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Abstract: Rapid urbanization has threatened sustainable urban development in many cities across the
globe, causing green space loss and vegetation cover degradation which reduce carbon sequestration.
Optimal land management practices (LMPs) in an urban context are known as ways capable of
promoting urban vegetation growth and contributing to carbon sequestration. Due to variations of
physical, biological, and social structures in urban areas, policymakers often lack relevant information
to decide and implement site-specific LMPs. Here we try to extract the areas in need of the optimal
LMPs, identify location-dependent optimal LMPs, and assess how much more carbon can be captured
by applying a combination of segmenting homogeneous urban environments and neighborhood-
based analysis. As one of the most developed cities in China, the greater Guangzhou area (GGA) was
selected as a case study. We found that the carbon uptake from the urban vegetation in GGA could
be improved on average by 185 gC m−2 yr−1 in flux (or 1.3 TgC yr−1 in total) with optimal LMPs,
equivalent to a ~30% increase considering the current level of 662 gC m−2 yr−1 in flux (4.4 TgC yr−1

in total). The carbon uptake potential was found to differ considerably across locations and among
different ecosystem types, highlighting spatially varied priorities for implementing optimal LMPs
over the space. This study reveals the usefulness of the model in assessing carbon uptake potential
from optimal LMPs and emphasizes that future urban planning may consider the importance of
optimal LMPs in enhancing vegetation carbon uptake in urban planning.

Keywords: urban vegetation; carbon sequestration; flux; land management; environment heterogeneity

1. Introduction

The global population in urban areas grew tenfold in the last century and over half
of the people live in towns or cities today, with a projected number of more than 60% by
2030 [1,2]. Cities provide more advanced infrastructure such as recreation spots, convenient
transportation, and better health care systems than in the countryside. The advantages
of living in cities combined with the population growth attract more people crowding
into cities, causing loss or degradation of green vegetation space [3,4], which in turn
degrades vegetation carbon sequestration. Vegetation in urban landscapes plays multiple
roles, including mitigation of heat islands, purification of air quality, and reduction of
urban noises [5,6]. Urban vegetation also contributes to atmospheric carbon dioxide (CO2)
removal. Cities are responsible for more than 70% of the greenhouse gas (GHG) emissions
with CO2 as the primary component [7]. A growing number of cities have recognized
their potential contribution to mitigate climate change and aspired to achieve net-zero [8].
Clean energy and energy efficiency are probably the mainstream topics to achieve carbon-
neutral cities [9]. Cities cannot achieve net-zero by reducing emissions without improving
vegetation carbon sequestration from urban and regional landscapes [8]. Land-based GHG
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removal options can contribute positively to urban ecosystem services [10]. One of the
important issues for sustainable urban development is to protect vegetation cover and
increase carbon sequestration [11].

An urban ecosystem involves social, ecological, and physical components which
interact to create a unique environment and urban infrastructure [12]. Land-based carbon
sequestration is the process of capturing and storing organic carbon in biological forms,
driven by vegetation assimilation of CO2 from the atmosphere through photosynthesis [13].
Vegetation is the pivotal element for the carbon sequestration process. Several indices have
been proposed to measure and evaluate carbon sequestration from vegetation, including
gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem
productivity (NEP) which are, though from different aspects, closely correlated [14,15]. The
indices are important for assessing and comparing vegetation carbon sequestration from
urban ecosystems at regional or larger scales.

Urban areas characterize different land (vegetation) cover types, including build-
up of settlements as well as croplands, pastures, and/or forests [16,17]. Vegetation is a
core component of nearly all the urban land cover types [18]. Urban land management
intends to maximize land benefits with consideration of landscape of vegetation cover.
Land management can have location-specific impact on urban vegetation [10]. Several
methods have been proposed to improve urban vegetation cover, including reducing
roadside constraints, tackling underground utility restrictions to allow tree root growth,
and even tree trunk injection for better protection from pests and diseases [19]. Further,
from landscape and urban ecology principles, designing shape and connectivity of green
spaces and creating green wedges are also among the land management practices for
vegetation recovery and enhancement [20,21]. Optimal land management for a sustainable
urban development is a harmony between the nature and the interventions that take full
advantage of nature to provide solutions to specific targets, e.g., climate mitigation and
adaptation challenges, which is also the core notion from nature-based solutions (NBSs) [22].
Though traditional land use and land cover changes, e.g., converting croplands to forests
(afforestation), are capable of increasing vegetation cover, large scale afforestation is rarely
practical due to food security [23].

Remote sensing technology allows the mapping of key environment variables, vege-
tation cover, and carbon sequestration from vegetation in an efficient and effective man-
ner [24,25]. One of the commonly used remote sensing products to indicate vegetation
health is normalized distribution of vegetation index (NDVI) which can present the relative
greenness of vegetation cover over a large region. Health of vegetation cover and thus
the carbon sequestration from vegetation can be attributed to a number of environmental
factors, e.g., landforms, soil types, and meteorological conditions [26,27]. Climatic factors
are included by most carbon cycle models [28]. For example, the Carnegie–Ames–Stanford
Approach (CASA), a light use efficiency (LUE) model which has been widely applied to
map NPP over space, takes input of monthly precipitation and temperature. Similarly,
vegetation cannot maximize carbon sequestration without favorable natural conditions
such as landforms [29], soil properties [30], and biome groups [31]. Remote sensing can
invert key environmental variables, including land cover and land use [32], terrain prop-
erties [33], climate changes (e.g., precipitation, temperature, and solar radiation) [34,35],
soil properties [36], and atmospheric contents [37]. Vegetation productivity is dependent
on a variety of environmental factors as well as anthropogenic activities. While it is unre-
alistic to numerate all the influential factors, meteorological factors such as temperature;
precipitation; sun radiation; soil properties such as soil classes and soil moisture; landforms;
and plant types are generally recognized as the principal contributors or constraints on
vegetation growth [38].

