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Abstract: Being one of the weakest economies in the world, livelihoods in Afghanistan remain highly
dependent on local ecosystem services. However, the risk of ecosystem services degradation in
Afghanistan over the past two decades has significantly increased, mainly due to rapid changes in
land-use and land-cover (LULC). As such, policy makers must be able to estimate the impact of LULC
changes on various ecosystem services. By utilizing GlobeLand30 land cover products for 2000, 2010
and 2020, and by adopting the value transfer method, this study assessed the ecosystem services
value (ESV) changes in response to the changes of LULC in Afghanistan. Additionally, the dynamics
of the land system (DLS) model was innovatively coupled with linear programming to predict likely
scenarios of ESV changes by 2030. The predicted results were also validated against actual land cover
and achieved a Kappa value of 0.78. The results showed that over the 20-year period, ecologically
important LULC categories such as forest, water bodies and grassland were severely unstable and
rapidly decreasing in scope. These LULC types were being threatened by agricultural, built-up and
unused lands. During this period, we estimated a decrease in the total ESV from 161 billion USD
in 2000 to 152.27 billion USD in 2020. About 92% of this decrease was shared by supporting and
provisioning services. The simulated scenarios also showed that ESV will likely further decrease
under Business-As-Usual (BAU), and Rapid Economic Development (RED) scenarios. Positively, an
Environmental Protection (ENP) scenario is predicted, with a 4.5% increase in ESV by 2030. However,
achieving this scenario requires the enforcement of strict environmental protection measures.

Keywords: ecosystem services value; value coefficient; DLS; scenario analysis; land use change

1. Introduction

Ecosystems are life-supporting systems and the foundation of human socioeconomic
development. Through their functions, they provide various services which are essential
for livelihoods and social welfare [1–4]. These services are broadly categorized into “direct
affecting”, e.g., regulating, provisioning services, and cultural and “indirect affecting”, e.g.,
supporting services [5,6]. However, the dynamics of land-use and land-cover (LULC) can
directly affects the status, integrity and supply of ecosystem services [7,8]. While a heavily
human-managed land system is able to meet various human needs, its excessive usage
disturbs ecological processes, affecting its capacity to remain productive [9]. In the recent
past, the pace and intensity of LULC change have been exacerbated by growing human
activities [10].

During the past few decades, the rapid growth of the population and socioeconomic
development have accelerated urban and agricultural sprawl globally, encroaching upon
natural landscapes such as forest and grasslands [11,12]. A study by Robertson and
Swinton [13], for instance, revealed that globally, each year, about 13 million ha of land
is added for agriculture, mainly encroaching on woodland areas. Such rapid conversion
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of ecologically important landscapes has severely impacted biodiversity and reduced the
capacity of ecosystems to serve future generations [14–17]. In fact, the additional gains
generated from the conversion of natural landscapes to production-oriented lands comes
with the cost of declining ecosystem services [18]. It is estimated that over the past 50 years,
nearly 60% of ecosystem services have degraded [5].

Policy makers in the recent past have paid particular attention to the question of
how to minimize the adverse effects of rapid socioeconomic development on the supply of
ecosystem services. Communicating changes in ecosystem services in monetary value offers
a globally accepted measure that can meet the needs of policy makers [19–21]. However,
we are faced with a major challenge, i.e., how to communicate the economic effect of the
ecosystem service changes, since most of the supplied services are not captured by market
values [22–24]. Therefore, accurate estimations of the spatiotemporal changes of ecosystem
services remain difficult.

Broadly, at least four major approaches to ecosystem services valuation (ESV) are found
in the existing literature [25]. They include the benefits transfer approach, stated preference
approaches such as the contingent valuation method, cost-based approaches such as the
replacement cost and avoided cost methods, and revealed preference approaches such
as the travel cost and market prices methods [26]. Amongst these methods, the benefits
transfer method (BTM) is an easy to apply approach that uses a given valuation study to
assess a new location of similar characteristics [26].

Over the past two decades, this method has been applied to a wide range of envi-
ronmental studies, from forest management [27] to water quality and health risks [28,29],
as well as waste management [30]. Likewise, the research of Costanza, d’Arge, De Groot,
Farber, Grasso, Hannon, Limburg, Naeem, O’neill and Paruelo [4], for the first time, ap-
plied BTM to assess the monetary value of 17 ecosystem services provided by 16 global
landscapes. Later, these estimates were further updated by conducting more than 300 case
studies across various region of the globe [16,22]. Most importantly, this research provided
a basis for utilizing estimates and the model in other regions. As a result, many researchers
have used this approach and assessed the impact of LULC changes on ecosystem ser-
vices [21,31]. Under this approach, changes in the supply of ecosystem services were
investigated by considering LULC changes as an alternative to the supply of ecosystem
services [12,22,24,32–39]. However, much of the research which has utilized the Costanza,
d’Arge, De Groot, Farber, Grasso, Hannon, Limburg, Naeem, O’neill and Paruelo [4,22]
coefficients considered changes of the physical supply of ecosystem services only.

Some later studies, therefore, argued that the value of services is not only affected by
quantity changes in supply, but also by the simultaneous changes of demand of goods and
services [21,40,41]. For this reason, in their study, Bryan, Ye and Connor [21] proposed a
more complex methodology that incorporates the scarcity effect of supply and demand
into the Ye, et al. [42] model of constant coefficients. Scarcity refers to limitations of
ecosystem services that increase the willingness of consumers to pay high prices, which
may significantly impact valuations of ecosystem services [21]. The effect of scarcity is
particularly crucial for land types that are prone to high demand and supply changes, such
as a built-up areas. However, this methodology depends on the availability of specific
economic indicator data which may not be available for some regions for the required
period. Also, the LULC quality effect, which may change over time and can alter the
ecosystem services supply capacity. Some recent research has used the vegetation index to
address regional capacity differences of land use in terms of the provision of ecosystem
services. A study by Fei, et al. [43], Xie, et al. [44] for instance, incorporated the net primary
productivity (NPP) of natural vegetation into constant coefficients to account for regional
capacity differences in the supply of ecosystem services. The effect of vegetation quality is
particularly significant in natural land use types such as forests and water bodies.

Ecosystem services in Afghanistan are also of particular importance and urgently
require the attention of policy makers to protect their supply capacity in the face rapid
socioeconomic development. Due to weak industrial growth, the livelihoods of nearly 80%
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of the Afghan population are directly or indirectly supported by the local ecosystem [45].
Furthermore, agroecosystem services alone provide jobs to about 40–60% of the labor force
and contribute to one-fourth of the gross domestic product (GDP) [46,47]. Similarly, grass-
lands and forests support local livelihoods by protecting soils and water for agriculture
and providing goods and services for energy, construction, and other sectors [48]. For
instance, grassland occupies about 47% of country’s land and supplies about three quarters
of the livestock fodder [48]. Likewise, forests cover nearly 2% of the total land area in
Afghanistan; these areas produces internationally valued timber and non-timber prod-
ucts [49]. Moreover, rangeland and forestlands prevent natural disasters and safeguard
locals from socioeconomic damages [50]. However, despite their enormous economic bene-
fits, ecosystem services have been traditionally undervalued by decision makers, mainly
due to a lack of knowledge and poor-quality research [49]. In Afghanistan, ESV is even
more important in the face of four decades of continuous instability that has damaged the
structure and functioning of ecosystem [45,51]. The crisis grows further as rapid population
growth, particularly after 2000, and deteriorating climatic conditions are adding to the
pressure on ecosystem. Currently, of the identified ecoregions in Afghanistan, 38% of all
land areas are classified as endangered and another 61% are as vulnerable [52]. Likewise,
nearly 70% of woodland areas in Afghanistan have been identified as vulnerable [52].
Satellite evidence has revealed that forests in many areas are in the brink of disappearance.

