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Abstract: Both grazing and fine fuels management are dependent on the temporal and spatial
distribution of herbaceous biomass production. Rangeland and wildland fire managers can both
benefit from knowing when and where there is excessive herbaceous biomass buildup. In this
study, we compared modeled herbaceous biomass outputs from the Phytomass Growth Simulator
(Phygrow) to observe and predict herbaceous production on desert, juniper, and pine sites on the
Coconino National Forest in Arizona. Models were validated with: (a) 2 years of quarterly data,
and (b) fire season-only data. The Phygrow model showed strong agreement between observed
and predicted values year-round on the desert (r2 = 0.73) and pine sites (r2 = 0.69), and a lower,
but positive agreement in the juniper sites (r2 = 0.54). Fire season predictions were strong for all
ecosystem types (desert r2 = 0.89; juniper r2 = 0.62; pine r2 = 0.94), suggesting that the Phygrow
model is well suited to provide valuable decision support information with which to address both
rangeland and fire management objectives.

Keywords: Coconino National Forest; decision support system; fine fuel; herbivory; Phygrow;
understory; fire; southwest

1. Introduction

The temporal and spatial condition of standing herbaceous biomass is a critical element
in the planning and implementation of grazing and fine fuel (<6mm diameter; [1,2]) man-
agement and/or mitigation practices on forest lands, rangelands, and other non-forested
areas [3]. Fuel beds with a large herbaceous plant component may be more susceptible to
fire than those only composed of forest fuels [4,5] and can lower the bulk density of the fuel
bed [4,6]. The timing and scope of management practices, as well as the risk of wildfires,
can be complicated by the dynamic fluctuations of herbaceous fuels. Moisture content,
growth rate, and biomass are rather sensitive to changes in weather, season, herbivory, and
anthropogenic influences [7]. The ability to measure and model herbaceous fuel loads in
near-real time has the potential to aid land managers in estimating herbaceous fine fuel
production on a landscape and management unit level [8]. Field data can be incorporated
into decision support tools to plan land restoration practices, fuel reduction treatments such
as targeted grazing, mowing, or prescribed burning, and to preemptively assign wildland
firefighting assets to areas of concern [9].

The Standard Fire Behavior Fuel Models [10] provide a very thorough classification
of varying fuel beds found in forested and non-forested systems of the United States;
however, the choice of one model classification over another can be difficult in many areas
due to climatic and management variables that affect fuel accumulation. For example,
depending on grazing management and weather conditions, a single grassland site could
fall into a Low (GR2), Moderate (GR4), or Heavy (GR7) classification within a relatively
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short window of time. This complicates planning practices and hinders real-time decision
making. Growth models that simulate plant biomass accumulation, reduction, and decay
are an attractive tool for estimating and mapping fuel biomass. Plant growth models such as
the Forest Vegetation Simulator (FVS) [11], and the Fire and Fuels Extension (FFE-FVS) [12]
are capable of simulating total surface fuel loads. However, Hummel et al. [13] found
that the FFE-FVS model underperformed in estimating fine fuels, and the model does not
account for fuel reduction due to herbivory. As the pressure on local, state, and federal
agencies to manage and protect land and wildlife resources, private property, and human
life continues to escalate, new methods of addressing resource evaluation and management
must arise to meet the demand without placing undue burden on personnel [9].

While forestry models may be limited in their ability to model growth and accu-
mulation of herbaceous fuels, many simulation models exist for rangelands, shrublands,
and other non-forested areas. These models may be useful for simulating hydrology,
soil erosion, plant growth, and combinations thereof [14–17]. Numerous models have
been developed to simulate herbaceous biomass on rangelands, including the Simula-
tion of Production and Utilization of Rangelands (SPUR) model [18–20], Great Plains
Framework for Agricultural Resource Management (GPFARM-Range) [21,22], Agricultural
Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) [23,24],
Ecological Dynamics Simulation Model (EDYS) [25], Agricultural Policy/Environmental
eXtender (APEX) [26–28], G-Range [29,30] and the Phytomass Growth Simulator Model
(Phygrow) [31].

