by per capita GDP. The undesirable outputs mainly consider the three indicators,
and wastewater discharge, sulfur dioxide (SO2), and soot/dust are chosen to reflect the
environmental pollution of the city.

(3) Output indicators
The output indicators of well-being are evaluated from the dimensions of education

development level and health care level [11]. The number of college students is chosen to
characterize the education level, and the average life expectancy is selected to measure the
health care level [53].

Taking into account the availability and continuity of data, the indicator system of the
EWP is constructed, as shown in Table 1. Per capita consumption of each city is used in
the empirical for eliminating the effect of scale. Referring to the relative literature [54,55],
all economic data are converted into comparable prices based on the year 2011 in order to
reflect the authenticity of the data.

Table 1. The indicator descriptions of the EWP.

Stage Category Dimension Secondary Indicators Unit

Input indicators Resource inputs
Water consumption Per capita water

consumption Ton

Energy consumption Per capita urban electricity
consumption Kw·h

Land consumption Per capita urban
construction land area m2

Intermediate
indicators

Desirable outputs Economic development Per capita GDP Yuan

Undesirable outputs
Wastewater discharge Per capita

wastewater discharge Ton

Exhaust gas emission Per capita SO2 kg
Waste emission Per capita Soot/dust kg

Output indicators Well-being outputs Education development
The number of college

students enrolled
per 104 persons

Person

Health care development The average life expectancy Year

3.3. Study Area and Data Sources

According to “the Vision and Action to Promote the Joint Construction of the Silk
Road Economic Belt and the 21st Century Maritime Silk Road” issued by the Chinese
government in 2015, 36 Chinese major node cities along the B&R (Lhasa is not analyzed
because of the lack of data) are selected in this paper. The study area is shown in Figure 3.
The 36 Chinese major node cities along the B&R have high economic levels and openness,
strong functions such as gathering and radiating, as well as have advantages in terms of
data availability and comparability. The ecological well-being status of the Chinese node
cities along the B&R can reflect the scale and quality of sustainable development. The
optimization of the EWP of node cities plays an important role in promoting the green Belt
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and Road initiative, so as to provide a basis for formulating and improving the sustainable
development quality policies.

Land 2022, 11, x FOR PEER REVIEW 8 of 19 
 

of node cities before and after the Belt and Road initiative can be compared and ana-

lyzed. The data of indicators were obtained from the China Urban Statistical Yearbook, 

China Statistical Yearbook, and environmental status bulletins of each city, and so on. 

Since life expectancy at birth is not included in the statistical yearbooks of most cities, 

data were collected through the internet or relevant health statistics bulletins. The data 

source of the HDI was collected from China Human Development Report Special Edi-

tion 2019.  

 

Figure 3. The study area. 

Table 2. Classification of Chinese major node cities along the B&R. 

Category Number Cities 

Node cities of Silk Road 

Economic Belt  
10 

Beijing, Hohhot, Shenyang, Changchun, Harbin, Xi’an, Lanzhou, Xining, Yin-

chuan, Urumqi 

Node cities of Maritime 

Silk Road 
17 

Tianjin, Dalian, Shanghai, Ningbo, Zhoushan, Fuzhou, Xiamen, Quanzhou, 

Qingdao, Yantai, Guangzhou, Shenzhen, Shantou, Zhanjiang, Nanning, Haikou, 

Sanya 

Inland open node cities 9 
Kunming, Hefei, Nanchang, Zhengzhou, Wuhan, Changsha, Chongqing, Cheng-

du, Guiyang 

4. Results 

4.1. The EWP Scores and Its Two-Stage Efficiency 

The input–output data of Chinese major node cities along the B&R during the peri-

od of 2011–2018 were analyzed based on the Super-NSBM model, and MaxDEA soft-

ware was used to evaluate the EWP. The EWP scores are shown in Table 3. On the 

whole, the average EWP was 0.901, and the average EWP values of 12 cities reached ef-

fectiveness (Figure 4). These cities are the most competitive and green development po-

tential cities, with a strong agglomeration effect and scale benefit. Sanya, Shenzhen, and 

Haikou are the top three performers in terms of the EWP value. However, the average 

EWP values of 24 cities were less than one, which did not achieve DEA effectiveness. 

The cities with relatively low EWP values include Xining, Ningbo, and Urumqi, indicat-

ing that the transformation of the EWP in these cities is not satisfactory and needs to re-

duce resource waste and environmental pollution for promoting the improvement of the 

EWP. 