Besides the aforementioned issues, it is also important to understand the changes of
ecosystem services due to huge foreign investment during the period in which the USA
and allied countries were present in Afghanistan. Upon the fall of Taliban regime in 2002,
the newly formed government received ample foreign funds for environmental restoration
and economic development. During the period of 2002–2021, the USA-supported Afghan
government implemented many long- and short-terms plans to achieve the given goals.
For instance, as an economic development strategy, the National Peace and Development
Framework (ANPDF) offered various national priority programs to accelerate GDP growth
from 0.9% in 2015 to 5.7% in 2030; and expand stable irrigated land to the pre-war level of
3.1 million ha [46,53]. Similarly, as an environmental restoration strategy, it was planned to
restore 60,000 ha of deforested land in every five years [46,53].

Although some studies have attempted to trace the trends and drivers of LULC
change in various small regions in Afghanistan [54–59], nationwide studies are still lacking.
The approaches adopted by some studies were also questionable. Most importantly, to
our knowledge, impact assessments of the aforementioned changes on ESV (in monetary
values) in Afghanistan are completely lacking. This study, therefore, aimed to fill this
research gap. Firstly, we set out to utilize the 30 m resolution land cover product from
GlobeLand30 to estimate the monetary values of ecosystem services in relation to LULC
changes in Afghanistan between 2000, 2010, and 2020. Secondly, we sought to establish
rational scenarios and simulate future LULC and ESV for 2030. For this purpose, as both
scarcity and LULC quality effects are crucial to the provision of ecosystem services, our
study adopted the methodology proposed by Fie, et al. [43] to assess ecosystem service
changes in Afghanistan.

The significance of this study is twofold. Firstly, such quantitative assessments are
urgently needed in the data-scarce region of Afghanistan, where human-induced environ-
mental degradation is accelerating [51,60]. Secondly, the study innovatively couples linear
programming with LULC simulation modeling to develop more rational scenarios. Our
assessment of the supply of future ecosystem services under various rational scenarios is
particularly important for the creation of suitable policy measures in LULC management.
Most ecosystem service valuation studies have largely focused on spatiotemporal trends
and ignored future change under national policy scenarios which are relevant to LULC.
Some studies from elsewhere have applied LULC simulation models to predict ESV at
small scales [21,43,56]. However, the creation of logical scenarios of future land-use change
remains a challenging task in the literature. Except for the business-as-usual scenario,
which explains the status quo, the land allocation process under other scenarios remains
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ambiguous and mostly based on researchers’ judgement. In this study, a more logical
scenario development process is used, i.e., defining future objectives and identifying the
constraints on the achievement thereof. This is crucial, because the rationalization of
object and constraint functions provides the luxury of utilizing linear programming to
estimate future land allocations in land-use simulation modeling, instead of depending on
human judgment.

Establishing such functions for this study is significant because, in Afghanistan, max-
imizing value benefits from ecosystem services by enhanced land-use management is
hindered by major constraints such as water scarcity, limited financing, and access to
productive lands. Afghanistan is located in a semi-arid region, where a reliable, timely,
and sufficient water supply for agricultural, environmental, and industrial uses remains
challenging. Limited access to water resources has traditionally constrained the attainment
of economic and environmental goals [61]. In many areas, for instance, water scarcity has
forced farmers to leave nearly one-third of their cultivated land fallow [47,62,63]. Simi-
larly, land has an economic value that can play a significant role in achieving economic
growth [64,65]. Land in Afghanistan is particularly scarce; the overall terrain is dominated
by dry craggy mountains, which leaves only 12–15% for natural vegetation and economic
activities [46]. Besides water and land scarcities, financial capital is also significantly
limited for the implementation of economic and environmental development programs.
Afghanistan is one of the poorest economies in the world, and its development budget is
hugely dependent on foreign funding. Currently, the announced budget for 2022 under the
Taliban government is faced with a 20% budget deficit [66].

2. Materials and Methods
2.1. Study Framework

Figure 1 explains the general framework of this study. Broadly, this research is divided
into two directions, i.e., (1) past and (2) future assessments of LULC-induced ESV changes.
The past trends analysis was conducted with the primary objective of estimating the value
changes of ecosystem services between 2000, 2010, and 2020. For this purpose, the study
adopted the BTM approach and utilized Globland30 high resolution LULC data (for 2000,
2010 and 2020), the coefficients of [22], and GDP and NDVI information. This process
allowed us to make estimations of ESV for 2000, 2010 and 2020.
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The second part of this study was guided by the objective of assessing various possible
future scenarios of ESV change in Afghanistan. Here, we first conducted a LULC cover
change analysis by using actual LULC data and applying the Special Calculation Model
(SCM) and change matrix analysis. The outputs of this analysis were spatial change maps
and a change matrix (transition matrix). The spatial change maps were coupled with spatial
layers of hypothesized LULC change drivers to conduct a regression analysis. Statistically
significant coefficients were then used as the inputs for the Dynamic Land System (DLS)
model. Similarly, the transition matrix and the results of Linear Programming (LP) of
objective and constraint functions were used to allocate pixels of various LULC types under
the identified scenarios. Based on this analysis, we allocated LULC types in DLS modeling.
The final outputs of the DLS modeling were spatial maps of LULC for 2030 under BAU,
ENP, and RED scenarios. Finally, we once again used the BTM approach and predicted ESV
for 2030 from the simulated LULC maps.

2.2. Study Area

The study area covers the entirety of Afghanistan, a landlocked country which is
located in a semi-dry region. It shares borders with Iran in the west, Pakistan in the east
and south, China and Tajikistan in the northeast, Uzbekistan in the north and Turkmenistan
in the northwest (Figure 2). Administratively, Afghanistan is divided into 34 provinces
and 365 districts. In terms of hydrological topography, Afghanistan shares five major river
basins, namely, the Amu Darya basin, the Helmand basin, the Kabul (Indus) basin, the
Harirod-Morghab basin, and the Northern basin. Altitude in Afghanistan varies from high
Hindu Kush Mountains in the north to the plain deserts in the south. Although it is an
agriculturally dependent country, 65% of Afghanistan’s land is covered by mountains, with
only 12% of its total area being arable land.

Land 2022, 11, x FOR PEER REVIEW 6 of 33 
 

 

Figure 2. The location of Afghanistan, its provinces, river basins and topography. 

2.3. Data Preparation 

This study utilized LULC, climatic, socioeconomic, and biophysical data to achieve 

its research objectives. Most of the obtained datasets were utilized for the purpose of iden-

tifying the drivers of change (regression analyses) in the LULC simulation process. Fur-

thermore, this research required all the datasets in spatial raster format. Tabulated GDP 

data were preferred over global datasets to minimize errors. The interpolation functions 

of the geographical information system (GIS) were applied to convert tabulated data into 

the required gridded format [77]. As LULC data were the main source utilized for ESV 

estimates, their accuracy and resolution were crucial to obtain accurate results. Therefore, 

amongst the publicly available datasets, the Globland30 LULC product was selected for 

this research. It is a 30 m high resolution LULC dataset which is available for the years 

2000, 2010 and 2020. This global LULC product was developed using various satellite im-

ages, such as Landsat TM/ETM+ and HJ-1 imagery, and adopting a pixel-object-

knowledge (POK)-based classification approach [78,79]. Globland30 products have been 

shown to have good overall average accuracy and a kappa coefficient of 82% and 0.80, 

respectively [80,81]. Brief details of the datasets that were used in the regression analysis 

are provided in the Table 1. 

Table 1. Description of the datasets used in this study. 

Dataset Description Source/Download link 

LULC  Land-use land-cover [79]/www.globeland30.org (accessed on 12 February 2022) 

ET Actual evapotranspiration (mm) [82]/www.ntsg.umt.edu (accessed on 12 March 2021) 

Elevation  Derived from digital elevation model (DEM)  [83]/Earthdata|Earthdata (nasa.gov) 

Slope Area lope derived from DEM (degree) [83]/Earthdata|Earthdata (nasa.gov) 

Soil pH pH value  [83]/SoilGrids250m 2.0  

Soil Density Soil density (g/cm3) [83]/SoilGrids250m 2.0  

Figure 2. The location of Afghanistan, its provinces, river basins and topography.



