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Abstract: How to assess the risk of flood disasters and improve the resilience of coastal cities has
become a scientific problem that must be solved urgently. This paper aims to construct a resilience
assessment model for transport systems in the context of climate change based on an analysis of the
spatial characteristics of regional transport networks and complex network theory, using the Pudong
New Area in Shanghai, China as the empirical object. Other objectives of the developed model are
to establish a system of homogeneity, efficiency, and stability indicators and to assess the impact of
flood depth (up to 7 m) on the resilience of transport networks in terms of static network structure
and dynamic network performance by designing flood inundation disturbance scenarios. Finally, the
characteristics, change trends, and conceptual connotations of the resilience of transport networks in
coastal cities are condensed. The results of this study provide a solid scientific basis for future flood
disaster risk management in global coastal cities.

Keywords: climate change; flood disaster; coastal city; transportation network; resilience

1. Introduction

Since the 1990s, global warming has become increasingly prominent; natural disasters
such as storm surges, typhoons, rainstorms, and floods have intensified; extreme disaster
events have occurred frequently [1]; and the risk of climate change has attracted great
attention from the scientific community [2]. Coastal areas are commonly sensitive to climate
change and are incredibly vulnerable to coastal flooding. China is a large maritime country,
with about 18,000 km of continental coastline and 14,000 km of island coastline. More
than 70% of large cities and 50% of the population are concentrated in the eastern and
southern coastal areas. Coastal areas play a crucial role in China’s economic strategic
layout. Maintaining sustainable development of resources and the environment in coastal
areas is a key strategic demand for the future development of the country. Transport
networks are crucial to the sustainable development of the region, therefore, in addition to
actively addressing climate change, one of the main objectives of transport policymakers
is to understand the resilience of coastal area transport networks to extreme events and
climate change. At present, a large number of investigations have been carried out at home
and abroad to examine the resilience of coastal transportation networks to global or local
climate change disasters by developing databases, method models, and analysis tools [3–8].

The concept of resilience was first proposed by C.S. Holling in ecological research
in the 1970s and then applied to engineering, society, economy, and other disciplines [9].
Resilience is defined in different conceptual terms as characterising the resilience of a
system in a single steady state (e.g., the physical performance of disaster preparedness
and loss reduction) and emphasising the ability of a system to remain stable after a major
disturbance (e.g., considering a disaster disturbance as a learning opportunity for the
system). Holling, therefore, makes a distinction between resilience, which is divided into
engineering resilience and ecological resilience [10]. From the beginning of this century,
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with the frequent occurrence of extreme climate and catastrophic events, researchers from
various disciplines around the world have paid considerable attention to research works
pertinent to resilient cities [11,12]. At present, the general understanding of the definition of
resilience is that the system (or network) solves key situations in the system through initia-
tive and adaptation to harsh environments so as to maintain the operability and stability of
relevant functions [13,14]. In the field of transportation, the concept of resilience has been
widely used in research into the urban system’s adaptive strategy in the face of future unpre-
dictable, massive and uncertain climate change; due to its dynamic, coevolutionary method,
wherein “system performance recovers to a state better than the initial value after disaster”,
this has become the focus of the research on transportation network resilience [15–17]. At
present, some national institutions, such as the National Infrastructure Advisory Council
(NIAC), defined the resilience of an infrastructure system as its ability to predict, absorb,
adapt and quickly recover from destructive events such as natural disasters [16], and some
scholars define the resilience of transportation networks as the inherent ability of a system
to change its functions in the face of unexpected changes [18]. With the deepening of
research, the time and cost of disaster recovery for transportation systems are also included
in the comprehensive consideration of resilience [19,20]. In summary, there are three key
points in the definition of resilience in the field of transportation: (1) a term describing the
inherent capabilities of a system or network; (2) it is used to describe the performance of a
destroyed system (e.g., resistance, absorption and maintenance); and (3) can be regarded as
the ability of the system to persist in one stable state or to transfer from one equilibrium
state to another equilibrium state after encountering damage. However, through the review,
we also find that there is no clear definition of traffic network resilience in the history of
climate change, and analyzing the impact of climate change on traffic network resilience is
a current research hotspot.