Figure 3. The study area.

According to the national elaboration of the Belt and Road initiative, the Chinese
major node cities along the B&R are classified into three categories according to their
opening directions and roles: node cities of the Silk Road Economic Belt, node cities of
the Maritime Silk Road, and inland open node cities, and the classification is shown in
Table 2. Considering that the statistical caliber of some indicators such as water resource
consumption has changed since 2019, the study period from 2011 to 2018 is selected in this
paper. The study period has experienced the Belt and Road initiative proposed in 2013,
the “12th Five Year Plan”, “13th Five Year Plan”, and “new urbanization construction”,
which has important research value. Furthermore, the relative changes in the EWP of
node cities before and after the Belt and Road initiative can be compared and analyzed.
The data of indicators were obtained from the China Urban Statistical Yearbook, China
Statistical Yearbook, and environmental status bulletins of each city, and so on. Since life
expectancy at birth is not included in the statistical yearbooks of most cities, data were
collected through the internet or relevant health statistics bulletins. The data source of the
HDI was collected from China Human Development Report Special Edition 2019.

Table 2. Classification of Chinese major node cities along the B&R.

Category Number Cities

Node cities of Silk Road
Economic Belt 10 Beijing, Hohhot, Shenyang, Changchun, Harbin, Xi’an,

Lanzhou, Xining, Yinchuan, Urumqi

Node cities of Maritime Silk Road 17
Tianjin, Dalian, Shanghai, Ningbo, Zhoushan, Fuzhou, Xiamen,
Quanzhou, Qingdao, Yantai, Guangzhou, Shenzhen, Shantou,

Zhanjiang, Nanning, Haikou, Sanya

Inland open node cities 9 Kunming, Hefei, Nanchang, Zhengzhou, Wuhan, Changsha,
Chongqing, Chengdu, Guiyang



Land 2022, 11, 1928 9 of 19

4. Results
4.1. The EWP Scores and Its Two-Stage Efficiency

The input–output data of Chinese major node cities along the B&R during the period
of 2011–2018 were analyzed based on the Super-NSBM model, and MaxDEA software was
used to evaluate the EWP. The EWP scores are shown in Table 3. On the whole, the average
EWP was 0.901, and the average EWP values of 12 cities reached effectiveness (Figure 4).
These cities are the most competitive and green development potential cities, with a strong
agglomeration effect and scale benefit. Sanya, Shenzhen, and Haikou are the top three
performers in terms of the EWP value. However, the average EWP values of 24 cities were
less than one, which did not achieve DEA effectiveness. The cities with relatively low EWP
values include Xining, Ningbo, and Urumqi, indicating that the transformation of the EWP
in these cities is not satisfactory and needs to reduce resource waste and environmental
pollution for promoting the improvement of the EWP.

Table 3. The EWP of 36 Chinese major node cities along the B&R from 2011 to 2018.

Category City 2011 2012 2013 2014 2015 2016 2017 2018 2011–2018

Node
cities of

Silk Road
Economic

Belt

Beijing 1.010 0.710 1.000 1.020 1.040 1.030 1.060 1.140 1.001
Hohhot 1.060 1.040 1.030 1.010 1.000 0.730 1.100 1.030 1.000

Shenyang 0.720 0.600 0.670 0.660 0.660 0.620 0.670 0.690 0.661
Changchun 0.810 0.760 0.820 1.020 0.850 1.020 1.120 1.030 0.929

Harbin 1.040 0.810 1.120 1.060 1.110 1.110 1.060 1.170 1.060
Xi’an 1.050 1.060 1.100 1.090 1.120 1.320 1.260 1.180 1.148

Lanzhou 0.690 0.670 1.040 1.010 1.010 1.020 0.800 0.710 0.869
Xining 0.580 0.580 0.590 0.600 0.620 0.600 0.620 0.530 0.590

Yinchuan 0.550 0.640 1.910 0.640 0.640 0.620 0.550 0.530 0.760
Urumqi 0.510 0.410 0.530 0.560 0.560 0.500 0.540 0.530 0.518

Node
cities of-

Maritime
Silk Road

Tianjin 0.670 0.610 0.640 0.630 0.610 0.580 0.670 0.670 0.635
Dalian 0.540 0.540 0.590 0.590 0.630 0.580 0.580 0.690 0.593