Land 2022, 11, 1906 6 of 32

The highly variable topography in Afghanistan results in significant climatic variation.
For instance, the temperature ranges from about −50 ◦C in winter in the northern high
mountains to about +50 ◦C in the summer in the southern deserts. Winter snowfalls are
actually the origin of life-supporting river systems that flow across the five aforementioned
river basins [61]. The spatiotemporal distribution of precipitation also varies amongst the
regions. Overall, Afghanistan is a dry country with marginal annual rainfall. However, the
level of dryness changes from one region to another [67,68]. In contrast to other regions,
the eastern area is characterized by a semi-monsoon climate that provides the basis for
forest cover in the country [69,70]. Such climatic variation affects the vegetation cover
significantly [67], which subsequently affects the supply of ecosystem services [43,71–73].

Likewise, over the past two decades Afghanistan has experienced immense socioe-
conomic changes which may have disturbed the supply–demand balance of ecosystem
services, as indicated elsewhere [21,40]. During the period in which the USA and allied
nations were present in Afghanistan, GDP increased from 8689 million US dollars in 2003
to 21,969 million US dollars in 2017 [60]. However, this economic growth was characterized
by regional variations that were evidenced by increasing the Gini-coefficient [74]. Similarly,
according to World Bank data, Afghanistan’s population has grown from about 22 million
in 2002 to about 38 million in 2020 [75,76].

2.3. Data Preparation

This study utilized LULC, climatic, socioeconomic, and biophysical data to achieve
its research objectives. Most of the obtained datasets were utilized for the purpose of
identifying the drivers of change (regression analyses) in the LULC simulation process.
Furthermore, this research required all the datasets in spatial raster format. Tabulated GDP
data were preferred over global datasets to minimize errors. The interpolation functions
of the geographical information system (GIS) were applied to convert tabulated data into
the required gridded format [77]. As LULC data were the main source utilized for ESV
estimates, their accuracy and resolution were crucial to obtain accurate results. Therefore,
amongst the publicly available datasets, the Globland30 LULC product was selected for
this research. It is a 30 m high resolution LULC dataset which is available for the years 2000,
2010 and 2020. This global LULC product was developed using various satellite images,
such as Landsat TM/ETM+ and HJ-1 imagery, and adopting a pixel-object-knowledge
(POK)-based classification approach [78,79]. Globland30 products have been shown to have
good overall average accuracy and a kappa coefficient of 82% and 0.80, respectively [80,81].
Brief details of the datasets that were used in the regression analysis are provided in the
Table 1.

Table 1. Description of the datasets used in this study.

Dataset Description Source/Download link

LULC Land-use land-cover [79]/www.globeland30.org (accessed on 12 February 2022)
ET Actual evapotranspiration (mm) [82]/www.ntsg.umt.edu (accessed on 12 March 2021)

Elevation Derived from digital elevation
model (DEM) [83]/Earthdata|Earthdata (nasa.gov)

Slope Area lope derived from
DEM (degree) [83]/Earthdata|Earthdata (nasa.gov)

Soil pH pH value [83]/SoilGrids250m 2.0
Soil Density Soil density (g/cm3) [83]/SoilGrids250m 2.0

Temperature Average annual temperature (◦C) [84] https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on
5 January 2022)

Precipitation Average annual rainfall (mm) [84] https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on
5 January 2022)

Population density Person/Km2 [85]/www.worldpop.org.uk (accessed on 12 February 2022)
GDP $/person [86]/cso.gov.af (accessed on 12 March 2021)

www.globeland30.org
www.ntsg.umt.edu
nasa.gov
nasa.gov
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
www.worldpop.org.uk
cso.gov.af
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Table 1. Cont.

Dataset Description Source/Download link

Irrigation expansion
investment

$ required for expansion of
Km2 irrigated [86]/cso.gov.af (accessed on 12 March 2021)

Province capital coordinates Distance of pixels to the
closest city Google Earth

Main roads Distance of pixels to the
closest road [87]/www.diva-gis.org (accessed on 12 March 2021)

NDVI Vegetation cover [82]/www.ntsg.umt.edu (accessed on 12 March 2021)

2.4. Analytical Tools
2.4.1. LULC Change Analysis of Afghanistan

LULC change between 2000 and 2020 was estimated using the spatial calculating
model (SCM) [88].

LUi =


(

LA(i,t1) − ULAi

)
+
(

LA(i,t2) − ULAi

)
LA(i,t1)

· 1
T2 − T1

·100% (1)

where LUi is the percentage change of ith LULC between T1 and T2; T1 and T2 are years
2000 and 2020, respectively; LA(i,t1) and LA(i,t2) represent the area of ith LULC type in t1
and t2, respectively; and ULAi is the unchanged area of ith LULC type during this period.

The directions of change were analyzed by developing a change matrix of six LULC
types. Using GIS functions, the pixels of a LULC type which changed to another LULC
type between the study years were assessed, and the following matrix was developed:

LCAgAg LCAgFr LCAgWb LCAgWb LCAgBl LCAgUl
LCFrAg LCFrFr LCFrGr LCFrWb LCFrBl LCFUl
LCGrAg LCGrFr LCGrGr LCGrWb LCGrBl LCGrUl
LCWbAg LCWbFr LCWbGr LCWbWb LCWbBl LCWbUl
LCBlAg LCBlFr LCBlGr LCBlWb LCBlBl LCBlUl
LCUlAg LCUlFr LCUlGr LCUlWb LCUlBl LCUlUl


(2)

where LC is LULC, Ag is agricultural land, Fr is forest area, Gr is grassland, Wb is water
bodies, Bl is built-up land, and Ul is unused land.

2.4.2. Estimate of ESV

This study adopted the BTM approach to assign economic values to each of the
nine services derived from land surface ecosystem. The method was based on ascribed
coefficients (published by [22]) that represent the relative economic value of ecosystem
services derived from the various land-types (Table 2) [21].

Table 2. The adopted coefficients [22] (US$ ha−1 yr−1) for an ecosystem service valuation (ESV) of
similar LULC types in Afghanistan.

Type Sub Type AG FR GR WB BL UL

Provisioning Food production 2323 200 1192 106 0 0
Raw materials 219 84 54 0 0 0

Regulating Gas regulation 0 12 9 0 0 0
Climate regulation 411 2044 40 0 0 0
Disturbance
regulation 0 66 0 0 0 0

Water regulation 0 8 3 7514 0 0
Water supply 400 27 60 1808 0 0
Waste treatment 397 120 75 918 0 0

cso.gov.af
www.diva-gis.org
www.ntsg.umt.edu
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Table 2. Cont.

Type Sub Type AG FR GR WB BL UL

Supporting Erosion control 107 337 44 0 0 0
Soil formation 532 14 2 0 0 0
Nutrient cycling 0 3 0 0 0 0
Pollination 22 30 35 0 0 0
Biological control 33 11 31 0 0 0
Habitat/refugia 0 39 1214 0 0 0
Genetic resources 1042 1517 1214 0 0 0

Recreation
and culture Recreation 82 867 26 2166 0 0

Cultural 0 2 167 0 0 0
Total
Ecosystem
Value

5568 5381 4166 12,512 0 0

The authors of [22] estimated the ESV coefficients for the 16 globally identified biomes.
The coefficients of six identified biomes were used in our study as equivalents to the six
LULC types in Afghanistan. We used agricultural land as an equivalent of cultivated land,
forestland as an equivalent of forestland, grassland as an equivalent of grasslands and
shrublands, urban land as an equivalent of built-up land, and desert/tundra/ice and rock
as an equivalent of unused land.