The high uncertainty caused by climate change means that resilience must be es-
tablished against a wider range of disturbances [21]. Therefore, the existing research
methodologies of resilience accounting for climate impacts are mostly divided into two
aspects. One is the state-based resilience assessment, which refers to the quantitative
evaluation of a system’s static state using indicators to describe the system’s ability to cope
with a disturbance “at a certain stage”. The results can provide a reference benchmark
for resilience building and are also referred to as “baseline resilience”. For example, it
can measure the degree of change in performance before and after a disaster, and the
recovery time after a disaster [22]. On the other hand, it is a process-based resilience
assessment, which focuses on measuring the factors that can be tracked and monitored,
such as the elastic curve model proposed by Bruneau [23], and the economic resilience
curve model proposed by Simmie and Hallegate, which adds a variety of economic factors
to improve the simulation of reality [24,25]. In most of the above-mentioned research
methods, resilience assessment often takes the time of extreme disasters caused by climate
change as the fault driver. If the transportation network has certain adaptability to extreme
weather events, it means that the most critical parts can be protected from floods or other
climate events so that they can maintain normal operation in the event of extreme events
such as unprecedented rainfall [26]. Therefore, the resilience of a transportation system
is multi-dimensional and determined by many factors. It depends on some structural
factors, such as the survivability of the key parts of the system and the efficiency of the
system, and also depends on some natural factors, such as climate and geography. If a
flexible resilience assessment framework model can be proposed, it will be an important
tool for detecting and explaining the differences in transportation systems and proposing
appropriate measures.

The basic principle of this paper is to establish a framework for assessing the resilience
of transportation systems in the context of climate change. The purpose of this paper is
to evaluate the resilience level of the Pudong New Area in Shanghai, China, and provide
scientific basis and technical support for coastal cities to cope with climate change and
prepare for resilient urban planning. Based on the complex network theory, we have
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established a measurement model of urban traffic network resilience. By designing the
flood disaster inundation disturbance scenario, we have established an index system of
uniformity, efficiency, and stability. From the perspective of static network structure and
dynamic network performance, we have measured the impact of a flooding depth of 0–7 m
on traffic network resilience. The resilience assessment framework proposed in this paper
enables analysts and policy makers to accurately identify the most critical parts of the
transport network. It serves as a basis for policy recommendations on specific defensive
and preventive actions. At the same time, this paper identifies the characteristics and
resilience pattern trends of coastal urban transport networks at different flood depths.
Accordingly, we propose conceptual connotations of resilience and resilience enhancement
strategies for coastal urban transport networks. This paper concludes that urban and rural
areas that are functionally compact, multi-purpose, and proactively adaptive have a high
resilience capacity.

The development of this argument is as follows: in the next section, we introduce the
reasons for selecting the research area, the research technology route, the model indicators,
and the scenario construction. In the third part, we conduct an empirical study on the
traffic network in the study area, describing the characteristic changes of network resilience
under different inundation scenarios from the static structure and dynamic performance of
the network. In the fourth part, we discuss the most important findings of this paper. In
the last section, we put forward the final conclusion of this paper on the above-mentioned
goals and put forward suggestions for future research.

2. Study Area and Methods
2.1. Overview of the Study Area

As an international trade centre and a world-class high-tech industrial cluster base,
PNA is located in the eastern coastal area of Shanghai, China, facing the threat of sea-level
rise. As the central city of the Yangtze River Delta (YRD) urban agglomeration, and with
the continuous promotion and implementation of national strategic plans, such as the
integration of the YRD and the YR economic belt, it is anticipated that its industrial density
and service industry will maintain stable growth in the future. Shanghai is positioned in the
subtropical monsoon region. In recent years, extreme events such as typhoons, rainstorms,
strong convection, and storm surges have demonstrated a great influence on urban disaster
prevention and reduction. With the action of climate change due to global warming, the
future rainfall variation trend is very complicated. The increases in the frequency and
intensity of extreme typhoon storm surges and the frequency of extreme convective weather
events in the future will aggravate the risk of severe coastal flood and waterlogging in
PNA and hinder the socio-economic development of coastal megacities. This study selects
PNA (Figure 1) as the study area based on the following considerations. First, the selected
zone covers an area of 1210.41 square kilometres, with a permanent population of 5,681,500
in 2021. It is the most populous administrative region and economically active district
in Shanghai, and its geographical position is significant as well [27]. Second, PNA is
adjacent to the East China Sea in the east and Hangzhou Bay in the south, both of which
are vulnerable to floods due to rising sea levels. Over the past 30 years, Shanghai has been
repeatedly hit by severe floods, with massive annual flood losses, especially in PNA.
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Figure 1. The study area and elevation map (Source: self-drawn by the author, map from the
following link: http://www.gscloud.cn/, accessed on 1 February 2022).

2.2. Research and Analysis Process
2.2.1. Research Ideas and Technical Route

Based on the current situation of the traffic system in the PNA, the scientific problem of
“traffic network resilience law” is condensed, the complex mechanism of the traffic system
is sought, and the complex network model of the traffic system is then constructed. Starting
from the core problem of “change of resilience characteristics”, the influential factors are
examined, and the obtained results are presented.