This study tries to quantify, in an urban context, the potential of vegetation carbon
uptake, given that land management practices (LMPs) are freely transferrable across a
region. We assume that for a set of available LMPs, some promote vegetation growth
while others do not, depending on various urban environments. Carbon uptake from
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urban vegetation can be improved either by adopting LMPs that favor vegetation growth
to less productive areas or discontinuing or replacing LMPs that show a negative effect
on vegetation growth. We define optimal LMPs as any land management practices that
help vegetation sequester more carbon and enhance carbon uptake potential by filling
the gap between the capacity of carbon uptake before and after the implementation of
the optimal LMPs. This definition acknowledges that optimal LMPs pertain to locations
characterized by unique environmental conditions. Urban areas are characterized by a
number of ecosystem types, e.g., forests, grasslands, croplands, rangelands, wetlands, and
human settlements [39]. We selected Guangzhou, a metropolitan region in southern China
as the case study and assessed the potential of carbon uptake from vegetation by combining
segmentation of homogeneous urban environments and neighborhood-based analysis.

2. Study Area, Data Sources, and Methodology
2.1. Study Area

Guangzhou city is the capital of Guangdong Province, China (Figure 1). It is located
on the northern edge of the Pearl River Delta in southern China, typically with a subtropical
and marine monsoon climate [40]. The annual average temperature is about 21.5◦C. The
annual precipitation is relatively high, reaching nearly 2000 mm, most of which is between
April and September [40]. Apart from a dense urban core area which is dominantly covered
by urbanized land (approximately 15% out of the total area), the greater Guangzhou Area
(GGA) is mainly covered by larger suburban and rural areas. Forests, urbanized/settlement
lands, water bodies, croplands, and rangelands are the main land cover types. Vegetation
in the land cover types plays an important role in providing ecosystem services, including
carbon sequestration. Forests contribute the most to carbon sequestration and consist
of subtropical mountain evergreen broad-leaved forests in the north, subtropical ever-
green seasonal rainforests in the middle, and tropical evergreen seasonal rainforests in the
south [40]. Croplands are dominated by farmlands for crop production. In the urbanized
area, road-side trees, gardens, and residential green spaces also play an important role in
carbon sink for GGA. Rangelands are open areas covered in homogenous grasses or other
plants with little to no taller vegetation.

GGA has been observed to undertake rapid urbanization in the past three decades.
During that period, the urbanized/built-up area showed an average annual growth of
41 km2 while urban vegetation was reduced by an average of 40 km2 per year [41]. The
decrease of vegetation cover imposed a direct effect in degrading carbon sequestration
from urban vegetation. In addition, previous studies showed that human activities have
significantly reduced vegetation productivity in GGA and recommended continuous efforts
to improve the intensity of protection and management in the urban environment [42]. We
hypothesize that the optimized land management of forests, croplands, rangelands, and
urbanized areas helps to increase carbon uptake from the vegetation in the urban ecosystem
of GGA. This work tries to answer questions about how to locate optimal LMPs and the
spatial patterns in terms of possible extra carbon uptake capacity from optimal LMPs in an
urban context.

2.2. Data Sources

Monthly climate variables, including temperature, precipitation, sun radiation, and
water balance (evapotranspiration and soil moisture) were obtained from two well-known
global climate datasets, ERA5-L [43] and TerraClimate [44]. They were combined to provide
the necessary meteorological variables for modeling vegetation productivity. All the
meteorological data variables were prepared on a monthly scale during the study year.

This study applied Sentinel-2 (S2) surface reflectance (SR) data (S2_SR) to obtain the
normalized difference vegetation index (NDVI) [45]. Clouds in S2_SR were identified from
the S2 cloud probability dataset [46] and gap-filled by the smoothed values by performing
a linear interpolation and Savitzky–Golay filter from the closest time neighboring scenes
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within three month [47]. The monthly NDVI time series were obtained by the maximum
composite from the NDVI in each month.
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Figure 1. The study area: (a) The provincial boundaries of China. (b) The administrative boundary of
Guangdong province, where the study area (the greater Guangzhou area, GGA) is located. (c) The
land (vegetation) cover classes in GGA.

Soil properties are largely determined by soil classes. Vegetation carbon uptake and
the potential of improvement in the carbon uptake can be constrained by soil cover. Because
soil data is hard to obtain, this work selected the Harmonized World Soil Database (HWSD
ver. 1.2, http://www.fao.org/soils-portal, access on 28 July 2022). HWSD integrates the
soil map of China and provides the most up-to-date soil properties that we can obtain
for GGA. HWSD incorporates a data table of 48,148 soil profile descriptions related to the
various soils associated with each mapping unit at a spatial resolution 1-km [48]. Soil type
classes from FAO-90 code (SU_Code90), which includes 194 labels globally, were used for
mapping soil type cover in GGA.

Land (vegetation) cover was obtained from Environmental Systems Research Institute
(ESRI) at a fine scale of 10 m [49]. This land use/land cover (LULC) was derived from ESA
Sentinel-2 imagery at 10 m resolution. A deep learning model was used to classify land
cover by using as a massive training dataset of human-labeled image pixels. The algorithm
generated LULC predictions for 10 classes, described in detail below. This outcome was
produced by a deep learning model for all major biomes. For the area in GGA, only 5 of
the land cover types are present, as shown in Table 1. Waters are excluded from further
analysis.