The Phygrow model is a hydrologically driven, daily time-step plant growth model [31]
that has been used to study grazing management [32], hydrological policy and brush con-
trol investment [33,34], forecasting of forage availability [35], and drought early warning
systems on arid grazinglands in East Africa [36–40], and Mongolia [41,42]. More recently, it
has been evaluated to estimate herbaceous biomass for grazing management and fine fuels
mitigation for the Department of Defense, and the US Forest Service (USFS) [9,43]. Through
the combination of plant community, soil, weather, and herbivory data, the Phygrow
model generates daily estimates of plant (fuel) growth, reduction via herbivory by wildlife
or livestock, total live and dead biomass accumulation, and live/dead fuel moisture, as
well as forecasting high, mid, and low biomass estimates at 30, 60, and 90 days into the
future [31,35].

The goal of this study was to field validate the Phygrow model through quarterly
measurements of herbaceous plant biomass across three ecosystem sites in central Ari-
zona. This central Arizona region marks a new application of the Phygrow model in
the desert southwest ecoregion, therefore our research is focused on how well the model
predicts actual biomass throughout the year; and more specifically, how well it models
herbaceous biomass, or fine fuels, during the wildfire season. The results of this study
could have positive implications for the dual management of grazing and fire resources on
US public lands.

2. Materials and Methods
2.1. Site Description

Field data for Phygrow model calibration and validation were collected on the Uni-
versity of Arizona V Bar V Ranch. The 28,732 ha ranch was acquired by the University of
Arizona in 1995, and serves as part of the University of Arizona Agricultural Experiment
Station [44]. The ranch rests within the Walker Basin grazing allotment on the Coconino
National Forest (Figure 1). Plant communities include a collection of grassland, desert
shrubland (Prosopis sp., and Acacia sp.), Utah juniper (Juniperus osteosperma [Torr.] Little),
alligator juniper (J. deppeana Steud.), and Ponderosa pine (Pinus ponderosa Lawson & C. Law-
son) dominated plant communities [45]. Yearly annual precipitation ranges from 350mm
to 650mm along a west to east elevational gradient (Figure 2). This area experiences a
southwestern US monsoon pattern in which the early summer is typically dry followed by
an increase in stochastic convective storms as summer progresses. The transition between
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these periods, with the co-occurrence of dry fuels and natural ignition is what we labeled
as the “fire season”.
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Figure 1. Study site locations for desert, juniper, and pine ecotypes on the V Bar V Ranch in the
Coconino National Forest in Central Arizona, USA.

For this study, we focused on desert shrub, juniper, and pine dominated ecosystem
sites (Figures 1 and 2). Desert sites were the lowest in elevation (960-1200m) and had an
overstory dominated by creosote bush (Larrea tridentata [DC.] Coville), mesquite (Prosopis
glandulosa Torr.), catclaw acacia (Acacia greggii A. Gray), and barberry (Mahonia haematocarpa
[Woot.] Fedde). Dominant perennial grasses on the desert sites included tobosagrass
(Pleuraphis mutica Buckley) and low woolygrass (Dasyochloa pulchella [Kunth]). Juniper sites
were mid-elevation (1761-1963m), with alligator juniper and Utah Juniper as the dominant
woody plants. Blue grama (Bouteloua gracilis [Wild. Ex Kunth] Lag. Ex Griffiths), and
sideoats grama (Bouteloua curtipendula [Michx.] Torr.) were the primary warm season
perennial grasses, while the cool season western wheatgrass (Pascopyrum smithii [Rydb.]
A. Love) was found in the upper end of this zone. Finally, the pine sites were located at
the highest elevations (2070-2153m) in ponderosa pine overstories, with pine dropseed
(Blepharoneuron tricholepis [Torr.] Nash), Arizona fescue (Festuca arizonica Vasey), blue grama,
and Kentucky bluegrass (Poa pratensis L.) dominated understories.