However, the use of these coefficients to determine the ecosystem service value per
unit of land is inappropriate if the study area specification is ignored. Therefore, we
incorporated the NDVI and GDP information of the study area to adjust the coefficients for
our ecosystem service valuation of the study area, as also done elsewhere [43]. Therefore,
ESV was calculated by the following equation:

ESVt = ∑(Ait × VCi × R × A) (3)

where ESVt represents the total ESV in year t, Ait represents the area of LULC type i
in t, VCi represents the ESV coefficient (US$ ha−1 yr−1) of the given i type LULC, and
R represents the landscape quality effect on the supply of ecosystem services, which is
calculated as follows:

R =
NPPPr
NPPA f

(4)

where NPPPr and NPPAf represent the net primary productivity of a province and all of
Afghanistan, respectively. NPP was estimated using the Thornthwaite Memorial model,
which considers a comprehensive set of environmental factors [89]. The formula of the
Thornthwaite Memorial model is as follows:

NPP = 3000[1 − e−0.0009695(V−20) (5)

V =
1.05Pre√

1 +
(

1 + 1.05Pre
L

)2
(6)

L = 300 + 25Tmp + 0.05Tmp3 (7)

where NPP represents the net primary production potential of the natural landscape
(t/ha/a), V represents evapotranspiration (mm/year), L represents annual mean evapo-
transpiration (mm), Tmp represents annual average temperature (◦C), and Pre represents
annual precipitation (mm)
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In Equation (3), A represents the demand change effect on ESV, which is calculated
as follows:

A =
GDPPr
GDPA f

(8)

where GDPPr and GDPAf represent the per capita GDP (USD/person) of a province and of
all of Afghanistan, respectively.

2.4.3. LULC and ESV Simulation with the DLS Model

To predict the future scenario of ESV changes in Afghanistan, we first simulated the
LULC change for 2030 and then predicted ESV for the same year. The LULC of 2010 and
2020 were taken as the baseline data and incorporated into the DLS model. DLS is a land-
use simulation model that combines a group of functions to predict future LULC changes
based on information about the actual LULC, about driving factors and about established
scenarios. It has two main favorable features: (1) it applies a dual stagey to reach a demand
balance, and (2) in incorporates driving factors into the simulation process [90]. Hence,
simulations with the DLS model include scenario development and analyses of specific
driving factors of the study area.

The DLS framework includes three main modules (Figure 3). The first concerns the
spatial regression modeling through which DLS integrates the variability of various driving
factors and establishes the relationship of a piece of land with its driving factors. The
second module concerns scenario analyses; this helps DLS to create demands for various
LULC. The final module is a spatially explicit allocation module which allocates land use
changes from regional to pixel level based on information from regression and scenario
analyses. The predicted LULC maps can be validated against the actual LULC, which can
also feedback the selection of variables.
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Regression Analysis

Regression modeling was conducted to identify the driving forces of LULC change in
Afghanistan. The coefficients of statistically significant LULC change drivers were required
as DLS input parameters for LULC prediction. For this, various LULC change drivers
were hypothesized to have significant impacts on LULC change. These variables were
selected based on previous studies [55,91,93–95]. The hypothesized variables were then
tested for significance using binomial logistic regression (BLR) [91,96]. The formula of BLR
is as follows:

Y = β0 + β1x1 + β2x2 + β3x3 + . . . + βnxn+ (9)

where Y is the likelihood of a pixel of land changing to a LULC type due to the influence of
driving factors x, x2,..., xn, and β1, β2,..., βn are the coefficients of independent variables,
while β0 is a constant.
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Table 3 shows the regression coefficients that were achieved by conducting BLR
analysis. The negative coefficients indicate that a unit increase of a given independent
variable may decrease the portability of an area change to a LULC type. On the other hand,
positive coefficients show that a unit increase of a given independent variable increases the
probability of an area being changed to a LULC type. For instance, the positive coefficient
of precipitation under the agricultural land column suggests that a unit increase in rainfall
will increase the probability of land being changed to agricultural area, while the negative
coefficient of temperature in the same column explains the opposite. Although each
coefficient requires detailed discussion and reasoning, we avoid this discussion as it is not
relevant to the main objective of this research. Nonetheless, two features of the regression
table should be mentioned here. Firstly, most of the regressed independent variables were
statistically significant, which indicates that most of the hypothesized factors had the ability
to explain land-use spatial allocation. Secondly, the values of the areas under the ROC
curves for all the six classes were higher than 0.75, indicating the satisfactory accuracy level
of our regression modeling.

Table 3. Statistical description of the coefficients of influencing factors of land.

Driving factors Agricultural Forest Grassland Water Built-Up Unused

Temperature −0.072 * 0.40 * −0.05 * 0.02 −0.56 * 0.03
Precipitation 0.005 * 0.05 * −0.01 * 0.03 * −0.04 * −0.01 *
Soil pH −0.08 * −0.41 * 0.02 * 0.16 * 0.16 * 0.10 *
Soil density 0.06 * 0.01 * 0.01 * 0.01 * 0.18 * −0.01 *
Elevation −0.03 * −0.01 * 0.01 * 0.01 * −0.01 0.01 *
Slope −0.04 * 0.03 * 0.04 * −0.03 * −0.16 * −0.04 *
Road distance −0.03 * 0.01 * −0.01 * 0.01 * −0.01 * 0.01 *
City distance −0.01 * −0.01 * −0.01 * 0.01 * −0.01 * 0.01
Invest on irrigation 0.01 * −0.06 * −0.01 * 0.06 * 0.07 * 0.01 *
GDP/capita −0.01 * −0.01 * −0.01 * 0.01 * 0.01 * 0.01 *
Population −0.04 * −0.01 * −0.01 * 0.01 0.01 * −0.01 *

AUC 0.83 0.84 0.78 0.76 0.76 0.80
Note: t statistics in parentheses: * p < 0.05.

Scenario Development Process

LULC was simulated using three scenarios: business-as-usual (BAU), rapid economic
development (RED) and environmental protection (ENP). Under the BAU condition, gov-
ernment policies pertaining to economic development and environmental protection were
assumed to remain unchanged. On other hand, the RED and ENP scenarios were consid-
ered with changes to the status quo. The ENP scenario was assumed to be subject to strict
environmental protection policies to protect and restore natural lands. On the other hand,
the RED scenario was assumed to involve intensive economic development policies to
achieve rapid economic growth.

The scenario development process of this study included the establishment objective
and constraint functions. These functions were defined based on the nature of the study
area, as discussed in the introduction section. These functions were identified as follows:

Obj.Max (p) = Px X + Py Y (10)

X ≥ 0; Y ≥ 0 (11)

The above functions are subject to the following constraints:

X + Y ≤ total land f or economic and environment uses (12)

Bdgx X + Bdgy Y ≤ total budget available (13)

Wx X + Wy Y ≤ total availabe water (14)
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where, X represents the total land-use for rapid economic development (in hectares); Y rep-
resents the total land-use for environmental protection purposes (in hectares); Px and Py
represent the per-hectare ecosystem service value gained from X and Y, respectively; Bdgx
and Bdgy represent the per-hectare investment needed for economic and environmen-
tal development, respectively; and Wx and Wy represent the per-hectare water use for
economic and environment land-use, respectively. Considering the government devel-
opment priorities on land-use management, in this study, we classified agricultural and
infrastructure/built-up areas as economic development-oriented land-use, while forest,
rangeland, and water areas were regarded as environmental protection-oriented land-use.

DLS Model Validation

The LULC simulation results obtained from the DLS modeling were validated against
actual land-use to assess the accuracy level of our methods. For this purpose, we used
Globland30 land cover images for 2000 and 2010 and predicted the LULC layer for 2020,
as was also done elsewhere [91,97,98]. Then, we compered the agreement between the
simulated and the actual LULC (Table 4). Table 4 shows the fraction of simulated pixels
which agreed with those of the actual LULC. Through this validation process, we estimated
an overall accuracy of 89%, with a Kapa value of 0.78. The validation results as per the
criteria outlined in [99] suggest that the applied simulation process could produce results
with a good level of overall accuracy.

Table 4. Contingency table of simulated and actual LULC in 2020 (in%).