Landform properties add another constraint/contribution to vegetation carbon uptake.
Here, we applied the classified landform cover from the European Soil Data Centre (ESDAC)
to indicate landform variations. This product includes 16 landform labels dynamically
classified by an unsupervised nested-means algorithm from three geometric criteria (slope,

http://www.fao.org/soils-portal
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surface texture, and local convexity) from the Shuttle Radar Topography Mission 30 m
(SRTM30) digital elevation data [50].

We selected the most recent year, i.e., 2021, to study the spatial pattern of current
carbon uptake and assess the carbon uptake potential from optimal LMPs. The required
datasets are listed in Table 2. All the datasets were resampled to a 10 m resolution to match
the NDVI to facilitate further analysis.

Table 1. Land (vegetation) cover classification schema.

Class # Area (%) Classification Examples

1 12.7 Waters Rivers, ponds, lakes, oceans, flooded salt plains.

2 45.4 Trees/forests Wooded vegetation, clusters of dense tall vegetation
within savannas, plantations, swamps or mangroves.

5 7.9 Crops Corn, wheat, soy, fallow plots of structured land.

7 32.2 Urbanized areas Houses, dense villages/towns/cities, paved
roads, asphalt.

11 1.3 Rangelands

Natural meadows and fields with sparse to no tree
cover; open savanna with few to no trees; parks/golf
courses/lawns; pastures; moderate to sparse cover of
bushes, shrubs, and tufts of grass; savannas with very
sparse grasses, trees, or other plants.

# Other classes with area less than 1.0% are excluded.

Table 2. Data description and data sources.

Data Type Data Description and Variables Data Sources

Climate data

A number of variables are included: monthly
minimum, mean and maximum temperature,
monthly precipitation, monthly sun shortwave
radiation, average dewpoint temperature,
surface pressure, soil moisture, vapor pressure
deficit (VPD), and reference evapotranspiration

ERA5-L and TerraClimate, both at monthly scale,
are combined; it provides a consistent view of the
evolution of land variables over several decades at
a spatial resolution 5 km [43]. TerraClimate is a
dataset of monthly climate and climatic water
balance for global terrestrial surfaces, with coarser
spatial resolution (~10 km) [44].

NDVI

Dynamics of vegetation greenness proxied by
monthly maximum NDVI which indicates the
part, or the effective absorption, of solar
radiation and thus vegetation productivity.

Sentinel-2 multispectral instrument (MSI),
Level-2A, at 10 m in spatial resolution and a
combined revisit time of 5 days. The monthly
NDVI can be obtained by maximum composite
and cloud gap filling [46].

Soil cover

Soil properties are largely reflected in soil classes.
The same soil type usually shows similar
contribution/constraint to vegetation growth.
Soil cover data can map the difference in soil
type distribution.

Harmonized World Soil Database (HWSD) at ~1
km in spatial resolution and 194 classes [51].

Landforms

Landforms represent the combined effect of
slope, surface roughness, and local convexity for
a given location, which is important for
vegetation growth.

European Soil Data Centre (ESDAC) at ~1 km,
with 16 landform labels [50].

Vegetation (land) cover

Vegetation (land) cover determines the base level
for vegetation productivity. For example, forests
usually outperform grassland in vegetation
productivity. Carbon uptake potential can be
evaluated for the same land cover type.

Land cover with 10 classes at 10 m, derived from
Sentinel-2 and a deep learning algorithm, by
Environmental Systems Research Institute
(ESRI) [49].

2.3. Methodology

For the case study, forests, croplands, rangelands, and urbanized areas were mapped
based on the land cover classification schema (Table 1). The urbanized areas are mainly
covered by imperious material but mixed with green spaces from road-side trees, gardens,
or other recreation spots, and thus potentially contribute to carbon sequestration. The
carbon uptake potential was assessed based on historical carbon capture capacity for
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different ecosystems. We applied two phases to assess the potential increase of carbon
capture in GGA. We first mapped the distribution of carbon uptake proxied by NPP. We
then applied the segmentation of environmental factors and neighborhood analysis to
compute the carbon uptake potential.

2.3.1. Mapping NPP to Indicate Carbon Uptake from Urban Vegetation

In the first phase, net primary productivity (NPP) was most commonly taken as the
proxy for vegetation carbon capture. Development in remote sensing technology combined
by ecological models has allowed timely NPP mapping over a large region. This study
integrated two models to map NPP in GGA: the Carnegie–Ames–Stanford Approach
(CASA) for croplands, settlements, and rangelands, and 3-PGS (Physiological Principles
Predicting Growth with Satellite Data) for forests. First, the CASA model is one of the
NPP models that have been widely applied to map large-scale NPP with only a few land
cover and climate variables inverted by remote sensing imagery. NPP reflects the absorbed
photosynthesis active radiation (APAR) and light use efficiency in turning energy into
biomass from vegetation, in the form of:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

and
APAR(x, t) = SOL(x, t)× FPAR(x, t)× r (2)

where ε(x,t) is light utilization; x represents the location; and t denotes the month for the
model. SOL (x,t) is solar radiation location x and month t) of each year. FPAR(x,t) is the
fraction of incoming photosynthetically active radiation by the vegetation cover. R is the
proportion of total solar radiation and assigned to be 0.5 as recommended by previous
study [52].