2.2. Data Collection

Field data collected for Phygrow parameterization included plant community and
general site attributes. Basic site data included the date of observation, latitude and
longitude, transect bearing (azimuth), slope, and aspect. Transect bearings were chosen
perpendicular to the slope, and stayed within the same soil association [46]. Attempts were
made to visit each site quarterly from Fall 2008, through Summer 2011. Weather conditions
at the higher elevation sites intermittently prevented sampling of the juniper and pine sites
during the fall and winter months.
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We collected plant community data along a 200-footstep pace transect utilizing the
USFS Region 3 Common Non-Forested Vegetation Sampling Protocol, or CNVSP [9,47]. The
CNVSP protocol is a departure from the standard Phygrow sampling procedure [38,41], and
was developed/tested with the USFS to more closely complement the sampling needs of
the agency, while still providing data suitable for Phygrow calibration [9] It is a combination
of basal cover and frequency measurements in a 40 cm × 40 cm quadrat and a 10 cm × 10
cm nested quadrat (Figure 3). The CNVSP frame is placed along the transect every two
footsteps (one pace) for a total of one-hundred placements. Frequency (absence/presence)
of all perennial grasses, forbs, and annual grasses are recorded for each quadrat. Woody
plant frequency was recorded for those canopies that overlapped a hypothetical vertical
extension of the nested quadrat. For Phygrow calibration, we only used the frequency data
from the 10 cm × 10 cm quadrat to prevent oversampling of the plant community within
the model [9]. Three basal cover pins are located at the 1, 6, and 11 o’clock positions of the
outer quadrat (Figure 3) that are used to estimate basal ground cover of rock, surface fuel
(ground litter) and perennial grasses. Cover was observed and tallied at the tip of each of
the three pins. If the pin contacted the base of a plant, then a plant species hit was recorded.
If no plant was in contact with the pin, the ground cover at the tip of the pin was recorded
as bare ground, rock, or surface fuel (1-h, 10-h, 100-h, 1000 h).
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Figure 3. Common Non-Forested Vegetation Sampling Protocol (CNVSP) herbaceous monitoring
frame used in the study, based on Rhodes et al. 2014 [9]. The frame consists of a 40 × 40 cm plot, with
a 10 × 10 cm subplot. Three basal-hit pins are located around the perimeter of the frame.

To calibrate and validate biomass predictions in the Phygrow model, we also collected
total standing herbaceous biomass. This required the harvest of all standing live and dead
herbaceous material from every tenth lay of the 40 cm × 40 cm (0.16m2) quadrat, drying
for 48 h at 70 ◦C, weighing, and converting into kg ha−1.
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2.3. Phygrow Model

Phygrow is a hydrologically driven model that estimates daily plant growth based upon
the proportion of each species in the plant community and available soil moisture [31,48].
Water availability is based upon the interaction of soil, climate, vegetative growth, and
herbivory [31]. Water storage potential is based upon total soil depth, thickness of each soil
horizon, percent rock, saturated hydraulic conductivity, bulk density, infiltration rate, and
total water holding capacity. Basic soil characteristics were retrieved from the United States
Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) State
Soil Survey Geographic (SSURGO) Database [46], while hydraulic conductivity and water
holding capacity estimates were calculated using the Map Unit User File (MUUF) tool [49].
Precipitation was retrieved from the US National Weather Service (NWS) 4km NEXRAD
precipitation product [50,51].

Plant communities are parameterized within the Phygrow model using the frequency
and point count data collected from the CNVSP protocol. Plant community composition
characteristics in Phygrow include basal cover (perennial grasses, rock, litter, and bare
ground), frequency (perennial/annual grasses and forbs, woody, and succulent plants),
and initial biomass (an estimate used to initiate the model runs) [31]. Each plant species
is parameterized with up to 27 attributes, including: minimum and maximum growth
temperature, dry matter to radiation ratio, leaf area index, leaf/wood turnover and de-
composition rate, and rooting depth [9,31,48]. Baseline values for plant parameters were
determined via literature review, local expert knowledge, and from the Food and Agricul-
ture Organization’s ECOCROP database [52].