With the rapid development of computer, information, and control technologies,
real-world networks are becoming increasingly interconnected and characterised by inter-
dependencies and interactions. Thanks to a deep understanding of this trend, modelling

http://www.gscloud.cn/
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real-world transport infrastructure systems as complex networks for analysis has become a
popular topic [28]. The complexity and resilience of urban transport networks, an area of
research at the intersection of transport engineering and systems science, is an excellent
example of the application of complex network theory to advance engineering science, and
a deeper understanding of this research can help provide a new perspective on the analysis
of urban resilience [29,30].

Urban infrastructure resilience has always been a research hotspot in urban security.
At present, infrastructure mainly refers to the facilities that ensure the normal operation of
urban functions such as disaster prevention and mitigation, transportation, communication,
electric power, and food supply. It focuses mainly on analysing the relationship between
urban resilience and physical characteristics, layout modes, and the facility network man-
agement of infrastructure [31]. Its primary goals are to enhance the key functions, as well
as the structure and performance of a city [32]; additionally, it aims to reduce the risk,
pressure, scope, intensity, and frequency of induced damage (i.e., that caused by the system
failure) to a city so as to improve the city’s resilience.

Therefore, the overall research technical route initiated from the analysis of network
functional resilience is used to evaluate static structure characteristics and dynamic network
performance (see Figure 2). First, the complex network theory and methods for building the
road complex network model are employed. Next, the resilience evaluation index system
of the road traffic system is built and the climate change flooding scenario is simulated and
constructed by implementing GIS technology. Then, the static structure characteristics and
dynamic network performance of the traffic network for various scenarios are assessed
and appropriate comparative analysis is conducted. Finally, the characteristics of the traffic
network resilience are properly condensed, and the obtained results are presented.
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2.2.2. Semantic Model Construction and Index Selection

1. Model construction

If the characteristics of a regional highway system are examined by using topology or
complex network theory, the highway system should first be abstracted into a topological
network diagram composed of points and their corresponding connections. At present,
the construction methods of traffic networks mainly include primitive and dual mapping
methods [33]. The original mapping method refers to modelling according to the actual
situation. The intersections represent the points of the network, and the road section
denotes the edge of the network. This method is suitable for small networks; in the case
of large networks, it is unable to provide a similar analysis. In the dual mapping method,
the road section is considered as a point and the intersection is taken as the edge of the
network. This approach may be suitable for analyzing complex networks, and its actual
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length can be ignored, which can reflect the topology characteristics of the network. Due
to the complexity of the traffic network in the PNA (Shanghai) and the need to measure
its topological structure characteristics, the dual mapping method is used for modelling
(see Figure 3). The semantic transformation of the road reality system is carried out, and
road intersections or town and village points are appropriately numbered. Further, the
existing nodes in the connection network are recorded as 1, while the non-existent links
are recorded as 0. In order to make the network more closely resemble the real system,
based on the industrial standard of the people’s Republic of China technical standard for
Highway Engineering (jtgb01-2014), three key design indicators of road traffic are chosen.
These factors include the volume design, design speed, and number of lanes. The lowest
value of the index range is then subjected to further analysis. According to the criteria
importance through the inter-criteria correlation (CRITIC) method [34], the weights of
the expressway, first-class road, and second-class road are calculated as 2.1, 1.6, and 1,
respectively. By connecting various grades of sections, the weight of the connection can
be accumulated. For instance, when the expressway is connected with a first-class road,
the weight of the connection is set equal to 3.7. In view of this, an empirical regional real
system traffic network model is established, as demonstrated in Figure 4.
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2. Index selection

1© Equality
Equality represents the degree of perfection of the node connection in the network. If

the network is more complete, the networks are more closely connected to each other, and
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there are more choices between various nodes and others within the network. The equality
index selects the “network density” index in the complex network for display.

The network density factor (d) is the ratio of the actual number of edges (M) in the
network to the maximum possible number of edges in the network, which can be calculated
as follows:

d = M/[n(n− 1)/2] (1)

where n denotes the number of nodes within the network. The network density parameter
is commonly employed to describe the perfection of the connection between nodes in the
network. The greater the network density, the more perfect the connection between nodes
in the network.

2© Hub
Hub is used to characterize the ability of spatial nodes to control the interconnection

between other nodes, which can be measured by the betweenness centrality index based
on the complex network theory:

C =
∑n

i=1(CRBmax − CRBi)

n− 1
(2)

in which CRBmax represents the theoretical maximum of the absolute middle centrality of
the point, CRBi(i) denotes the absolute middle centrality of the point, and C is the relative
middle centrality of the point.