Shanghai 0.590 0.540 0.600 0.600 0.630 0.570 1.060 0.520 0.639
Ningbo 0.510 0.490 0.530 0.540 0.530 0.520 0.620 0.480 0.528

Zhoushan 0.610 0.590 0.560 0.580 0.610 0.610 1.010 1.050 0.703
Fuzhou 0.860 0.740 0.850 1.010 1.010 1.020 1.030 0.800 0.915
Xiamen 0.660 0.670 0.680 0.580 0.610 0.650 0.670 0.850 0.671

Quanzhou 0.720 1.010 1.040 1.030 1.090 1.060 1.070 1.020 1.005
Qingdao 0.790 0.710 0.750 0.720 0.690 0.770 1.090 1.090 0.826

Yantai 0.780 0.740 0.780 0.790 0.860 0.770 1.070 1.070 0.858
Guangzhou 0.640 0.710 0.710 0.730 0.720 0.660 0.750 0.740 0.708
Shenzhen 1.200 1.240 1.240 1.270 1.240 1.160 1.190 1.260 1.225
Shantou 1.030 1.000 1.020 1.030 1.020 1.140 1.190 1.040 1.059

Zhanjiang 1.170 1.220 1.170 1.180 1.180 1.160 1.180 1.180 1.180
Nanning 0.760 0.760 1.010 0.800 0.900 1.000 1.060 1.030 0.915
Haikou 1.110 1.120 1.160 1.430 1.340 1.110 1.130 1.250 1.206
Sanya 1.440 1.570 1.580 1.660 1.620 1.530 1.830 1.750 1.623

Inland
Open

node cities

Kunming 0.740 1.010 1.000 1.040 1.050 1.070 1.000 0.770 0.960
Hefei 1.040 1.040 1.020 1.030 1.020 1.030 0.930 0.810 0.990

Nanchang 1.070 1.060 1.030 1.060 1.050 1.040 1.080 1.080 1.059
Zhengzhou 1.020 1.050 1.090 1.110 1.070 1.100 1.160 1.120 1.090

Wuhan 1.000 0.850 0.950 1.030 1.080 1.060 0.800 0.710 0.935
Changsha 1.110 1.120 1.100 1.080 1.110 1.050 1.110 1.040 1.090

Chongqing 0.820 0.750 0.650 0.650 0.610 0.580 0.610 0.610 0.660
Chengdu 0.930 0.850 0.960 1.010 1.010 0.890 1.000 1.010 0.958
Guiyang 1.070 1.080 1.020 0.840 0.840 0.760 0.700 0.740 0.881

Average value 0.858 0.843 0.931 0.908 0.909 0.890 0.955 0.915 0.901
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Figure 4. Ranking of the average EWP of Chinese major node Cities along the B&R.

From the aspect of the trend, the average EWP of 36 Chinese node cities along the
B&R in 2011 was 0.858, and the average EWP in 2017 was 0.955, which was higher than
that in 2011. Especially after 2013, the average EWP had a significant decline, and then
steadily improved. However, the average EWP slightly decreased in 2018, indicating that
2017 was not an inflection point for the continuous improvement of the EWP, and the urban
development model for the continuous improvement of the EWP had not yet been formed.

The level of EWP depends on the ecological economic efficiency in the first stage and
the economic well-being efficiency in the second stage. Appendix A shows the decomposi-
tion of the EWP from 2011 to 2018. It can be seen that only Changsha, Sanya, Shenzhen,
and Zhengzhou achieved DEA effectiveness, and the efficiency values in the two stages
were consistently greater than one. It shows that most node cities failed to achieve the
coordinated development of ecology, economy, and well-being during the study period.
The average ecological economic efficiency in the first stage was 0.91. Shenzhen, Sanya,
Changsha, Beijing, Quanzhou, Zhanjiang, Zhengzhou, Hohhot, and Haikou had an average
ecological economic efficiency greater than one. It indicates that the nine cities achieved
better-coordinated development of ecological environment and economic growth.

The average economic well-being efficiency in the second stage was 1.09. From Ap-
pendix A, 12 cities of economic well-being efficiency achieved DEA effectiveness, among
which Haikou, Sanya, Changsha, Xiamen, Zhengzhou, Hefei, Chongqing, Yinchuan, Nan-
ning, Beijing, Kunming, and Lanzhou all had economic well-being efficiency greater than
one. It indicates that the ecological civilization construction of these cities promotes the
growth of ecological well-being while boosting the development of the ecological economy.
Twenty-three cities in both 2014 and 2017 had economic well-being efficiency greater than
one. However, cities such as Lanzhou, Yinchuan, and Xining continue to have low eco-
nomic well-being efficiency, which has become a shortcoming for these cities to improve
people’s well-being.