Actual LULC in 2020
Simulated LULC in 2020

AG FR GR WB BT UL Total

AG 7.6 0.0 0.8 0.0 0.0 1.5 10.0
FR 0.0 0.9 0.5 0.0 0.0 0.3 1.7
GR 0.6 0.1 35.0 0.0 0.0 2.8 39.1
WB 0.0 0.0 0.0 0.2 0.0 0.1 0.3
BT 0.0 0.0 0.0 0.0 0.3 0.0 0.3
UL 1.1 0.1 1.6 0.1 0.0 45.2 48.6
Total 9.5 1.1 38.3 0.3 0.4 50.4 100.0

Overall accuracy 89%
Kappa value 0.78

3. Results
3.1. The LULC Pattern in Afghanistan

The spatial distribution of Afghanistan’s LULC in 2000, 2010 and 2020 is presented
in Figure 4. A comparison of the six LULC types showed that unused land was the most
dominant land type in Afghanistan, covering about 46% of the national total in 2000
(Table 5). With proper investments, some proportion of these unproductive lands could
potentially be used for economic or environmental purposes. From the remaining LULC
area, about 44% was shared by environmental-oriented LULC types (i.e., grassland, forests,
and water bodies), while less than 10% was shared by economic-oriented LULC types
(agriculture and built-up). Grassland was the second most dominant land class, covering
42.8% of the total national area in 2000. Grassland is ecologically important and offers
substantial provisioning and supporting ecosystem services in Afghanistan [100]. However,
forestland and water bodies, that are considered to have highest ecosystem service values,
together made up only about 2% of the area. Forest cover in Afghanistan is not only small,
but tree density is also low [101].
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Table 5. Magnitude of LULC change in Afghanistan.

Area in km2

Period AG FR GR WB BT UL Total

2000 58,748 8776 276,230 2138 1035 298,908 645,835
2010 60,836 6927 248,382 2010 1076 326,604 645,835
2020 61,409 6967 247,875 2036 2262 325,286 645,835

% of total land

2000 9.1 1.36 42.8 0.33 0.16 46.25 100
2010 9.42 1.07 38.5 0.31 0.17 50.53 100
2020 9.51 1.08 38.4 0.32 0.35 50.34 100

% of change

2000–2010 3.6 −21.1 −10.1 −6.0 4.0 9.3 0
2010–2020 0.9 0.6 −0.2 1.3 110.2 −0.4 0
2000–2020 4.53 −20.61 −10.27 −4.75 118.50 8.83 0

As for economic-oriented LULC types, agricultural land occupied about 9.1% of the
total national area in 2000. However, only about half of the agricultural land is used
for cultivation; the remaining areas are left as fallows, mainly due to a lack of irriga-
tion [3]. Investment in irrigation systems could, therefore, potentially make these lands
suitable for cultivation, doubling the current agricultural production and boosting eco-
nomic growth [102]. Built-up areas are the smallest LULC, covering less than 1% of the
area. They are given a zero ecosystem service coefficient (as per Costanza, de Groot, Sutton,
van der Ploeg, Anderson, Kubiszewski, Farber and Turner [22] study), even though their
value for economic development is immense. The high concentration of built-up areas,
however, can add to the pressure on natural lands and reduce ecosystem service supply.

The regional distribution of various LULC also shows significant variation. Most of
the agricultural land is shared by Northern river (in the north) and Helmand river basins
(in the south and southwest). Together, they make up about 60% of the agricultural land in
Afghanistan. Most of the northern cultivated areas are a mix of irrigated and rainfed crops,
while southern cultivated areas mostly comprise irrigation-based crops [42]. Forestland
distribution, on other hand, is greatly skewed toward the Kabul river basin in the east
of Afghanistan. This region possesses more than 80% of the total forests [43,44], mostly
shared between the provinces of Paktia, Paktika, Kunar, and Nuristan. As for water bodies
(comprise rivers, lakes and wetlands), more than 55% of them are in the Helmand river
basin. The existence of these water bodies, coupled with irrigation infrastructure, has
provided the basis for a comparatively higher concentration of irrigated agricultural land
in this region [103,104]. Similarly, most of the built-up areas were distributed within Kabul
and the Northern river basin; these areas also represent more than half of the built-up areas
in Afghanistan.

A comparison of five river basins revealed that more than 50% of lands in Harirod and
Kabul river basins are of environmental-oriented LULC types. The environmental-oriented
land of Harirod is dominted by grassland, while in Kabul river basin is dominated by
forests. As for the economic-oriented land, it is highly concentrated in the Northern river
basin (23%), followed by Harirod (15%). This aligns with fact that the Northern river basin
contained most of the agricultural and urban lands in 2000.
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3.2. Magnititude of LULC Change

The overall magnitude change of LULC during the study period (i.e., 2000–2020)
suggested that built-up land had increased at a maximal rate of 118% (Table 6). This was
followed by 8.8% increase of unused land and a 4.5% increase of agricultural land. On the
other hand, forestland, grassland, and water lands decreased in size by 20.6%, 10.2%, and
4.7%, respectively. The most significant feature of LULC change during the study period
was that the environmental development-oriented LULC types decreased in size, in contrast
to economic development-oriented LULC types. The rapid increase of economic-oriented
land was associated with massive socioeconomic growth. Since 2002, for instance, GDP and
population have increased by at least 2.5 and 1.7 times, respectively [75,76]. On the other
hand, rapid urbanization and population growth [105], unsustainable management [106],
and challenging climatic conditions [107] are major causes of natural vegetation loss
in Afghanistan.

Table 6. Magnitude of LULC change in Afghanistan.
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2000 58,748 8776 276,230 2138 1035 298,908 645,835
2010 60,836 6927 248,382 2010 1076 326,604 645,835
2020 61,409 6967 247,875 2036 2262 325,286 645,835

% of total land

2000 9.1 1.36 42.8 0.33 0.16 46.25 100
2010 9.42 1.07 38.5 0.31 0.17 50.53 100
2020 9.51 1.08 38.4 0.32 0.35 50.34 100

% of change

2000–2010 3.6 −21.1 −10.1 −6.0 4.0 9.3 0
2010–2020 0.9 0.6 −0.2 1.3 110.2 −0.4 0
2000–2020 4.53 −20.61 −10.27 −4.75 118.50 8.83 0
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A periodical breakdown of the study period shows that except for built-up land, the
change rates of all LULC types during the first ten years were significantly higher than in
the following ten years. The change rate of agricultural land, for instance, was by about four
times more rapid from 2000 to 2010 (period I) than from 2010 to 2020 (period II). Similarly,
the change rates of forestland, grassland, and water bodies were many fold faster in period
I than in period II. Built-up land, however, grew 27 times more rapidly during the second
period. In this period, the change rates of forest and water bodies shifted from decreasing to
increasing. The decrease of grassland also slowed from 10.1% to 0.2%. Increased awareness
of the importance of these landscapes could be a major reason of this shift in dynamics.

3.3. The Direction of LULC

The transition matrix (Table 7) shows the stability and change direction of six LULC
types during the study period. From 2000 to 2020, agricultural and built-up land were the
most stable LULC types. About 93% of agricultural land (i.e., 54,452 km2 of 58,748 km2) and
87% of built-up land (i.e., 901 km2 of 1035 km2) did not change. Meanwhile, the instability of
forestland, water bodies, and grassland were noticeable, respectively remaining unchanged
by only 53%, 54%, and 63%.

Table 7. Direction of LULC change.

Transition Matrix of LULC Change (in Km2)

AG FR GL WB BL UL

54452 80 2613 95 103 4066
16 4666 1457 8 0 820

2297 2963 174,294 232 24 68,063
181 29 276 1148 1 402
873 1 184 2 901 301
929 1037 97,406 653 6 225,255

Note 1: The non-diagonal figures in the table represent the changed area of each LULUC class during the period
of 2000 to 2020, while the diagonal figures (in bold) represent the unchanged area of each class. The figures in the
rows depict the area of other classes by ith class, while the columns show the area of ith class converted to another
typology. Note 2: AG = Agricultural land, FR = forest area, GL = grassland, WB = water bodies, BL = built-up
land and UL = unused land.