3© Efficiency
For the transportation network, the efficient connectivity is measured by the connec-

tivity efficiency of the whole network. In complex network theory, the efficiency between
any two nodes vi and vj in the network is the reciprocal of the distance dij between them,
which is expressed by εij (Formula (3)):

εij =
1

dij
(3)

The efficiency of the whole network is the average value of the efficiency of all nodes
in the network. The higher the efficiency of the whole network, the stronger the efficient
connectivity. E is used to represent the efficiency of the whole network (Formula (4)):

E =
1

n(n− 1)∑
i 6=j

εij =
1

n(n− 1)∑
i 6=j

1
dij

(4)

2.3. Scenario Simulation Construction
2.3.1. Relative Sea-Level Rise in Sea Areas near Shanghai

The regional relative sea-level rise rate could be much higher than the global absolute
sea-level rise rate [2,35]. Thus, it is necessary to focus on the relative sea-level rise in the
sea areas around Shanghai. Using the historical sea level data of several tidal stations in
Shanghai and the statistical model, some investigators have estimated that the sea level
rose in the YR Estuary 86.6, 185.6, and 433.1 mm within the time intervals of 1997–2030,
1997–2050, and 1997–2000, respectively [36].

1. The disaster effects of storm surges superimposed with sea-level rise

The rising sea levels will directly lead to an increase in storm surge water, which will
worsen the flood disasters caused by storm surges. For instance, according to statistical data
from the China marine disaster bulletin 2021 [37], from 2011 to 2020, the direct economic
losses caused by marine disasters were 87.6 billion yuan; 497 people died, and 90% of the
total losses were attributable to storm surge disasters.

Some scholars predict that the water increase from storm surges in 2080 will be about
10–20 cm higher than that at the present [38]. Additionally, it is estimated that the sea
level of the 50-year return period storm surge in the east bank of Denmark in 2100 will
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be 40–60 cm higher than the current one. Meanwhile, the once-in-a-century storm surge
may occur more frequently with the rise of the sea level [39]. In recent years, the typhoon
1526 “Super Typhoon In-fa” has caused huge losses for Shanghai (see Table 1), and the
maximum water increase has reached 320 cm.

Table 1. Storm surge and maximum water increase affecting Shanghai in recent years (cm).

Date of
Occurrence Name Maximum Water

Increase (cm)

2021.7 In-fa 300
2015.7 Chan-hom 130
2012.8 Sea anemone 323
2011.8 Plum blossom 159
2005.8 Matsa 241
2005.9 Card slave 320
2002.9 Senlac 219
2000.8 Prapiroon 260
2000.9 Saomai 170

Source: compiled by the author.

2. The catastrophic effects of extreme weather events superimposed with sea-level rise

Global climate change and sea-level rise has led to an increase in short-term heavy rain-
fall in cities, the rise in frequency and intensity of coastal storm surges, and a combination
of factors including a rapid rise in downstream high tide levels, which will aggravate the
frequency of waterlogging disasters. This means that water is more likely to accumulate in
the urban areas of coastal cities and not drain smoothly. Since the middle of the last century,
the highest tide level in Suzhou Estuary of Huangpu River has been rising continuously,
4.65 m in the 1950s and the 1960s, 5.22 m in the 1970s and 1980s, and 5.72 m (warning water
level is 4.55 m) under the influence of typhoon 11 in 1997, which is 2.5 m higher than the
Bund ground. The flood control wall in the urban area of Shanghai is designed according
to the standard of once-in-a-thousand years. If the sea level rises by 50 cm, the high tide
level of once-in-a-thousand years will reach 6.36 m.

2.3.2. Scenario Construction and Water-Level Setting

The risk of sea-level rise is related to the depth of flooding. As mentioned above, the
lowest water level in the sea area near Shanghai has risen by 1.3 m, and the highest level is
5.72 m. Through prediction, the high tide level of the 1–1000 year return period will reach
6.36 m. In order to more closely align the research results with reality and provide a basis
for disaster prevention and reduction in the PNA of Shanghai, this study is conducted
based on the historical data of climate disasters in Shanghai and the prediction data of
relevant models. In combination with the technical guidelines for the risk assessment of
storm surge disasters and zoning, and those for the risk analysis of the sea-level rise and
zoning published by the State Oceanic Administration, the depth of flooding varies from 1
to 7 m at an increment rate of 1 m.

Additionally, GIS is employed to simulate the risk scenario under the influence of sea
level rise. Due to the complexity of the actual flood inundation process, it is not only related
to high water levels but also to wave height, water increase time, and surface drainage.
Leon et al. [40] pointed out that most of the sea-level rise impact assessments using bathtub
models were easily implemented. In the present work, the interpolated digital elevation
model (DEM) and sea level height data of Shanghai are used to delimit flood areas.