4.2. Analysis of the MLPI and Its Decomposition

Based on the static analysis of the Super-NSBM model, the MLPI approach was used to
study the dynamic trend of the EWP. The average values of the MLPI of 36 node cities, and
its efficiency change (EC) and technological change (TC) were obtained by using MaxDEA
8 Ultra software, as shown in Table 4. As a whole, the MLPI of Chinese node cities along
the B&R ranged from 1.065 to 1.088 during the study period, and the average value of the
MLPI was 1.048. Specifically, 2012–2013 was a period of accelerated growth. 2013–2014 was
the recession stage of the MLPI, and 2014–2018 was a rising period of the MLPI.
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Table 4. MLPI and its decomposition of 36 Chinese major node cities along the B&R from 2011
to 2018.

City MLPI EC TC City MLPI EC TC

Changsha 1.025 1.039 1.063 Shenzhen 1.007 1.020 1.027
Changchun 1.043 1.067 1.105 Shenyang 0.994 1.035 1.024
Changsha 0.990 1.017 1.007 Tianjin 1.018 1.145 1.143
Chengdu 1.020 1.038 1.048 Urumqi 1.013 1.083 1.082

Dalian 1.028 1.079 1.109 Wuhan 0.969 1.053 1.005
Fuzhou 1.021 1.058 1.057 Xi’an 1.012 1.019 1.031

Guangzhou 1.035 1.083 1.090 Xining 0.994 1.017 1.007
Guiyang 0.952 1.063 1.012 Xiamen 1.028 1.149 1.173
Harbin 1.028 1.043 1.054 Yantai 1.009 1.022 1.032
Haikou 1.013 1.018 1.028 Yinchuan 1.167 1.030 1.156
Hefei 0.971 1.034 1.002 Zhanjiang 1.001 1.004 1.006

Hohhot 0.991 1.019 1.010 Zhengzhou 1.007 1.024 1.031
Kunming 1.031 1.026 1.042 Chongqing 0.976 1.039 1.006
Lanzhou 1.045 1.057 1.091 Zhoushan 1.080 1.106 1.193

Nanchang 1.002 0.999 1.000 2011–2012 1.065 1.008 1.068
Nanning 1.077 0.965 1.038 2012–2013 1.076 1.140 0.955
Ningbo 1.087 1.104 1.162 2013–2014 0.976 0.975 1.004

Qingdao 1.023 1.062 1.080 2014–2015 1.066 1.015 1.053
Quanzhou 0.999 1.051 1.051 2015–2016 1.068 0.972 1.107

Sanya 0.954 1.017 0.967 2016–2017 1.054 1.038 1.017
Shantou 1.005 1.148 1.148 2017–2018 1.088 0.964 1.133

Shanghai 0.955 0.995 0.946 Average
value 1.056 1.016 1.048

The MLPI and its decomposition are further explored, as shown in Figure 5. The
MLPI of Chinese node cities along the B&R has obvious regional characteristics. The MLPI
growth rates of the node cities of the Maritime Silk Road and inland open node cities from
2011 to 2018 were 6.034% and 0.837%, respectively. The MLPI decline rate of node cities of
the Silk Road Economic Belt was 2.931%. The EC reflects the resource allocation capacity,
resource use efficiency, and scale agglomeration changes in cities. The average value of EC
from 2011 to 2018 was 1.016. In 2012–2013, the average value of EC had improved obviously.
This confirmed the proposal and promotion of the ecological civilization strategy in China.
The average values of EC of nine cities, namely, Quanzhou, Xining, Shenyang, Hohhot,
Changsha, Chongqing, Hefei, Wuhan, Shanghai, Sanya, and Guiyang had not achieved
DEA effectiveness, indicating that the resource utilization rates of these node cities need to
be further strengthened.