FPAR(x, t) =
(NDVI(x, t)− NDVIi,min)

(NDVIi,max − NDVIi,min)
× (FPARmax − FPARmin) + FPARmin (3)

where NDVIi,max and NDVIi,min are the maximum and minimum NDVI, respectively, for
the ith (I = #2, #5, #7, and #11, Table 1) vegetation cover class; FPARmax and FPARmin are
the maximum and minimum proportion of incoming photosynthetically active radiation
absorbed which are set to be 0.950 and 0.001, respectively. Computation of light use rate
ε(x,t) is detailed in the literature [52]. As CASA outputs monthly NPP, the NPP at the
monthly scale output is then summed up to derive yearly NPP.

In addition to CASA, the 3-PGS model was applied for NPP in vegetation productivity
in forests. 3-PGS is a modified version of 3-PG (Physiological Processes Predicting Growth),
a well-known process-based carbon balance model designed to predict the growth, diameter
distribution, and annual mortality for forest stands [53]. The 3-PGS model takes the use of
satellite data in the model framework to assess productivity at a range of forest sites [54–56].
The 3-PGS model has been applied to several projects; its performance was reported
to be extremely encouraging (r2 = 0.93, in comparison to field measurement) for forest
ecosystem [54]. NPP computation takes the form of:

NPP(x, t) = Cpp·GPP(x, t) = Cpp·APAR(x, t)·εmax· fx,t (4)

where x and t indicate the location and month of a year, GPP(x,t) is the gross primary
productivity for location x and time t. Cpp, a conversion coefficient for forests from GPP to
NPP and without calibration data, is assigned to be 0.47. εmax is the max conversion rate
from light energy to biomass, which is 1.80 gC·MJ−1. fx,t is the coefficient of the overall
environmental constraints. APAR(x,t) is the absorbed photosynthetically active radiation in
forest vegetation which is modeled using:

APAR(x, t) = PAR(x, t)× FPAR(x, t)= PAR(x, t)× (a × NDVI(x, t) + b (5)
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where PAR is effective photosynthetically active radiation; FPAR is the fraction absorbed
from PAR; NDVI reflects vegetation greenness and is positively related to FPAR; and a and
b are coefficients which are empirically set to be 1.24 and −0.168. The complete protocol
and processes for the 3-PGS model are detailed in the literature [54–56].

In the end, NPP of forest vegetation from 3-PGS and NPP from the other vegetation
cover types were combined for the complete region to reflect the spatial pattern of carbon
uptake for the study area.

2.3.2. Carbon Uptake Potential by Segmenting Urban Environments and
Neighborhood-Based Analysis

The carbon uptake potential from optimal LMPs was assessed based on the segmen-
tation of homogeneous urban environments and neighborhood-based analysis. First, the
effect on NPP from the environmental factors was isolated through region segmentation,
resulting in non-overlapped homogeneous patches with identical conditions of the corre-
sponding environments. The internal variation of NPP across locations in the patches was
then evaluated and the potential of carbon uptake was computed recursively at location
from the statistics of the NPP distribution within the patches by a neighborhood-based
analysis. The processes are detailed as follows.

The impact from the climate factors, including precipitation, temperature, and solar
radiation, has been isolated in the models, i.e., CASA and 3-PGS, in the spatial variations
of the output NPP. Next, the impact on NPP from different landforms, soil properties, and
vegetation cover must be isolated across locations, leaving the impact from LMPs only.
In this regard, a region segmentation operation was performed by overlaying landforms
(L), vegetation types (V), and soil types (S) to derive homogeneous patches known as LVS
labeled zones so that all locations (pixels) in an LVS zone are labeled by the same LVS#,
or properties of the landforms, vegetation cover, and soil type (Figure 2). For the pixels
(locations) within zones labeled by the same LVS#, the impact from the LVS factors on the
internal NPP variation should be insignificant. Thus, the NPP variation in an LVS zone, if
any, should be attributed only to differed LMPs across the locations in LVS zones.

Given a location i with relatively low vegetation NPP (NPPi) in an LVS zone, the carbon
uptake potential or the extra carbon that vegetation can sequester after implementation of
optimal LMPs is computed as the gap from NPPi to a reasonably higher target NPP level
(NPPTarget,i) observed at all identically LVS labeled locations in its neighborhood, in the
form of:

NPPgap, i = NPPTarget,i − NPPi (6)

where NPPgap,i is the extra carbon at location i that vegetation can sequester through the
implementation of optimal LMPs. NPPTarget,i can be decided either simply by looking for
a high NPP at other locations (e.g., the local maximum NPP) or computed statistically
from the NPP distribution observed at all other locations in the same LVS labeled zones
(e.g., the top 10% NPP level for all locations). The maximum NPP flux in segmented zones
labeled by a unique LVS# may theoretically serve as the NPPTarget,i for other locations in the
zones. However, this configuration means that the optimal LMPs are too strictly defined
to be implemented because only a single candidate is available in the optimal LMPs list,
leaving no alternative choices in the selection of the optimal LMPs. It is more reasonable
to compute NPPTarget,i by setting a flexible standard based on the context of NPP in the
LVS zones.