3. Empirical Research Results

The impacts of various inundation depths on the study area and traffic network
structure are presented in Figures 5 and 6, respectively. The traffic network generation is
directly realized through the Pajek software platform, but the section pairs and weights
need to be set. When the flooding depth destroys the section pairs, the corresponding



Land 2022, 11, 1834 9 of 21

section pairs can be deleted (the source file is shown in Table 2). In the case of a sea level
growth of 0–3 m, the network is less affected, and the inundation is mainly in the marginal
road network. However, when it exceeds 3 m, more traffic islands are produced in the
network, and the network shape changes significantly. With the increase in inundation
depth, the traffic network in the study area changes from “block” to “branch”.
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Table 2. Section pair number, weight, and schematic diagram of the flood-damaged sections.

Number of Section Pair 1 Number of Section Pair 2 Weight

1 4 4.2
1 2 4.2
2 3 4.2
1 9 3.1
2 4 4.2

. . .
363
. . .

. . .
381
. . .

. . .
3.2
. . .

No. of damaged road section with submergence depth of 1 m: 853, 880, 886, 881, 882, 887, 888, 889,
890, 892, 893, 894, 915

No. of damaged road section with submergence depth of 2 m: 879, 891
No. of damaged road section with submergence depth of 3 m: 641, 643, 646, 758, 93, 832, 833, 920,

904, 647, 649, 634, 657
. . . . . . . . .

Source: compiled by the author.
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3.1. Network Structure Analysis
3.1.1. Equality Analysis

The results of the equality analysis are shown in Figure 7. With the increase in flooding
depth, the overall equality of the network gradually decreases, the change is relatively slow
in 0–3 m, and the decline rate begins to accelerate in 3–4 m. From a numerical point of view,
the equality of the transportation network in the study area is not high, and there is still
room for further improvement.
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the author).

3.1.2. Efficiency Analysis

Figure 8 presents the index value of the efficiency of the road network in terms of
the flood inundation depth. The results demonstrate that the traffic network efficiency
decreases rapidly as the flooding depth reaches about 4 m. It is worth mentioning that the
traffic network efficiency rises with the flooding depth within the interval of 0–2 m. The
main reason is that most of the flooded sections at 0–2 m are marginal sections of the traffic
network, which leads to an increase in the overall propagation rate of the network. At the
same time, the network efficiency is remarkably improved at 6–7 m, with an increase of
18.24%. The reason is that after the flooding depth reaches 7 m, the traffic network becomes
lumpy. In other words, a large number of edge sections are submerged, resulting in a close
association between sections and growing the connectivity of the remaining traffic network.
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Figure 8. Analysis results of the road network efficiency for the study area (Source: self-drawn by the
author).
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3.1.3. Hub Analysis

Through the hub analysis (Figure 9), the hub of the transportation network continues
to decline with the increase in flooding depth. For the inundation depth interval of 0–5 m,
the hub associated with the interval of 0–1 m decreases rapidly, and that of the interval
1–5 m decreases gradually. Among them, the hub pertinent to the 3–4 m network increases
slightly. After the inundation depth reaches 5 m, it decreases significantly, with a declining
rate of 79.99%. By examining the plotted results in Figures 7–9, we found that after the
inundation depth reaches 5 m the remaining road network forms a mass road network. This
indicates that the data points are closely connected and some road networks no longer play
an intermediary role in the network. This fact also reveals that there are some crucial road
sections connecting each other in the road network structure of the study area, although its
terrain is moderately flat.
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Figure 9. Analysis results of the road network hub for the study area (Source: self-drawn by the
author).

3.2. Network Dynamic Performance Analysis

To measure the performance of the network and identify some key sections, different
network interference modes are set up, the network efficiency is taken as the analysis index,
and the cumulative attack scheme based on the intermediate number is implemented (the
intermediate number refers to the value of this node’s intermediary role in the network,
and the attack method represents a way to sort the sections according to the intermediate
value and failing in order from high to low). The variation of the network performance is
evaluated by using the attack method, degree of cumulative attack, and attack scheme of
random cumulative attack (degree refers to how many nodes are connected to a node, and
the attack method indicates a way to sort the road sections according to the degree value
and failing sequentially from high to low). The predicted results are presented in Figure 10.
The plotted results reveal that in the early stage, for example, before the cumulative attack
reaches 146 sections (accounting for about 15.8%), the network performance under the
degree cumulative attack and random cumulative attack declines slowly and is basically
the same. When there are more than 146 cumulative attacks, the degree of the cumulative
attack makes a considerable reduction in the network performance and gradually becomes
closer to the scenario pertaining to the intermediate cumulative attack. Simultaneously,
the intermediate cumulative attack mode will make the network performance decay more
rapidly. As shown in Figure 10, the reduction of the network performance relatively
follows a lower rate before destroying 155 road sections (accounting for 16.77%). However,
when it exceeds 155, the network sharply reduces in the form of a band and the predicted
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graph exhibits a cliff-like lessening, whereby more than 207 road sections are destroyed
(accounting for 22.4%).
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4. Discussion
4.1. Resilience Characteristics and Current Situation of the Traffic Network in the Study Area
4.1.1. The Road Network Structure in the Study Area Presents the Characteristics of
“Centralized Decentralized Combination”