The TC reflects the impact brought about by new processes and innovative technolo-
gies, such as energy conservation and emissions reduction, on the EWP. The average value
of TC from 2011 to 2018 was 1.04. It indicates that the TC plays a major role in the devel-
opment process of urban EWP and is an important driver of EWP improvement. There
was a decline in 2012–2013, showing a convergence trend, and it reached a maximum in
2017–2018. Except for Nanchang, Ningbo, and Nanning, the average TC values of the other
33 cities achieve DEA effectiveness. The most obvious growth of TC was Xiamen, which
showed that Xiamen’s technological progress and innovation have developed rapidly in
recent years.
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5. Discussion
5.1. Static Analysis on the EWP

The results in Section 4 have revealed the EWP and its two-stage efficiency. From a
general perspective, the overall average EWP of 36 Chinese node cities along the B&R had
not reached effectiveness. Sanya, Shenzhen, and Haikou ranked among the top three in
terms of average EWP. They have some common characteristics in terms of economic de-
velopment and environmental protection. These node cities are developed port cities along
the east coast, with a high level of economic development and scientific and technological
innovation. The industries are mainly high-end manufacturing and service industries and
have formulated strict regulations on pollutant control, with strong green development
capacity and potential [53]. Green construction of the B&R should consider the major
Chinese node cities as a key breakthrough, and should focus on the public–private leading
toward integrated management for the Belt and Road region [56].

In terms of the two-stage efficiency evaluation on the EWP, the ecological economic
efficiency in the first stage was significantly lower than the economic well-being efficiency
in the second stage. It indicates that the low ecological economic efficiency was the main
reason for the low overall level of the EWP. The average ecological economic efficiency of
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the remaining nine cities achieved DEA effectiveness. Especially in some western node
cities, low ecological economic efficiency is the main reason for the low overall level of
the EWP, and these cities should focus on improving ecological economic efficiency. The
economic well-being efficiency of 12 cities achieved DEA effectiveness. In particular, the
economic well-being efficiency of the eastern developed node cities was at a low level such
as in Ningbo. These node cities should broaden the transformation path of the ecological
economy, promote ecological industrialization and industrial ecological development, and
increase objective well-being.

5.2. Dynamic Analysis of the EWP

The dynamic change of the MLPI in Table 4 shows that the MLPI has shown a fluc-
tuating upward trend from 2011 to 2018. This was achieved by the node cities, which
successively issued a number of policies and regulations in recent years. This observation
mirrored that of Zhang [57], China’s “12th Five Year Plan” and “13th Five Year Plan” vig-
orously promoted the construction of ecological civilization, and 10 of the 36 major node
cities of the B&R were approved as the first batch of the ecological civilization construc-
tion demonstration areas in 2013. Under the constraint of resources and the environment,
protecting the natural environment and ecological resources has gradually become an im-
portant task of the state and local governments. The node cities of the Maritime Silk Road
ranked first (1.074), and the node cities of the Silk Road Economic Belt (1.062) and inland
open node cities (1.017) ranked second and third according to the MLPI, respectively. The
MLPI of the node cities of the Maritime Silk Road was significantly higher than the whole
average value, and its change trend was the closest to the overall average value. It indicates
that the node cities of the Maritime Silk Road have a prominent leading position. As shown
in Figure 5, the MLPI of the node cities of the Silk Road Economic Belt in 2013–2014 had
significantly declined, which shows that these cities in the northwest and northeast region
are more sensitive to the impact of policies.

The average EC of the node cities of the Silk Road Economic Belt ranked first (1.031)
and the node cities of the Maritime Silk Road ranked second (1.020), while the inland open
node cities ranked third (0.991). The basis of resource allocation capacity and resource
use efficiency in the Silk Road Economic Belt is better than that of the Maritime Silk Road
node cities, and technical efficiency grows significantly. Moreover, the average TC of the
Maritime Silk Road node cities, Silk Road Economic Belt node cities, and inland open node
cities were 1.060, 1.041, and 1.033, respectively. This is because the technological innovation
levels of the Maritime Silk Road node cities are relatively high. These cities rely on the
natural geographical advantages of the coastal areas, and they form a superior cumulative
effect of human and capital as well as technology, which has less pressure on the resources
and environment [58]. The TC of the inland open cities was the lowest, and these cities
need to further promote scientific and technological innovation and technological progress.

5.3. Comprehensive Comparative Analysis Based on the EWP and HDI

To achieve high-quality urban development, it is necessary not only to improve
the efficiency of transforming ecological resources into human well-being, but also to
improve the human well-being level. The high EWP values of some cities have low
natural consumption, but the well-being levels of these cities are not high. For example,
Sanya, Haikou, and other cities are of the environmentally dominant type. In this study,
the relationship between the EWP and HDI was comprehensively analyzed by using a
quadrant scatter chart. EWP ≥ 0.8 donates a city with a good EWP level in this study.
According to the classification criteria of the Human Development Report, HDI ≥ 0.8
represents a high level of human development. The quadrant scatter chart based on the
EWP and HDI of Chinese node cities along the B&R is shown in Figure 6.
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Figure 6. The quadrant scatter chart of EWP and HDI of Chinese major node cities along the B&R.