Herbivory data is entered into Phygrow using stocking rate information (animal
units/ha) and dates of movement into and out of the site. Diet selection preferences
for each species of herbivore are input and each plant species is marked with a grazing
preference during phenological phases (increasing, peak, and declining growth) [31], which
is used to drive the daily reduction of forage by herbivory. Plant species or functional
group preferences by the grazer are defined as preferred, desirable, undesirable, and non-
consumed. For preferred forages, the grazer will eat more of this plant than is found in the
plant community on a relative weight basis. Undesirable forages are those that the grazer
eats less than what is found in the plant community on a relative weight basis. Desirable
forages are grazed at a proportion to that found in the plant community and non-consumed
represents plant species that the grazer does not eat or that would be above the browse
height of the grazer [31,53].

Given that the central Arizona region was a new area where Phygrow had not been
used previously, the model required calibration and verification since new plant species
and soils were being evaluated in the model. Calibration of biophysical models generally
involves adjustments of a select set of model parameters within the reasonable ranges of
these parameters so that model outputs are consistent with observation data and validation
is an evaluation of the model outputs against additional and or independently observed
data [54]. Vegetation cover and frequency from the summer of 2009 was used to initially
parameterize the model to represent peak growth and species richness. Biomass data from
the first year of sampling (Fall 2008- Summer 2009) were used for comparisons with model
outputs to fine tune growth parameters to ensure proper calibration of the model. The
remainder of the biomass samples (Fall 2009-Summer 2011) were used to validate the model
(Table 1).
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Table 1. Data sites and sampling frequency. An “X” denotes that the site was sampled that quarter;
where “F” = fall, “W” = winter, “Sp” = spring, and “Su” = summer. Juniper and pine sites were at
higher elevations and were not always accessible due to environmental conditions.

Calibration Validation

2008 2009 2009 2010 2011

Site F W Sp Su F W Sp Su F W Sp Su

D1 X X X X X X X X X X X X
D2 X X X X X X X X X X X X
D3 X X X X X X X X X X X X
D4 X X X X X X X X X X X X

J1 X X X X X X X X X
J2 X X X X X X X X X
J3 X X X X X X X X X
J4 X X X X X X X X

P1 X X X X X X X
P2 X X X X X X X
P3 X X X X X X X
P4 X X X X X X X

2.4. Statistics

To test the predictive strength of the Phygrow model, we fitted a linear regression of
the observed and predicted means in each ecosystem type (desert, juniper, pine). Since r2 is
sensitive to outliers and variability in magnitude [55–57], we also used index of agreement
and root mean square difference to describe model goodness of fit [9,48]. The index of
agreement (d) is a measure of the seeming tightness between observed and simulated
values [55,56]. In essence, it is a test of the level to which a simulation is error free, where:

d = 1.0− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
|Pi− O

∣∣+ |Oi− O
∣∣)2 (1)

Here, O is the ith observed value, P is the ith predicted value, and n is the number of
observations [55]. The index of agreement ranges from 0 to 1, with increasing agreement
between observed and simulated results occurring at higher values of d.

Root mean square difference (RMSD) evaluates model performance by illustrating
the average magnitude of the difference between observed and simulated yield (kg ha−1).
RMSD possesses more sensitivity to extreme outliers and is often used as a complement to
linear regression [55,56,58]. RMSD is computed as:

RMSD =

√
∑n

i=1(Oi − Pi)
2

n
(2)

where O is the ith observed value, P is the ith predicted value, and n is the number of
observations [55].

Finally, to evaluate the Phygrow model for different objectives such as grazing and
wildfire management, the validation dataset was analyzed in whole (Fall 2009-Summer
2011), and by fire season (Summers of 2010 and 2011). Based upon an analysis of the
Monitoring Trends in Burn Severity (MTBS) dataset, we observed that 77.5% of the mapped
wildfires occurring on the Coconino National Forest from 1989–2012 were in the months of
June, July and August [59]. By evaluating the validation dataset in this dual manner, we
can test for model viability for estimating year-round biomass for grazing management
and for fuel loading during the summer fire season.
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3. Results