The above analysis indicates that the road network structure of the study area presents
the characteristics of a “centralized decentralized combination”. It implies that there are
multiple group style “Island Road Networks” which are incorporated in the real road
network as the “Lujiazui Zhangjiang High Tech”, “Waigaoqiao”, and “Lingang New City”
groups, and these “Island Road Networks” are connected by some important trunk roads.
Their corresponding abstract expression has been schematically presented in Figure 11.
On the other hand, it also reveals that the vast hinterland of PNA still has a large devel-
opment space and low road network density. This issue is of remarkable significance for
the structural design of the road network in coastal areas (such as the grade design of
trunk roads).

Land 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 
Figure 10. Analysis results of the road network efficiency from various attack modes for the study 
area (Source: self-drawn by the author). 

4. Discussion 
4.1. Resilience Characteristics and Current Situation of the Traffic Network in the Study Area 
4.1.1. The Road Network Structure in the Study Area Presents the Characteristics of 
“Centralized Decentralized Combination” 

The above analysis indicates that the road network structure of the study area pre-
sents the characteristics of a “centralized decentralized combination”. It implies that there 
are multiple group style “Island Road Networks” which are incorporated in the real road 
network as the “Lujiazui Zhangjiang High Tech”, “Waigaoqiao”, and “Lingang New 
City” groups, and these “Island Road Networks” are connected by some important trunk 
roads. Their corresponding abstract expression has been schematically presented in Fig-
ure 11. On the other hand, it also reveals that the vast hinterland of PNA still has a large 
development space and low road network density. This issue is of remarkable significance 
for the structural design of the road network in coastal areas (such as the grade design of 
trunk roads). 

 
Figure 11. The abstract diagram of “centralized decentralized combination” road network structure 
in the study area (Source: self-drawn by the author). 

  

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

70
3

73
0

75
7

78
4

81
1

83
8

86
5

89
2

91
9

N
et

w
or

k 
ef

fic
ie

nc
y 

va
lu

e

Number of failed nodes

Cumulative attack mode based on betweenness value

Cumulative attack mode based on degree value

Cumulative attack mode based on randomly selected

Figure 11. The abstract diagram of “centralized decentralized combination” road network structure
in the study area (Source: self-drawn by the author).
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4.1.2. The Road Network in the Study Area Has Certain Survivability, but It Is Vulnerable
to Selective Attacks

On the one hand, as shown in Figure 7, the average performance decline of 0–3 m is
only 1% per meter, but the performance decline of 3–4 m reaches 8.9%. It can be seen that the
traffic network in the study area has certain damage resistance within 3 m of flooding depth.
On the other hand, the performed research shows that under different attack strategies,
the road network of the study area has high resistance to random attacks, indicating the
high survivability and strong transmission ability of the network data. The interference
intensity of the selective attack on the network is higher than that of a random attack,
showing the high vulnerability and poor ability of network information transmission. It
is worth mentioning that the impact of the degree-based attack strategy on the network
performance is consistent with the random-based attack strategy in the early stages and the
medium-based attack strategy in the later stages. This observation indicates the adjustment
ability of the road section between other sections, that is, a high controllability index of
the road section can easily influence the resilience of the road network. Therefore, the
purpose of enhancing the resilience of the traffic network in the study area can be achieved
by strengthening the medium traffic nodes. This issue is also of great significance for
improving the design of road networks in coastal areas, reasonably allocating network
resources, and enhancing its anti-interference ability.