There are four cities of the high efficiency and high well-being (H-H) type, including
Beijing, Shenzhen, Changsha, and Wuhan. Among them, Beijing has the best coordination
between the EWP and HDI. In recent years, the economic aggregate of Beijing and Shen-
zhen has taken the lead in China. The growth rate of well-being has caught up with the
consumption rate of ecological resources. This shows that the efficiency of the transfor-
mation of ecological resources into people’s well-being in such cities has reached a high
level, and that the economy, society, and environment developed in relative coordination.
These cities are the ideal state of the sustainable development model, but their proportion
is relatively small.

Low efficiency and high well-being (L-H) cities are Shanghai, Tianjin, Guangzhou,
Dalian, Ningbo, Hohhot, and Qingdao. The typical feature of these cities is that the
well-being level has reached a high level, but the efficiency of transferring ecological
resources into well-being is relatively low. For example, Guangzhou has a high HDI level,
but this progress is achieved by using a lot of ecological resources. These cities should
combine efficiency enhancement and pollution control, promote the advanced and rational
development of industries, build a new and diversified industrial structure, and establish
an environmentally friendly green economic development model.

Low efficiency and low well-being (L-L) cities include nine cities, namely, Urumqi,
Zhoushan, Yantai, Yinchuan, Chongqing, Xiamen, Shenyang, Guiyang, and Xining. The
development characteristics of such cities are that the HDI has not reached a high level
of development as a whole, and the efficiency of transforming ecological resource inputs
into well-being level is low. These cities have relatively large spaces to improve their
sustainable development, and the improvement path of capacity expansion, efficiency
enhancement, and pollution control should be adopted. In particular, Urumqi, Xining, and
other cities belong to underdeveloped regions in western China, which are remote and
underdeveloped in the economy, information, and technology.

High efficiency and low well-being (H-L) cities include 16 cities, namely, Changchun,
Chengdu, Fuzhou, Haikou, Sanya, Hefei, Nanchang, Harbin, Quanzhou, Nanning, Lanzhou,
Shantou, Zhanjiang, Kunming, Xi’an, and Zhengzhou. The development of these cities
is characterized by high EWP, but the HDI is low. In particular, Sanya has an advantage
in the ecological environment, but it still needs to improve its medical, educational, and
economic levels.
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6. Conclusions and Policy Recommendations
6.1. Conclusions

The two-stage Super-NSBM model was used to evaluate the static EWP of 36 Chinese
node cities along the B&R from 2011 to 2018. Then, this paper decomposed the EWP into
two stages, ecological economic efficiency and economic well-being efficiency, and opened
the “black box” of the transformation process of urban EWP. Finally, the MLPI was applied
to conduct the dynamic evaluation of the EWP. The following conclusions are obtained.

(1) The overall average EWP of 36 Chinese major node cities along the B&R was 0.901,
indicating that the overall production frontier had not reached effectiveness. The average
EWP values of 12 cities achieved DEA effectiveness, and Sanya, Shenzhen, and Haikou
were the top three performers. The cities with relatively low-efficiency values include
Xining, Ningbo, and Urumqi.

(2) The ecological economic efficiency in the first stage was significantly lower than the
economic well-being efficiency in the second stage. It shows that low ecological economic
efficiency is the main reason for the low comprehensive level of the EWP from 2011 to
2018. Only Changsha, Sanya, Shenzhen, and Zhengzhou achieved DEA effectiveness in
two stages, whereas most other node cities along the B&R failed to achieve effectiveness in
two stages.

(3) From the dynamic analysis, the average values of the MLPI were all greater than 1.
The MLPI from 2011 to 2018 experienced a fluctuating upward trend. The node cities of
the Maritime Silk Road ranked first, and node cities of the Silk Road Economic Belt and
inland open node cities were ranked second and third according to the MLPI, respectively.
From the further decomposition of the MLPI, technological change was the main factor to
improve the EWP of node cities along the B&R.

Nonetheless, this study has some inadequacies, and it needs further research. Concern-
ing the EWP evaluation, there are some limitations in data collection at the city scale. The
evaluation indicators need to be improved in the next study, such as residents’ subjective
perception of the ecological well-being indicator and so on. In addition, the spatio-temporal
evolution of the EWP of Chinese major node cities along the B&R should be treated as
extensions of this study.