Due to the complexity in urban ecosystems, here we consider two parameters to
compute the NPPTarget,i. The first one is the size of the neighborhood, or a radius defined
by the distance starting from the location i. A larger distance means more locations in the
neighborhood to be searched to derive the NPPTarget,i. The second parameter is a reference
percentage (RP), which is a percentile threshold to derive the NPPTarget,i from the NPP
distribution of all the locations in the LVS zones. A high RP means a higher NPPTarget,i
and greater carbon uptake potential but, at the same time, fewer LMPs candidates for
practical implementation. Instead of targeting the maximum NPP (RP = 100%), setting
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RP = 90% is more robust to data noises in the segmented patches and the modeled NPP
because this setting cuts off 10% of the top NPP values to avoid the impact on NPPTarget,i
from abnormal data in NPP. Furthermore, a neighborhood size of ~20 km is preferable for
not only producing a stable NPPTarget,i but also for allowing an easier implementation of
optimal LMPs because the LMPs are transferred only from a close neighborhood [38]. The
combination of ~20 km and RP = 90% was finally decided to derive NPPTarget,i.
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Figure 2. Workflow for computing carbon uptake potential from urban vegetation with implementa-
tion of optimal LMPs. The diagram shows segmentation of environmentally homogeneous patches
(zones), the unique LVS# for a given location i, the neighborhood, NPP distribution of the location,
and the overlapped area of the LVS zones and neighborhood to derive NPPTarget,i and NPPgap,i or the
potential of carbon uptake. The computation of carbon uptake potential is repeated for all locations
in the study region.

The climate data and the Sentinel-2 imagery for deriving NDVI can be obtained
directly from the Google earth engine (GEE) which also supports data upload from end
users. All other required data were uploaded into user’s asset repository. The built-in
algorithms for image computation and spatial statistics prove to be powerful to analyze
many spatial questions [32]. In this work, we applied the GEE to model NPP and analyze
the carbon uptake potential.

3. Results
3.1. Carbon Uptake Patterns in the Urban Ecosystems

The spatial distribution of vegetation carbon uptake in GGA, proxied by NPP, shows
considerable spatial variation. The northern part, which is mainly covered by forests,
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presents a higher NPP flux than the other areas. Conversely, the middle to south of the area
representing the core urban area shows much lower density in NPP flux (Figure 3a). The
spatial variation in NPP flux differs considerably among the land (vegetation) cover classes.
Furthermore, the variation in NPP flux may also be linked to both environmental factors,
e.g., climate, landforms, and soil properties, and human activities (e.g., land management).
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The comparisons of the fraction of the land cover area, NPP flux, and total NPP among
different vegetation cover classes are presented in Figure 3b. The NPP flux for the whole
vegetated area of 7020 km2 reached 622 gC m−2 yr−1 in flux and totaled 4.37 TgC yr−1

(1TgC = 1012gC), with considerable variations observed among the land cover classes.
Forests show the highest NPP flux and total carbon capture, reaching 883 gC m−2 yr−1

and 3.24 TgC yr−1, respectively. Croplands present an NPP flux of 521 gC m−2 yr−1,
or 0.33 TgC yr−1 in total. NPP in the urbanized area shows the lowest flux, reaching
281 gC m−2 yr−1 and 0.33 TgC yr−1 in total. It is worthy to point out that, though most
parts of urbanized area are characterized by impervious lands, it is not uncommon to
observe street trees along sides of most urban roads, and scattered lawns and gardens
which are important elements of urban vegetation. Lastly, rangelands take the second
place in NPP flux after forests, reaching 609 gC m−2 yr−1 in carbon flux, though the total
value carbon uptake, i.e., 0.06 TgC yr−1, is the smallest among all the ecosystem types
because of the lowest proportion of its land area. Forests take the largest part of the land
area (Figure 3c) and contribute the most to the carbon uptake in GGA (Figure 3d).
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3.2. Potential of Carbon Uptake from Optimal LMPs

Mapping the environmental factors revealed that there was considerable heterogeneity
in terms of vegetation cover (Figure 1c), soil cover (Figure 4a), and landforms (Figure 4b).
The segmentation analysis using a combination of all the key environmental factors high-
lights both spatial heterogeneity among the patches and spatial homogeneity within the
patches in terms of the factors (Figure 4c). The heterogeneity among the segmented patches
can be one important reason explaining the variations of NPP across GGA. The NPP varia-
tion within the patches, on the other hand, does not come from the environmental factors
and will be attributed solely to the differed impact from LMPs.
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The spatial distribution of the carbon uptake potential, with implementation of optimal
LMPs, in GGA is presented in Figure 5a. Compared to NPP flux, the carbon uptake potential
highlights a reversed pattern, namely locations presenting a relatively high potential flux
in carbon capture have a lower NPP flux. For example, forests in the northern part in GGA,
which present the highest NPP flux, have less potential in carbon capture; conversely, the
region showing less NPP flux, e.g., the settlement area in the middle and southern part, is
likely to bring more potential in carbon capture if the LMPs are optimized.

The potential of carbon uptake in GGA suggests that, on average, vegetation can
bring an extra flux of 185 gC m−2 yr−1, or 1.3 TgC yr−1 in total across the land cover
area of 7020 km2, given a full implementation of the optimal LMPs (Figure 5b). However,
the carbon uptake potential shows high variation among the land cover classes (forests,
croplands, urbanized, and rangelands). As the largest carbon sink, forests in GGA are
expected to improve NPP by only 60 gC m−2 yr−1 in flux and 0.22 TgC yr−1 in total by
optimizing LMPs. Croplands can bring a higher flux, i.e., 209 gC m−2 yr−1 in carbon
uptake potential but less total potential, i.e., 0.07 TgC yr−1 due to its relatively small land
cover area. Urbanized/settlement areas are likely to contribute the most in terms of carbon
uptake potential, totaling 0.92 TgC yr−1 with an average flux of 354 gC m−2 yr−1. Lastly,
rangelands are expected to bring an extra carbon uptake by 249 gC m−2 yr−1 in flux and
0.026 TgC yr−1 in total. It is clear that urbanized areas, though taking only the second
position in the land cover area, may play the most important part in improving carbon
uptake after the implementation of optimal LMPs (Figure 5c,d).