Phygrow model calibration and validation results are presented in Table 2, and Supple-
mentary Figure S1. Model calibrations were quite high for combined (r2 > 0.97), and each
ecosystem type (r2 > 0.8). Year-round model validation showed a strong relationship in
desert and pine communities (r2 = 0.73, and 0.69), while the strength of agreement between
observed and predicted values in the juniper validation was lower (r2 = 0.54). RMSD
(kg ha−1) was rather uniform throughout, except for the juniper and pine calibrations
which were higher and lower, respectively. The index of agreement was high (>0.84) for all
year-round calibrations and validations. Overall, the juniper communities had compara-
tively lower r2 and d values than either the desert or pine sites. There was a single outlier
in the juniper site dataset from October 2010, that when removed, increased the r2 to 0.61
and d to 0.98. Removal of two outliers from the pine validation increased the r2 to 0.86, and
d to 0.96. Values with and without outliers are both presented in Table 2.

Table 2. Phygrow model calibration (Cal) full validation (Val), and fire season-only validation (FS)
results for desert, juniper, and pine ecotypes. Metrics include observed mean (Obs Mn), predicted
mean (Pred Mn), observed standard deviation (Obs SD), predicted standard deviation (Pred SD), root
mean square difference (RMSD), r-squared (r2), regression probability value (p), index of agreement
(d), and number of observations (n). Data in parentheses () indicates the removal of outliers.

Desert Juniper Pine

Cal Val FS Cal Val FS Cal Val FS

Obs Mn
(kg/ha) 440.27 363.36 469.14 1000.71 336.32 (310.53) 375.00 448.54 486.14 (478.71) 574.53

Pred Mn
(kg/ha) 466.60 310.37 406.03 998.38 355.88 (348.40) 437.05 426.67 495.26 (509.76) 666.53

Obs SD
(kg/ha) 362.61 249.37 328.22 496.51 185.84 (149.72) 182.75 258.60 364.19 (359.40) 441.78

Pred SD
(kg/ha) 347.85 179.92 240.11 571.36 155.86 (156.41) 181.52 299.90 296.97 (316.12) 343.26

RMSD
(kg/ha) 134.55 142.74 137.63 237.65 126.48 (105.66) 127.84 85.78 195.33 (133.15) 159.88

r2 0.86 0.73 0.89 0.80 0.54 (0.61) 0.62 0.93 0.69 (0.86) 0.94
p <0.01 <0.01 <0.01 <0.01 <0.01 (<0.01) 0.02 <0.01 <0.01 (<0.01) <0.01
d 0.96 0.88 0.94 0.94 0.84 (0.98) 0.85 0.97 0.90 (0.96) 0.95
n 16 32 8 15 20 (19) 8 12 16 (14) 8

Validation metrics for the fire season were higher than the year-round data across all
ecosystem types (Table 2). Linear regression values were very high for the desert (r2 = 0.89)
and pine (r2 = 0.94) communities. The juniper community was again the lowest with an
r2= 0.62, though this was still higher than the year-round validation. RMSD was similar for
all ecosystem types, and d was very high as well.

4. Discussion

The Phygrow model was able to sufficiently model herbaceous biomass both year-
round and during the fire season. As this was the first broad-scale application for the
Phygrow model in the US desert southwest, this supports the use of Phygrow as a dynamic
fuel model in this diverse ecoregion. Higher model agreement during the fire season may be
attributable to the fact that the vegetation data used for plant community parameterization
was collected during the summer, and thus better reflects this growth period. Not being able
to access all sites during the fall and winter months may have been partially responsible
for the lower regression coefficients for the juniper and pine sites, though the juniper sites
had lower agreement during the fire season as well. Herbivory was more dynamic in the
juniper sites due to their position within the elevational-based grazing system employed,
wildlife distributions in this transitional habitat type, as well as orographically influenced
distribution of precipitation [60,61].
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Although simulation modeling of rangeland aboveground biomass for rangelands
in Arizona is lacking, comparison of Phygrow model performance in Arizona is simi-
lar to or better than simulation models used in other rangeland systems. For example,
Zilverberg et al. [26] reported r2 values of 0.73 and 0.79, along with index of agreement (d)
values of 0.69 and 0.84 for calibration and validation of APEX model simulations against
field herbaceous biomass measurements for Kansas shortgrass prairie rangeland. For APEX
simulations on Colorado shortgrass prairie rangelands, Cheng et al. [28], had relatively
low r2 values (0.26 to 0.32) and moderately high d values (0.69) when comparing total
aboveground biomass collected under two different grazing systems. Using the GPFARM
model at the same Colorado location, Andales et al. [21], reported d values that ranged
from 0.35 to 0.9 for calibration and 0.67 to 0.82 for validation of simulations for different
functional groups of rangeland plants with warm season perennials performing better than
other functional groups. The performance statistics reported for these 3 studies indicate
that the Phygrow simulation model performed well in comparison with other rangeland
simulation models.