The directional changes show that the decrease in agricultural land was mostly a result
of increases in grassland, unused land, and built-up areas. Notably, from the 4297 km2

decrease in agricultural land, 2297 km2 (53%), 929 km2 (21%), and 873 km2 (20%) were
respectively converted to grassland, unused land, and built-up areas. During the same
period, agricultural land also increased by about 6957 km2, of which 4966 km2 (58%) was
formerly unused land and 2613 km2 (38%) was formerly grassland. Similarly, the majority
of the converted forestland became either grassland or unused land. From 4110 km2 of
forestland, 2963 km2 became grassland and 1037 km2 became unused land. Most of the
changed grassland became unused land or forestland. Of the 101,936 km2 of grassland,
97,406 km2 changed to unused land and 2613 km2 to agricultural land.

While water bodies and built-up land hold the smallest LULC proportions in Afghanistan,
they are important indicators of environmental and economic development, respectively.
From 2138 km2 of water areas, about 990 km2 was converted to other LULC types, mainly
unused land (653 km2 (66%)), grassland (232 km2 (23%)), or croplands (95 km2 (10%)).
Productive agricultural land around residential areas was severely threatened by the
expansion of built-up areas. This was evident by the fact that 77% of the built-up land
expansion took place on agricultural land.

The severe instability of forests, grassland, and water bodies during the 20 year
study period emphasizes the vulnerability of ecologically important LULC categories in
Afghanistan. Likewise, the corresponding sprawl of economic development-oriented LULC
into natural ecosystems implies increasing human expansion into natural ecosystems, as
observed by others [105].
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3.4. Ecosystem Services Pattern

Ecosystem services in Afghanistan largely comprise supporting services (SS) and
provisioning services (PS). Together, these accounted for more than 80% of all ecosystem
services in 2000 (Table 8). Cultural services (CS), on the other hand, made the smallest
contribution, i.e., only 4.3%. The overall value of ecosystem services during the 20 year
study period was reduced by 5.4% (8.73 billion USD). This decline was mainly driven by
a 65% decrease of RS and a 27% decrease of PS services. Positively, regulating services
(RS) during the study period increased by nearly 7.2% (1.6 billion USD). A comparison of
the two periods showed that the decline of ESV during period I was by nearly two times
greater than that in the later period. A total ESV reduction of 5.8 billion USD and 2.9 billion
USD during periods I and II was estimated, respectively. The higher decline in ESV during
first period was attributed to a rapid decrease in environmental-oriented LULC change.

Table 8. Estimated values for various ecosystem functions in Afghanistan.

Service Type Sub-Type
ESV (Billion $ ha−1 Year−1) Change (%)

2000 2010 2020 Period II Period II

Provisioning
Total 49.68 46.74 46.8 −6.00 0.20

Food production 46.81 43.97 44.03 −6.10 0.20
Raw material 2.87 2.77 2.77 −3.50 0.00

Regulating

Total 21.41 25.5 22.97 19.20 −10.00
Gas regulation 0.26 0.23 0.23 −11.60 0.00

Climate regulation 5.32 4.93 4.95 −7.40 0.50
Disturbance
regulation 0.27 0.46 0.35 70.40 −24.00

Water regulation 1.43 1.07 1.22 −25.20 14.10
Water supply 4.38 4.23 4.27 −3.50 1.00

Waste treatment 9.75 14.58 11.94 49.60 −18.20

Supporting

Total 82.85 76.55 76.12 −7.70 −0.60
Erosion control 2.3 2.3 2.22 0.00 −3.50
Soil formation 3.19 3.3 3.33 3.50 1.00

Nutrient cycling 0.03 0.05 0.04 66.70 −20.00
Pollination 1.12 1.02 1.02 −9.00 0.00

Biological control 1.07 1.01 1 −5.70 −1.00
Habitant/refugia 34.14 31.31 30.95 −8.30 −1.20
Genetic resources 41 37.56 37.56 −8.40 0.00

Recreation
& culture

Total 7.07 6.39 6.38 −9.70 −0.20
Recreation 2.42 2.18 2.19 −10.00 0.50
Cultural 4.64 4.21 4.18 −9.30 −0.80

Grand Total 161 155.19 152.27 −3.70 −1.90

As for the ESV changes of various groups during period I, all groups apart from
RS showed decreasing trends. Although CS value was found to have the highest annual
decline rate of 1%, the largest contributions to the overall ESV decrease also came from RS
(64%) and PS (28%). Rapid annual rates of decline of SS (about 0.8%) and PS (about 0.6%)
were also noticeable during this period. In contrast, the value of RS was found to have the
highest change rate, i.e., about a 2% annual increase. During the later period, however,
this positive trend changed drastically, becoming the highest declining trend. The other
noticeable feature of period II was that the PS value changed to positive while the values of
the remaining groups retained their negative trends. Importantly, the annual decreasing
trend of SS and CS were significantly slowed.

Overall, the negative change in ESV was significantly slower during period II com-
pared to period I. This could be associated with increased awareness of the importance of
the ecosystem, which resulted in enhanced management of ecosystems. With the involve-
ment of the USA and allied nations during the initial years of period I, a new governmental
setup with low capacity was formed that inefficiently used most of the received funding for
economic development without consideration of the environmental consequences. How-
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ever, this scenario gradually changed and investments were later used more effectively,
resulting in a slowing of the negative impact on LULC and ESV changes in Afghanistan.

From the perspective of the spatial distribution of ESV, the north and northwest
regions (stretching from the Harirod basin to the Amu basins) contained many of the
hotspots for ESV (Figure 5). The annual per ha ecosystem service value in these hotspots
reached up to 7500 USD. On the other hand, the south and southwest regions contained
large patches of land with near to zero ESV. Nonetheless, a few patches with high ESV
were located in this region. The annual per ha ESV of these hotspots reached more than
12,500 USD. Furthermore, this region also showed the most noticeable spatial changes of
ESV from 2000 to 2020. During these periods, large areas in this region were from moderate
(<5000 USD ha−1 yr−1) to small ESV (<250 USD ha−1 yr−1).

Overall, grassland was the second biggest LULC type in Afghanistan, accounting for
more than 70% of the total ESV in 2000 (Figure 6). The highest contribution was grassland,
followed by agricultural land, with more than 20%, and water bodies, with more than 5%.
The percentage of forest cover reached nearly 2.5%. A comparison of the river basins also
revealed that (except for Northern river basin) the contributions of grassland ecosystem
services to total ESV were the highest across all river basins in 2000. Agricultural land, as
the second greatest contributor, provided the highest share in the Northern river basin. The
share of agricultural land in other regions was also noticeable. Water ecosystem services
were most significant in the Amu and Helmand river basin regions. More than 80% of
the forest ecosystem in Afghanistan was concentrated toward the eastern region, i.e., the
Kabul river basin. However, these forest services were considerably reduced during the
2000–2020 period. The decrease of agricultural land in the Northern river basin was also
notable during that time. On the positive side, the contributions of water ecosystems in the
Amu and Helmand river basins increased. This may have resulted from the substantial
investments in water storage capacity enhancement during the study period.
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3.5. LULC and ESV Simulations
3.5.1. LULC Simulation Results