Land 2022, 11, 1878 11 of 18Land 2022, 11, x FOR PEER REVIEW 12 of 19 
 

Forests
Croplands
Urbanized
Rangeland

A
B
C

A
B
C

A
B
C

A
B
C

A:
B:
C:

Total Area (108×m2)
Mean carbon potential flux (×10 gC m−2 yr−1)
Total  carbon potential (×1011 gC yr−1)

0           20         40         60         80         100

(b)

(c) (d)

Forests

Croplands

Urbanized

Rangeland

36.7

2.2
6.0

6.4

0.7
20.9

26.0

9.2
35.4

1.0

0.26
24.9

A
B
C

70.2

13.0
18.5Overall

<−65
0
0–100
100–200
200–300
300–400
400–500
500–600
600–700
700–900
>900
Waters

(a)

Carbon potential
flux (gC m−2 yr−1)

 
Figure 5. Distribution of carbon uptake potential and its variations among the land cover classes. 
(a) the flux of potential of carbon uptake, (b) the carbon uptake potential from different land cover 
classes, (c) area of the land cover classes, (d) contribution of carbon uptake potential among the land 
cover classes. 

The potential of carbon uptake in GGA suggests that, on average, vegetation can 
bring an extra flux of 185 gC m−2 yr−1, or 1.3 TgC yr−1 in total across the land cover area of 
7020 km2, given a full implementation of the optimal LMPs (Figure 5b). However, the car-
bon uptake potential shows high variation among the land cover classes (forests, 
croplands, urbanized, and rangelands). As the largest carbon sink, forests in GGA are ex-
pected to improve NPP by only 60 gC m−2 yr−1 in flux and 0.22 TgC yr−1 in total by opti-
mizing LMPs. Croplands can bring a higher flux, i.e., 209 gC m−2 yr−1 in carbon uptake 
potential but less total potential, i.e., 0.07 TgC yr−1 due to its relatively small land cover 
area. Urbanized/settlement areas are likely to contribute the most in terms of carbon up-
take potential, totaling 0.92 TgC yr−1 with an average flux of 354 gC m−2 yr−1. Lastly, range-
lands are expected to bring an extra carbon uptake by 249 gC m−2 yr−1 in flux and 0.026 
TgC yr−1 in total. It is clear that urbanized areas, though taking only the second position 
in the land cover area, may play the most important part in improving carbon uptake after 
the implementation of optimal LMPs (Figure 5c,d).  

The current carbon uptake and future potential in carbon uptake of different land 
cover classes are illustrated in Table 3. On average, the carbon uptake is expected to im-
prove by ~30% compared to its current amount (1.3 vs. 4.4 TgC yr−1 in total and 185 vs. 622 
gC m−2 yr−1 in flux). For urbanized areas, carbon uptake is expected to more than double 
its current level (1.25 times) given optimal LMPs are implemented. Croplands and range-
lands can capture 40% and 41% more carbon, respectively, than their current carbon up-
take level if LMPs are freely transferrable across locations. It is disappointing to note that 

Figure 5. Distribution of carbon uptake potential and its variations among the land cover classes.
(a) the flux of potential of carbon uptake, (b) the carbon uptake potential from different land cover
classes, (c) area of the land cover classes, (d) contribution of carbon uptake potential among the land
cover classes.

The current carbon uptake and future potential in carbon uptake of different land
cover classes are illustrated in Table 3. On average, the carbon uptake is expected to
improve by ~30% compared to its current amount (1.3 vs. 4.4 TgC yr−1 in total and
185 vs. 622 gC m−2 yr−1 in flux). For urbanized areas, carbon uptake is expected to more
than double its current level (1.25 times) given optimal LMPs are implemented. Croplands
and rangelands can capture 40% and 41% more carbon, respectively, than their current
carbon uptake level if LMPs are freely transferrable across locations. It is disappointing to
note that forests can potentially add only an extra 7% carbon uptake to its current level;
nevertheless, the limited carbon uptake potential does not mean that it is not important
to manage forests well, because vegetation degradation in forests will induce a critical
decrease in NPP flux since NPP flux in forests is much higher than that of the other land
cover classes. The low potential in carbon uptake in forests is likely to suggest that forests
were managed well. Instead, more attention can be given to optimize land management for
the urbanized lands, croplands, and rangelands to increase carbon capture.
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Table 3. Contribution of carbon potential in different land (vegetation) cover classes in GGA.

Items Forests Croplands Urbanized Rangelands Average # Total

Land area (×108 m2) (%) 36.7 (52.3) 6.4 (9.1) 26.0 (37.1) 1.1 (1.5) / 70.2 (100)
NPP flux (gC m−2yr−1) 883.3 521.5 281.5 608.7 622.2 /

Carbon potential flux (gC m−2 yr−1) 60.4 209.4 353.9 249.2 185.0 /
Total NPP (×1011 gC yr−1) (%) 32.4 (74.1) 3.4 (7.7) 7.3 (16.8) 0.6 (1.5) / 43.7 (100)

Total potential (×1011 gC yr−1) (%) 2.2 (16.9) 1.3 (10.3) 9.2 (70.7) 0.3 (2.0) / 13.0 (100)
Ratio (Carbon potential/NPP) 0.07 0.40 1.25 0.41 0.30 0.30

# The averaged NPP column and carbon potential flux is area-weighted from the land cover types.

4. Discussions
4.1. Optimal Land Management Practices

Land management practices (LMPs) refer to any administration strategies on lands,
including activities related to the benefit of land use and development targeting individual,
collective, and economic purposes, which may vary under different ecosystem contexts. In
an urban context, LMPs may focus on satisfying commercial or residential needs for the
economy while maintaining an ecological benefit for a healthy urban environment [57]. In
an agroecosystem, most LMPs target to promote food or crop production, e.g., by weed
removal, fertilizer application, and irrigation [58]. Wood production and soil erosion control
are among the targets in a forest ecosystem [59]. Vegetation in urban ecosystems captures
atmospheric carbon, indicated by NPP. To maximize the carbon capture, land management
strategies need to be adjusted to fit environmental conditions. The effectiveness of LMPs
from the perspective of the carbon uptake potential can be computed as the difference
between the capacity of carbon uptake with and without the implementation of the LMPs.