Year-round modelling gives grazing allotment managers the ability to see current
field conditions, as well as potential future conditions, allowing them to plan stocking rate
decisions such as pasture rotations, and buying or selling of livestock. The sporadic, and
spotty thunderstorm events prevalent in the central Arizona monsoon can create a mosaic
of varying levels of biomass production, which can be updated in near-real time with
Phygrow. Model outputs in Phygrow are both spatially and temporally explicit and can be
used to interpolate biomass/fuel loads into non-sampled areas with similar soils, aspect,
elevation, and precipitation, making it useful for grazing and wildfire risk management.

Biomass outputs from the Phygrow model can be used directly to inform decision-
making, or may be incorporated into other models and decision support tools such as
BEHAVE [62,63], FARSITE [64], the Burning Risk Advisory Support System (BRASS) [65,66],
and the livestock early warning system (LEWS) [37] (https://swcarbon.tamu.edu/glews/,
accessed on 4 October 2022). For models like BEHAVE and FARSITE, fine fuel outputs from
Phygrow could be linked to dynamic fuel maps that can be used to model rate of spread and
fire movement, thus providing fire managers with the ability to evaluate fire management
options prior to a wild or prescribed fire. Knowledge of fine fuel loads as they relate to
available biomass for grazing can provide resource managers and livestock producers with
information on the potential impacts that a loss of forage would create should the forage be
lost to wildfire which could trigger strategies for fuel break development [67], hay storage,
and procurement of forage loss insurance [42].

One potential drawback to using the Phygrow system is that it requires a substantial
amount of field data to calibrate and validate the model. Since plant community data for
an individual site in Phygrow is a snapshot in time, any substantial changes in vegetation
structure will require additional field data and calibration. However, federal agencies
on US publicly owned lands routinely conduct field vegetation monitoring for environ-
mental assessment, appraisal of grazing permits, evaluation of restoration projects, and
for scientific research. Routine monitoring data may be used to expand Phygrow cali-
brations to new areas, or to field validate interpolated areas. Repurposing data to model
herbaceous biomass provides a value-added product that can benefit the agencies’ grazing,
environmental, and wild/prescribed fire planning missions. This added use of data may
lead to further collaboration between specialties within agencies, fostering greater synergy
of shared visions of land management. Since herbivory is an integral part of Phygrow,
prescribed grazing could be modeled as a fuel reduction tool that serves both rangeland
and fire management objectives [67,68]. The ability to explicitly model changes in grazing
management provides advantages over remote sensing-based approaches for fine fuel
monitoring [69,70] in that different grazing managements scenarios could be modeled to
evaluate fine-fuel outcomes, therefore aiding in developing adaptive strategies.

Understanding the current and forecasted state of herbaceous field conditions can
be very beneficial to making informed land management decisions [40,71]. Herbaceous

https://swcarbon.tamu.edu/glews/
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biomass production has very important implications from both a grazing and a fine fuels
perspective [72,73]. Using data across disciplines such as rangeland and wildlife manage-
ment, grazing permittees, and fire ecology to meet shared goals of proper land management
can help lower the overall burden on agencies through mutual collaborations [74]. Moving
forward, we recommend that cross-disciplinary approaches that adapt shared collection
and analysis of data and objectives to lessen the isolation that often exists between land
management specialties.

Supplementary Materials: The following supporting information can be downloaded at: https:
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