6.2. Policy Recommendations

First, it is necessary to consider fully the comparative advantages of Chinese major
node cities, which strengthen the interaction and cooperation between the coastal, inland,
northwest, northeast, and southwest territories in China. The node cities of the Maritime
Silk Road should take advantage of participating in and leading international cooperation
and competition. These node cities should reduce their ecological resource consumption
and undesirable outputs, promote green and low-carbon development, strengthen resource
utilization economization, reduce pollutant emissions, and establish a long-term monitor-
ing mechanism for production pollution and environmental health. The node cities of the
Silk Road Economic Belt and inland open node cities should make full use of ecological
resources, improve technologies to enhance ecological economic efficiency, actively cooper-
ate with the eastern coastal cities, and promote these cities to be deeply integrated into the
Belt and Road construction.

Second, it is crucial to accurately orient and narrow the differences between node
cities along the B&R. The cities with high efficiency and high well-being should focus
on reducing the input of ecological resources, improving the utilization rate of resources
and energy, and reducing pollution emissions. The cities with low efficiency and high
well-being need to increase environmental pollution control, strengthen environmental
pollution supervision, and control pollutant emissions. The cities with low efficiency and
low well-being need to continue to promote economic development, improve the level of
education and health care, and improve the quality of life of residents. At the same time, it
is also necessary to improve the utilization efficiency of resources and energy, and control
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the emissions of pollutants. The cities with high efficiency and low well-being should
comprehensively improve their economic, medical, and educational service capabilities.

Finally, the Chinese major node cities along the B&R should strengthen the driving
role of scientific and technological innovation on green development, and improve the
efficiency of resource allocation. The node cities of the Silk Road Economic Belts and inland
open node cities should solve the environmental pollution problem in economic develop-
ment, accelerate industrial transformation and upgrading, and gradually achieve a cleaner
production process and green industrial structure. The node cities of the Maritime Silk
Road should strengthen the transformation and utilization of scientific and technological
innovation, promote the marketization of innovative achievements, establish an incentive
and restraint mechanism for scientific and technological innovation, and accelerate the
maximization of ecological well-being.
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Appendix A. Decomposition of The EWP of Chinese Node Cities along the B&R
during the Period of 2011–2018

City
2011 2012 2013 2014 2015 2016 2017 2018

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Beijing 1.16 1.02 0.99 0.56 1.15 1.01 1.15 1.04 1.16 1.09 1.13 1.06 1.06 1.12 1.19 1.33
Changchun 0.75 1.00 0.67 0.97 0.75 1.00 1.07 1.05 0.87 0.91 1.09 1.04 1.09 1.27 1.09 1.04
Changsha 1.17 1.25 1.17 1.27 1.16 1.21 1.14 1.16 1.12 1.24 1.14 1.10 1.07 1.24 1.13 1.08
Chengdu 0.89 1.00 0.78 1.00 0.98 1.00 1.00 1.02 0.95 1.03 0.92 0.82 0.97 1.01 1.06 1.02

Dalian 0.81 0.42 0.74 0.46 0.88 0.46 0.77 0.50 0.72 0.64 0.65 0.60 0.70 0.56 0.82 0.65
Fuzhou 0.82 1.00 0.67 0.92 0.81 0.97 1.06 1.01 1.09 1.01 1.11 1.04 1.09 1.06 0.79 1.00

Guangzhou 0.72 0.68 0.70 0.91 0.73 0.86 0.76 0.88 0.80 0.78 0.81 0.60 0.81 0.80 0.83 0.78
Guiyang 0.87 1.07 0.79 1.17 0.85 1.04 0.77 1.00 0.78 1.00 0.68 1.00 0.63 0.79 0.67 0.92
Harbin 1.01 1.08 0.72 1.00 0.99 1.27 1.01 1.10 1.05 1.26 1.03 1.24 1.03 1.12 1.05 1.42
Haikou 1.00 1.26 1.02 1.26 0.99 1.39 0.99 2.49 0.93 2.02 1.07 1.13 1.02 1.21 0.99 1.67
Hefei 0.99 1.09 0.94 1.07 1.00 1.03 1.02 1.05 0.99 1.04 0.96 1.06 0.88 1.00 0.78 1.00