The spatial distribution of the simulated LULC under the business-as-usual, rapid eco-
nomic development and environmental protection scenarios are presented in Figures 8–10,
respectively. The simulation under the BAU scenario predicted subtle changes of economic-
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oriented LULC classes, as compared to environmental-oriented LULC types (Figure 8B).
Furthermore, a spatial increase of economic-oriented LULC types was predicted. Im-
portantly, the spatial distribution of economic-oriented LULC was predicted to occur in
scattered pattern across the entire country. On the other hand, environmental-oriented
LULC types (Figure 8C) were predicted to undergo significant changes. However, the
spatial patterns of the predicted increased and decreased areas of environmental-oriented
LULC types did not show any significant difference. Additionally, the predicted changes
were concentrated in the eastern and central regions, particularly in the Kabul river basin.
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The RED scenario represented a situation where rapid economic development be-
comes a central focus of governmental development planning. The spatial simulation
LULC under that scenario predicted significant changes in economic-oriented LULC types,
as compared to other two scenarios (Figure 9). The increase of economic-oriented LULC
classes was also predicted to be significantly higher than their decrease. Similar to the
BAU scenario, the overall distribution of increased economic-oriented LULC types was
predicted to be scattered over the study area (Figure 9B), with a slightly higher concen-
tration being predicted in the eastern region. The eastern region is considered to be a
socioeconomic development hub, where major economic cities such as Kabul, Jalalabad,
and Khost are located. The north and northwest regions were also predicted to show a
considerable increase in economic-oriented areas. The main economic development of
these regions would be driven by agricultural land development, as they account for a
high proportion of the total agricultural area in Afghanistan [42]. The predicted spatial
pattern of environmental-oriented lands followed a more or less similar pattern to that of
the BAU scenario (Figure 9C). However, understandably, the decrease of environmental
development-focused land was higher here. This implies that if development policies are
focused only on rapid economic development, environmental degradation could occur
more rapidly. Similar to BAU, most of the predicted changes in environmental-oriented
lands under the RED scenario were concentrated in the eastern and central regions.

The ENP scenario represents a situation where environmental protection becomes
the main focus of development policies. The spatial distribution of LULC under that
scenario predicted significant change in economic-oriented LULC types, similar to the
BAU scenario (Figure 10B). However, the predicted decrease in areas of economic-oriented
land was noticeably higher than in the BAU scenario. Most importantly, environmental-
oriented LULC types were expected to undergo significant growth (Figure 10C). As a
result of strict environmental protection measures, this scenario would likely lead to the
restoration of large areas degraded grasslands, forest, and water bodies. For instance,
the conversion of vast areas of grasslands to economic-oriented classes in the north and
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northwest was predicted to significantly slow, in contrast to the expected outcomes under
the other two scenarios.

The predicted magnitude changes of six LULC types by 2030 are presented in Table 9.
The BAU scenario predicted that forest, grassland, and unused land will likely decrease
by 0.48%, 0.18% and 0.40%, respectively, and be converted to typologies. Their decrease
will add to the size of remaining LULC types. Under this scenario, agricultural land, water
bodies, and built-up areas are likely to grow by 0.93%, 1.64%, and 33.72%, respectively.
The RED scenario predicted substantial growth of agricultural and built-up lands, i.e.,
by 1.4% and 41.4%, respectively. However, due to rapid expansion of economic-oriented
lands, forests, grassland, and water bodies are likely to be affected, leading to reductions
of 5.2%, 0.4% and 0.8%, respectively. On the other hand, the ENP scenario will increase
the protection of these ecologically important lands. Under that scenario, the expansion of
agricultural land and built-up land will slow, which will reduce the vulnerability of forest,
grassland, and water areas, and forests and water areas will increase by 10.63% and 7.54%,
respectively; grassland will also increase by 0.03%. From the prospective of ecosystem
service protection, this scenario is the best options for policy makers.

Table 9. LULC dynamics in actual and predicted scenarios.

Scenario Year AG FR GR WB BL UL

Actual 2020 61,409 6967 247,875 2036 2262 325,286

BAU
2030 61,988 6934 247,438 2070 3413 323,992
Change 0.93 −0.48 −0.18 1.64 33.72 −0.40

RED
2030 62,288 6624 246,838 2020 3863 324,202
Change 1.4 −5.2 −0.4 −0.8 41.4 −0.3

ENP
2030 61,915 7796 247,956 2202 3264 322,702
Change 0.82 10.63 0.03 7.54 30.70 −0.80

3.5.2. Predicted ESV

The predicted values of various ecosystem services under all of the studied scenarios
are presented in the Table 10. Overall, more than 80% of the predicted ESV under all three
scenarios are composed of supporting services (SS) and provisioning services (PS), while
regulating (RS) and cultural services (CS) share less than 20% of the total ESV. This trend is
aligned with the ESV estimated using actual LULC. By 2030, ESV under the RED and BAU
scenarios were predicted to undergo further declines of 6.6% and 5.5%, respectively. Under
these scenarios, all four groups of ecosystem services i.e., PS, SS, CS and RS, will decrease.
The highest predicted decline of ESV under the RED scenario would mainly be driven by
the 6.4% decrease of environmental-oriented LULC types.

On the other hand, the ESV with ENP scenarios will increase by about 4.5% and
will add another 1 billion USD to the ESV in 2020. This scenario is likely to boost the
value of all four types of ecosystem services. The highest value addition under this
scenario was predicted for regulating services, i.e., a 2.38% increase in 10 years. The second
highest increase was predicted for recreational and cultural services, with a 1.65% increase.
Although this scenario is the most desirable from the prospective of ecosystem management,
its implementation depends heavily on the implementation of rational environmental
protection measures and efficient management efforts.

Table 10. Simulated scenarios of total ESV of Afghanistan.

Service Type Sub-Type
Actual (2020) BAU (2030) RED (2030) ENP (2030)

ESV ESV (10−9$) Change (%) ESV (10−9$) Change (%) ESV (10−9$) Change (%)

Provisioning
Total 46.8 46.88 0.16 46.87 0.15 46.91 0.25
Food production 44.03 44.1 0.16 44.09 0.14 44.13 0.22
Raw material 2.77 2.77 0.18 2.78 0.2 2.79 0.59
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Table 10. Cont.

Service Type Sub-Type
Actual (2020) BAU (2030) RED (2030) ENP (2030)

ESV ESV (10−9$) Change (%) ESV (10−9$) Change (%) ESV (10−9$) Change (%)

Regulating

Total 22.97 21.82 −5.27 21.73 −5.42 23.52 2.38
Gas regulation 0.23 0.23 0.43 0.23 0.04 0.23 0.94
Climate regulation 4.95 4.96 0.28 4.91 −0.76 5.14 3.88
Disturbance
regulation 0.35 0.3 −16.73 0.3 −14.9 0.36 3.86

Water regulation 1.22 1.32 7.5 1.28 4.99 1.35 10.38
Water supply 4.27 4.31 0.93 4.31 0.91 4.32 1.25
Waste treatment 11.94 10.7 −11.63 10.7 −10.43 12.11 1.41

Supporting

Total 76.12 75.91 −0.28 75.75 −0.49 76.31 0.25
Erosion control 2.22 2.18 −1.87 2.17 −2.27 2.25 1.47
Soil formation 3.33 3.36 0.8 3.37 1.27 3.35 0.73
Nutrient cycling 0.04 0.03 −17.71 0.03 −15.27 0.04 3.79
Pollination 1.02 1.02 0.31 1.02 0.08 1.03 0.59
Biological control 1 1 −0.4 0.99 −0.52 1 0.09
Habitant/refugia 30.95 30.75 −0.64 30.68 −0.87 30.93 −0.07
Genetic resources 37.56 37.56 0 37.47 −0.23 37.7 0.38

Recreation
& culture

Total 6.38 6.37 −0.14 6.32 −0.86 6.49 1.65
Recreation 2.19 2.2 0.55 2.17 −1.09 2.31 5.32
Cultural 4.18 4.17 −0.27 4.16 −0.51 4.18 −0.03

Total ESV 152.27 150.97 −5.53 150.67 −6.62 153.22 4.53

4. Discussion
4.1. Impact of LULC Change on Ecosystem Services in Afghanistan

In Afghanistan, LULC management is important, as people’s livelihoods are heavily
dependent on local landscape services. Grassland, agricultural land, forest, water bodies,
and built-up land are important LULC classes in Afghanistan that are used for economic
and environmental purposes. Depending upon the regional conditions, the distribution
of economic- and environmental-oriented LULC types varies significantly around the
country. The 20 year LULC change analysis showed that the economic-oriented LULC
types such as agricultural and built-up land had increased by 4.5% and 118%, respec-
tively. This increase in economic-oriented land was synchronized with the rapid growth
of GDP and population [60]. However, in contrast to economic-oriented LULC types, the
size of environmental-oriented LULC types such as forest, grassland, and water bodies
were reduced by 20.6%, 10.2%, and 4.2%, respectively. Furthermore, severe instability in
environmental-oriented LULC classes during the study period were noticed, which empha-
sizes the vulnerability of these LULC classes in Afghanistan. Various studies have reported
rapid urbanization [105], poor management [106], and worsening climatic conditions [107]
as some of the major underlining reasons of environmental-oriented land cover loss.