While those environmental factors, e.g., temperature, precipitation, or landform/soil
classes may update vegetation productivity and increase carbon capture, they are much
more difficult, if not impossible, to be implemented in practice. Transformation of land use
and land cover (LULC), for example, from croplands to forests has shown ecological benefit
and can potentially capture more atmospheric carbon [60]. However, such practices are
not widely acceptable due to food security in an urban context [23]. Reversing impervious
land to croplands/forests is also discouraged, given the need for urban expansion to
support economic development. This study emphasizes that the strategy to increase
vegetation productivity should resort to optimizing LMPs without changes in LULC. Such
consideration reflects the goal of sustainable urban development satisfying both ecological
and socio-economic needs.

The LMPs to improve carbon uptake optimize three targets: vegetation proportion,
vegetation density, and vegetation complexity [21] (Table 4). Increasing the proportion
of vegetation cover can be realized simply by extending vegetated area and urban green
space; for example, through planting more trees in barren or discarded lands However, the
potential is limited considering unused lands are rare in modern cities. A more promising
strategy introduced previously to increase proportion of urban greenspace is to create green
walls and roofs in new buildings by applying an ecological urban index called biotope
area factor [61]. In addition, the strategies by optimizing vegetation cover density and
vegetation landscapes are more welcome and recommended since they promote vegetation
growth without altering land use.
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Table 4. Urban vegetation management to improve vegetation carbon sequestration.

Strategies Example Description Outcome

Increased vegetation
proportion

Artificially plant trees to
increase vegetation
proportion [62]

Turn previously barren or
discarded lands into
human-made parks

More greenspace (parks) in urban
areas enhances ecosystem services
to local residents

Optimized vegetation
cover density

Manage urban forests to
increase vegetation density [63]

Improve trees in forest area to
optimize landscape patterns
and tree density

The higher tree density improves
vegetation productivity and
provides green welfares for
residents

Optimized vegetation
landscapes

Apply landscape design to
increase vegetation
complexity [64,65]

Scatter vegetation cover over
space and improve
fragmentation or reduce
connectivity of vegetation
landscape patterns

The increased fragmentation or
reduced connectivity in
vegetation cover promotes
vegetation carbon uptake

4.2. Implication of Carbon Uptake Potential to Policies

Urban expansion inevitably results in a loss of vegetation cover and, most likely,
reduces the overall carbon sequestration of cities [26,66]. One way to promote carbon
uptake capacity in urban ecosystems can be made possible through designing optimal
LMPs. The approach proposed in this study segmented GGA into homogeneous patches,
allowing an objective comparison of the effect on carbon uptake from different LMPs. The
study assumes that multiple LMPs coexist in the urban areas. The NPP variation within the
environmentally homogeneous patches was illustrated, suggesting that the LMPs varied
across locations and showed different impact on vegetation carbon uptake. The historical
records of LMPs effective for vegetation carbon uptake provide reference candidates for
future land management optimization. Policy makers should pay more attention to areas
with a high potential of carbon uptake when planning urban development.

The optimal LMPs can be identified from existing LMPs that have produced a high
target level of NPP flux and, if extended to wider areas, are expected to improve carbon
capture from vegetation. One common approach for policy makers to decide optimal
LMPs and a target level of carbon capture is to compare the existing LMPs across locations.
Comparative to a location with a low NPP, its neighbors presenting a high NPP with
identical environmental conditions, if available, are believed to be under better LMPs
which form a candidate list of optimal LMPs. The optimal LMPs, identified recursively at
each location, are location-dependent because spatial heterogeneity is common in an urban
environment and optimal LMPs do not apply uniformly [67]. Assisted by spatial modeling
and remote sensing datasets, this study provides a way to automate the extraction of the
neighboring references and dig out the LMPs. If the discovered optimal LMPs are freely
transferrable and can be applied to locations presenting lower carbon uptake, improvement
in carbon uptake flux can be achieved. It is worth noting that, because the carbon uptake
potential is assessed based on existing LMPs, the optimal LMPs might not be the best
choices under the current urban context. Nature-based solutions (NBSs) are actions that
protect, sustainably manage, or restore an ecosystem to address societal challenges [68]. In
an urban context, the optimal LMPs are examples of NBSs that promote the local nature (in
terms of soil, terrain, and vegetation) as a means for realizing a targeted level in vegetation
carbon uptake. A large candidate in NBSs makes it possible to create or design a new
LMP, resulting in even higher carbon uptake potential. Nevertheless, the advantage of
our approach is that the effectiveness of the discovered LMPs has been confirmed by
historical records, while any newly designed one must be verified via field observation
before implementation. Therefore, the identified optimal LMPs from this study are safer to
be carried out.
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4.3. Parameterization and Uncertainties