Hohhot 1.13 1.13 1.09 1.08 1.12 1.05 1.08 1.03 1.09 1.00 0.70 0.92 1.03 1.22 1.04 1.07
Kunming 0.60 0.96 1.01 1.01 0.94 1.00 0.89 1.09 0.90 1.11 0.98 1.16 0.96 1.00 0.75 0.77
Lanzhou 0.57 0.73 0.69 0.60 0.79 1.09 0.89 1.02 0.92 1.02 0.87 1.03 0.76 0.87 0.66 0.73

Nanchang 0.96 1.14 1.03 1.14 0.97 1.07 0.88 1.12 0.90 1.09 0.92 1.09 1.01 1.17 1.00 1.18
Nanning 0.62 0.91 0.61 0.93 0.80 1.02 0.64 0.97 0.76 1.00 0.88 1.00 0.95 1.13 0.97 1.06
Ningbo 0.84 0.40 0.79 0.38 0.82 0.42 0.85 0.42 0.76 0.45 0.86 0.40 0.91 0.52 0.84 0.36

Qingdao 0.79 0.93 0.72 0.80 0.91 0.72 0.87 0.71 0.84 0.66 1.00 0.69 1.12 1.20 1.11 1.20
Quanzhou 0.74 0.86 1.14 1.02 1.16 1.07 1.15 1.07 1.18 1.21 1.19 1.14 0.85 1.16 1.14 1.05

Sanya 1.25 2.29 1.23 3.66 1.25 3.74 1.27 4.93 1.25 4.25 1.22 3.25 1.30 4.72 1.27 4.07
Shantou 0.97 1.06 0.95 1.01 0.78 1.04 0.92 1.06 0.96 1.04 0.89 1.31 1.19 1.46 0.80 1.09
Shanghai 0.93 0.45 0.91 0.40 0.77 0.53 0.72 0.56 0.81 0.56 0.77 0.51 1.16 1.14 0.80 0.41
Shenzhen 1.28 1.49 1.30 1.64 1.30 1.63 1.31 1.76 1.30 1.63 1.24 1.39 1.23 1.47 1.29 1.69
Shenyang 0.70 0.82 0.74 0.52 0.78 0.64 0.73 0.65 0.70 0.69 0.65 0.65 0.65 0.76 0.67 0.76
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City
2011 2012 2013 2014 2015 2016 2017 2018

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Tianjin 0.83 0.59 0.81 0.51 0.89 0.54 0.79 0.60 0.77 0.58 0.93 0.43 0.90 0.59 0.89 0.57
Urumqi 0.70 0.38 0.57 0.29 0.78 0.37 0.70 0.46 0.77 0.42 0.65 0.38 0.66 0.45 0.74 0.36
Wuhan 0.93 1.00 0.80 0.95 1.00 0.99 1.11 1.06 1.13 1.17 1.04 1.13 0.79 0.97 0.67 0.92
Xi’an 0.98 1.11 0.88 1.13 1.06 1.23 0.92 1.19 0.98 1.28 0.99 1.95 0.98 1.69 1.10 1.44

Xining 0.66 0.53 0.58 0.60 0.55 0.62 0.55 0.64 0.65 0.61 0.64 0.58 0.69 0.62 0.63 0.45
Xiamen 0.70 0.75 0.70 0.79 0.74 0.75 0.67 0.60 0.72 0.60 0.76 0.61 0.70 0.67 0.79 0.96
Yantai 0.78 1.00 0.73 1.00 0.81 0.92 0.79 1.00 0.89 1.00 0.85 0.84 1.06 1.14 1.17 1.15

Yinchuan 0.63 0.48 0.71 0.63 1.32 20.78 0.68 0.63 0.71 0.61 0.68 0.61 0.66 0.45 0.65 0.44
Zhanjiang 0.95 1.41 1.16 1.58 1.02 1.40 1.06 1.43 1.04 1.43 1.04 1.39 1.06 1.44 1.04 1.43

Zhengzhou 1.04 1.04 1.07 1.10 1.02 1.20 1.07 1.24 1.05 1.15 1.05 1.21 1.01 1.37 1.01 1.28
Chongqing 0.78 0.88 0.69 0.93 0.73 0.62 0.75 0.60 0.74 0.54 0.72 0.50 0.79 0.54 0.82 0.50
Zhoushan 0.98 0.46 0.79 0.53 0.86 0.45 0.95 0.44 0.78 0.56 0.93 0.49 1.04 1.02 1.19 1.11
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