4.1.3. The Spatial Distribution of Key Road Sections of the Research Road Network with
Hierarchy and Aggregation

The extensive research also displays that the road network in the study area is sub-
jected to uncertainty and dynamicity under the interference situation, and there are some
influencing key nodes as well. The failure of key nodes will instantly lead to network paral-
ysis. By ranking the impact of various road sections on network performance (Figure 12),
we found that the impact of damage to a single road section on the network performance
varies from 0.13% to 2.11%. Based on the results of network performance analysis, the road
network nodes are then divided into high-level key sections, secondary key sections, and
other level sections according to the amount of reduction. In particular, if the lessening rate
of network performance after damage exceeds 0.8%, it is a high-level key section. If the
aforementioned rate is between 0.55% and 0.8%, it represents a secondary key section. As
shown in Figure 13, the obtained results reveal that the road network in the study area has
a special hierarchical structure, and these key road sections in space are close to each other
and exhibit aggregation. According to this law, the measures related to disaster prevention
or rescue can be provided.
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Figure 12. Impact of the single road section damage on the network performance. (Source: self-drawn
by the author).
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4.2. Resilience Characteristics and Change Trend of Traffic Network in the Study Area

Coastal areas are typically positioned downstream of rivers. In the downstream
areas, alluvial plains are formed. Climate change in coastal cities not only exhibits a
powerful impact on climate fluctuations compared with interior cities, but also results in
major problems such as rapid sea level rise, frequent and severe climate events, massive
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losses from marine disasters, and grave impacts of meteorological disasters. With the
continuous development of the economy and technology, the links between coastal urban
agglomerations will become closer, the urbanization effect will become more apparent, and
the impact of disasters on the whole region will be prolonged. Therefore, it is necessary
to summarize the process of changing the flood characteristics of the coastal urban road
network in order to guide future planning. Through the above research and analysis,
the flooding process of the traffic network in the study area has particular characteristic
changes as follows: the edge flooding stage, traffic island stage, dendritic flooding stage,
and scattered flooding stage. These stages are displayed in some detail as follows:

1. In the stage of edge flooding (i.e., in the process of rising the depth of flooding by
0–3 m), the traffic network in the study area still retains the shape of a square block
road network with Chinese features, and most of the inundated sections are non-core
areas of the traffic system and land reclamation areas.

2. In the stage of the traffic island (i.e., after increasing the flooding depth to more than
3 m), the traffic island appears in the traffic system of the study area. In other words,
multiple large and small connected subgraphs are generated, and the roads in some
areas can still pass, but due to the flood disaster, traffic is no longer connected to the
outside world.

3. In the dendritic inundation stage (i.e., after the flood depth rises to 5 m), the traffic
system in the study area demonstrates a regional inundation trend. It implies that
there is a patchy inundation area which leads to the formation of a road network from
the block to the dendritic road network. At this stage, the shape of the road network
in the coastal alluvial plain becomes similar to a mountainous disaster area.

4. In the phase of the scattered flooding stage, with the continuous increase of flood
depth, the transportation system in the study area begins to gradually paralyze and
form a scattered and distributed road network. The size of each traffic group is
essentially the same, and there is no longer a large traffic connection subgraph with
the dominant power.

4.3. Concept and Connotation of the Resilience of Coastal Urban Transportation System under the
Background of Climate Change

The increasing frequency of flood disasters caused by climate change challenges
the planning, design, construction, and operation management of coastal transportation
infrastructure. The definition of the concept of coastal city resilience in previous studies is
not very specific, and relatively little research has been conducted, resulting in relatively
weak operationalization of measures proposed by urban policymakers to enhance the
resilience of coastal cities [23,41]. Therefore, this paper attempts to define the concept and
connotation of the resilience of traffic networks in coastal cities in the context of climate
change in order to improve resilience. It is defined as follows:

(1) Redundancy

Through the analysis of network equality, it can be seen that the higher the road
network equality is, the more complete the road network structure is. In other words, the
more sections are connected, the easier it is to rapidly identify effective and replaceable
sections in case of disasters, such as low-grade sections near some high-grade sections,
which play the same important role as high-grade sections in the system. Therefore, the
transportation system of coastal cities should have a variety of transportation facilities
with similar functions in order to accommodate failure in one place and offer timely
supplementation in the other. This paper interprets the connotation of this concept as
redundancy.

(2) Dynamic

Through the analysis of the network hub and the dynamic performance of the network,
it can be seen that the key sections and the performance of the road network will exhibit
various performance characteristics in the presence of different disaster states. If the
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status quo is maintained, the coastal transportation system may be vulnerable to disasters.
Therefore, a sustainable system should be formed. There should be different coping
strategies during peacetime and disaster (even catastrophic events of varying severity),
and the coping strategies should be adjusted in time based on the impact of climate change,
the risk level of the area, and the daily travel needs of residents. Herein, the connotation of
this concept is interpreted as dynamic.

(3) Accessibility

Through the analysis of network efficiency, it can be seen that flood areas caused by
climate change have a flood-time series. It implies that due to the influence of elevation
and other factors, some areas are less affected by the disaster’s interference. In order to
make full use of this fact, the daily travel needs of residents are considered, the distances
of residents to these areas and key infrastructure are reduced as much as possible, and
the convenience and friendliness of travel are realized as well. In the current analysis, the
connotation of this concept is called accessibility.