However, the study period breakdown analysis revealed improved conditions for
environmental-oriented LULC classes during the second period. From 2010 to 2020 (pe-
riod II), the negative change trends of forest and water bodies were shifted to positive, and
the decreasing rate of grassland slowed from 10.1% to 0.2%. Increased awareness among
decision makers of the importance of environmental-oriented LULC types could be a major
driver of this shift. It is also noticeable that due to massive reductions of foreign funding
during period II, economic development-related investment was significantly reduced.
This scenario possibly minimized the pressure on natural ecosystems, leading to improved
ecological conditions.

By using the Costanza et al. (2014) coefficients coupled with the study area NDVI
and GDP information and the estimated size of the six LULC biomes, we determined that
the total ESV in Afghanistan was reduced by 5.4% (8.73 billion USD) from 2000 to 2020.
This negative change was mainly attributed to massive grassland and forest land changes,
especially during first ten years. Grassland ecosystems alone account for more than 70%
of the total ESV in Afghanistan, followed by agricultural land at 20%. The second period
of the study expectedly revealed a much slower decreasing trend of ESV. This trend was
aligned with the improved conditions of environmental-oriented LULC classes during
these years. The spatial distribution of ESV across the regions of Afghanistan were also
proportional to the composition of LULC classes.
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From the prospective ecosystem management, the simulation results of LULC and
ESV revealed a worse situation with the RED scenario. By 2030, ESV under this scenario
will further decrease by about 6.6%, followed by the BAU scenario, with a 5.5% decrease.
This is aligned with fact that rapid economic development accelerates the conversion
of environmental-oriented LULC types to the highest rate (6.4%), which will result in a
further decline of ecosystem service supplies. This situation is particularly likely when the
implementation of environmental protection plans is subject to water, land, and money
constraints [46,61,65,66]. Focusing on only rapid economic development will further divert
these resources from environmental development projects to industrial and agricultural
development, which may result in the loss of ecosystem services.

On the other hand, the ENP scenario was predicted to yield the highest growth of
ESV by 2030. ESV in this scenario will increase by 4.5% and will add another 1 billion
USD in 2020. The values of all four types of ecosystem services are expected to grow
under this scenario. As such, this scenario is the most desirable one as far as ecosystem
services sustainability is considered. However, the successful achievement of this scenario
largely depends on meeting reforestation goals, i.e., 60,000 ha each five years, and end-
ing the current degradation of rangelands and water areas [53]. Therefore, rationalized
environmental protection measures and efficient management efforts are urgently needed.
Considering the low capacity of the current government, the support of international
organizations, especially those providing funds for the restoration and protection of natural
land in Afghanistan, will be of major significance.

The overall results of our study reveal that the expansion of economic-oriented land
such agricultural and built-up lands has led to decreased of natural land and ESV. This result
is aligned with the findings of other studies that used similar ESV assessment methods in
other regions of the world [12,108–110].

4.2. Limitation of the Study

Some methodological limitations should be noted in the applied benefit transfer
method. The major one comes from the assumption of ecosystem service value homogeneity
within the entire range of LULC classes, which allows the use of average unit values
estimated in another place for specific goods to the current study area [32,111]. The services
may have higher value in some areas than in the original study area [24,112]. Furthermore,
this method is also assumed to be valid only after empirical links between ecosystem
characteristics and final services have been established [113]. In this study, we tried to
minimize the effect of this limitation by incorporating specific information from some
study areas, like NDVI and GDP, into the adopted coefficients. Despite these shortcomings,
the BTM approach may be the best option for researchers to cost-effectively and rapidly
assess multiple ecosystem services at large geographical scales [113]. The other limitation
of this study comes from data scarcity. Afghanistan is a data-scarce region; much of the
required data is either not available or of low quality. For instance, the incorporation of the
angel coefficient [43] to the adopted coefficients would have further improved our results.
However, this was avoided due to the unavailability of this data in Afghanistan.

5. Conclusions and Recommendations

A high level of dependency on LULC-induced services has increased the risk of
ecosystem service loss in Afghanistan. This dynamic underlines the need of economic
valuations of ecosystem services. This study fills this research gap and provides a much-
needed national assessment of the impact of LULC changes on ESV in Afghanistan from
2000 to 2020. Furthermore, it provides a future prospective of various ESV scenarios.
The results of this study reveal significant LULC changes in Afghanistan during 2000 to
2020. The overall LULC change analysis revealed that while economic-oriented LULC
types increased, environmental development-oriented LULC types such as forest cover,
grassland, and water bodies decreased by 20.6%, 10.2%, and 4.7%, respectively. The
directional changes of these LULC types also indicated their instability and vulnerability,
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compared to agriculture and built-up lands. The ESV analysis showed that 80% of the
ecosystem services in Afghanistan serve to support and provide services. During the entire
study period, the total ESV declined from 161 billion USD in 2000 to 152.27 billion USD
in 2020, which is a nearly 5% reduction. The highest decrease of value was estimated in
cultural services, followed by supporting and regulating services. However, the rate of
decrease was considerably slower during the last 10 years (3.7%) compared to the initial 10
years (1.9%). This could have been due to increased awareness among decision makers of
the importance of ecosystem services.

The simulation results revealed that built-up and agricultural land will grow the least
under the ENP scenario, i.e., by 0.8 and 30.7%, respectively, while, they will grow faster
under the RED scenario, i.e., by 1.4% and 41.4%, respectively. However, the rapid economic
development of the RED scenario will accelerate the reduction of forest, grassland and
water areas by 5.2%, 0.4% and 0.8%, respectively.

On a more positive note, the expansion of natural lands such as forests, grassland, and
water areas were predicted to occur more rapidly under the ENP scenario. Under ENP, the
expansion of agricultural and built-up land will slow down, reducing the pressure on forest,
grassland, and water areas. Under this scenario, forest and water areas will increase by
10.6% and 7.5%, respectively. The overall predicted ESV also largely consists of supporting
and provisioning services. The overall ESV under RED and BAU is likely to further decline
from 152.27 to 150.6 and 150.9 billion USD by 2030. The decline of ESV in the RED scenario
was the highest; this is a result of the rapid decrease of environmental-oriented LULC types.
On the other hand, ESV under ENP will likely increase from 152.27 to 153.22 billion USD.
This situation could occur if 60,000 ha of reforestation every 5 years is maintained and
degraded rangelands and water areas are restored. However, this would require substantial
resources and better execution.

The current decreasing ESV trend suggests the need for a more balanced approach
of economic and environmental development. This is required for the comprehensive
development of nations. Some quick actions, such as providing alternative fuel sources,
will reduce the pressure on forests in the short term. Currently, forest resources are widely
used for household energy. Also, the support of international donors may play a significant
role in the implementation of environmental development programs. Government and non-
government partners need to work with local communities to increase the management
capacities of the latter. The rapidly growing population is a major challenge for ecosystem
management. It is perhaps time for Afghanistan to take steps regarding population control,
obviously while respecting the nuances of local culture. Lastly, as water management
remains the most crucial factor for both economic and environmental development, suitable
measures need to be taken to optimize water utilization, both through constructing water
storage facilities and improving water use efficiency.
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