Several parameters are required to derive the potential of carbon uptake from the
optimal LMPs in an urban ecosystem. First of all, the carbon uptake potential is based on
the vegetation productivity of historical datasets. To model NPP distribution, two models,
namely CASA and 3-PGS, were integrated to map NPP for GGA. Those process-based
models are simple to build but a couple of empirical parameters must be decided for
model execution. In the CASA model, a constant value of 0.5 for the ratio of effective solar
radiation is given for all the locations; other parameters such as FPARmax and FPARmin
were fixed to be 0.001 and 0.95 (Equation (3)). Similarly, the 3-PGS model depends on
several empirical parameters (for example, Cpp and εmax; see Equations (4) and (5)) which
are likely to vary over space. Though such parameters have been tested and recommended
by previous studies, they are often questioned whether they are really constant across
different locations and vegetation cover classes. An alternative way to determine the model
coefficients is to make them dynamically fit from field collected samples, which is believed
to be more acceptable.

In the computation of the potential of carbon uptake, the size of the neighborhood
within which to search for the optimal LMPs was set to be 20 km and the reference
percentage (RP) 90%. Combination of the two parameters may affect the target level of
carbon uptake under optimal LMPs and the carbon uptake potential. Our previous study
has shown that given a reference percentage (RP) of 90%, a neighborhood with a size
of ~20 km is optimal [38]. The result is rather sensitive to the parameter RP. A comparative
study with RP setting at different levels in the Inner Mongolia grasslands revealed that the
potential of carbon capture differed considerably; for example, with RP set at three levels,
i.e., mean (50%), 95%, and max (100%), vegetation could add an extra carbon of 11.8, 58.9,
and 74.6 gC m−2 yr−1, respectively, to its original level [69]. Higher RP means a stricter
standard in defining the optimal LMPs, resulting in fewer candidates to select from and
making it harder to implement the LMPs in practice. The decision by setting RP = 90%
considers the tradeoff between the carbon uptake potential and practical implementation
of the optimal LMPs.

Instead of NEP, or net ecosystem productivity which reflects the net carbon gain
(source or sink) within an ecosystem, we apply NPP as the proxy to indicate the capacity of
vegetation carbon uptake. NPP reflects the net carbon sequestration from vegetation but
does not account for the carbon sequestration from soil pool. Conversely, NEP considers the
carbon released from heterotrophic respiration (Rh) by soils and is derived from NPP and
Rh. Because of the difficulty in obtaining Rh, the current study was unable to use NEP. Nev-
ertheless, previous studies show that the total amount of Rh is largely proportional to NPP;
for example, the previous study showed that the ratio of Rh to NPP was 0.71 [15]. Thus, the
general pattern in the NEP potential from optimal LMPs is likely identical to the potential
of NPP, though in different magnitude, and thus the conclusion that optimal LMPs can
improve net carbon sequestration from vegetation should still hold. We acknowledge the
uncertainties in our assessed potential of carbon uptake due to various reasons. First, the
carbon uptake potential was essentially derived from the historical vegetation productivity
data, i.e., NPP, simulated by process-based LUE models. The models were not calibrated.
The key driven variables for the models, including NDVI from the sentinel-2 remote sensing
images and the meteorological variables may also contain certain noises [70], which would
be reflected in the output from the models. Second, the factors driving vegetation carbon
capture are complex and quantitative analysis of the impact from LMPs imposes a big
challenge. Both environmental factors and human activities can affect vegetation carbon
sequestration [71]. The study applied region segmentation on three key environmental fac-
tors to level off their impact on vegetation, followed by an analysis of the internal variation
within environmentally segmented patches to extract the optimal LMPs and derive the
potential of carbon uptake. Inaccurate delimitation of homogeneous patches can come from
any noise in the environmental datasets. Lastly, some other factors such as the variations
of atmospheric content across the urban ecosystems, though probably not as important as
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the included, might still play an unignorable role in vegetation growth [72]. However, it is
unrealistic to numerate them all, leading to uncertainties in assessed effect from the optimal
LMPs. Verification of the carbon uptake potential can be evaluated through field control
experiment (FCE) with multiple parallel fields under identical environmental conditions;
carbon uptake can be compared between fields with and without LMPs. Unfortunately,
FCE may take years to obtain the results. The current study applied patch segmentation by
taking into consideration the environmental heterogeneity in the landforms (L), vegetation
(V) cover, and soil (S) types, which largely simulates the idea from FCE.

5. Conclusions

Urban vegetation is a key component supporting the services of urban ecosystems.
The spatial distribution of historical vegetation carbon uptake records important patterns
related to the impact on vegetation productivity from both environmental factors (e.g.,
precipitation, temperature, or terrain slope) and human-dominated activities. While most
environmental constraints on vegetation growth are hard to be lifted, it is relatively easier
to adjust location-dependent land management practices. This study combined the segmen-
tation of urban environments with neighborhood analysis to assess carbon uptake potential
and extract optimal LMPs. The great Guangzhou area (GGA) was selected as the case study.
The carbon uptake from urban vegetation was firstly modeled with input from remote
sensing imagery and climatic datasets. The carbon uptake potential from urban vegetation
was then assessed by isolating the impact from the spatially heterogeneous environmental
factors. The study shows that the optimal LMPs can sequester, on average, ~30% more
carbon, or 1.3 TgC yr−1 compared to its current total 4.4 TgC yr−1 in the GGA. The spatial
variation in the carbon uptake potential provides useful information for prioritizing the
regions to implement optimal LMPs. Urban planning should take into account optimal
LMPs and focus on regions that present relatively higher potential in carbon uptake to
realize cost efficiency in the implementation of optimal LMPs.
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