(4) Intelligence

According to the above analysis, if the data and satisfactory management of the
transportation system can be comprehended through intelligent means such as artificial in-
telligence and big data technology for various natural disaster conditions, such as dredging
traffic flow in real-time during the occurrence of the disaster and closing some vulnerable
sections in time to reduce traffic congestion, it can greatly improve active adaptation during
the disaster and rapid recovery after the disaster. The connotation of such a concept is
called intelligence.

4.4. Strategies to Improve the Resilience of Coastal Urban Transportation System under the
Background of Climate Change

Climate change is mainly responsible for rising sea levels, the warming of cold areas in
winter, and an increase in the frequency of extreme weather, which poses challenges to the
planning, design, construction, and operation management of transportation infrastructure.
Thus, it is necessary to re-evaluate adaptive strategies according to the actual situation. The
primary purpose of formulating these strategies is to make the transportation infrastructure
more adaptive to climate change, which is particularly important for developing countries
(regions), especially those located in coastal areas. These countries often lack the financial
resources to build complete transportation infrastructure, so they are more vulnerable to
severe weather and rising sea levels compared with developed countries (regions).

In the above simulation analysis, we find that we can obtain some system characteris-
tics and system laws by simulating disaster attacks on the system in advance, which means
that it is possible to predict disasters in advance or let the system adapt in advance. In
the social ecosystem, the collective behaviour of the system subjects will gradually extend
to the local level and then affect individual choices and behaviours. Therefore, if we can
constantly simulate and stimulate the system and continue to modify it, we can guide and
influence local behaviours through space via policy, thus improving internal self-awareness
and affecting the choices and behaviours of drivers, managers, and other individuals in
the transportation system and ultimately improving the overall performance of the system.
Therefore, when building disaster prevention and mitigation plans for disaster-prone areas,
we can build adaptive feedback mechanisms, trigger adaptive changes through constant
external stimulation, propose adaptive strategies, constantly modify the performance of
the system in all aspects, offer feedback to urban-intensive and rural nonintensive spa-
tial systems, achieve natural adaptation cooperation in both urban and rural spaces, and
effectively improve the system’s resilience (Figure 14).
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5. Conclusions

The research of this paper reveals that the traffic network in PNA of Shanghai has a
particular resilience against flooding disasters resulting from the rising sea level, but its
critical point is about 3 m. Once the flooding depth exceeds this level, the structure and
performance of the traffic network will be substantially affected. In this paper, a complex
network model and GIS model are utilized to assess the change characteristics of road net-
work resilience in the study area under various flood disaster scenarios. The main objective
of the current investigation is to provide adequate data and suggestions for designing the
transportation network of coastal cities to prevent future disasters. Finally, various crucial
items are discussed, including the current situation of resilience characteristics of the traffic
network in the study area, the variation trend of resilience characteristics of the traffic
network in the study area, the concept connotations of the resilience of traffic networks in
coastal cities accounting for climate change, and the resilience improvement strategy of
coastal city traffic systems in the presence of climate change.

This paper has developed a methodology to assess the resilience characteristics of
transport networks in coastal cities. Some of the results are shown in graphs: Figure 6
clearly shows the structural changes in the regional transport network under different
flooding scenarios and Figure 13 highlights the most critical parts of the system. Based
on the spatial distribution of the key sections and the structural characteristics of the road
network obtained from the study, decision-makers can establish a risk prevention system
based on the land use planning of the Shanghai Pudong New Area and the Shanghai
Emergency Shelter Design Code, taking into account the land use, inundation areas, and
critical sections.

From the current state of resilience characteristics and conceptual connotations derived
from this paper, it can be concluded that urban resilience can be effectively enhanced if
the components of a coastal urban transport network are highly substitutable (meaning
that some of the functions are redundant and some of the facilities are connected more
efficiently and can still be reached by shorter paths after a disaster), if critical components
are identified, and if remedial measures are taken on time when a disaster occurs.

However, the study of the resilience of transport networks in coastal cities in the con-
text of climate change is a complex issue that is influenced by a variety of natural, economic,
and social factors, many of which are not examined in this paper, such as the impact of
ground subsidence and global warming on flooding. Therefore, it is recommended that
further studies consider more dimensions, such as the level of economic resilience of the
study area and the cascading effects of transport networks so that the findings can be
better applied to natural systems. Finally, transferring these empirical studies from other
countries to other regions can be a significant challenge, as each region, and especially each
country, has its own unique geographical, cultural, and socio-economic characteristics, all
requiring bespoke individual design strategies and measures. Nevertheless, this is a first
step towards increasing the resilience of coastal cities worldwide.
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