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Abstract: Long-term sustainable development in developing countries requires researching and
projecting urban physical growth and land use/land cover change (LUCC). This research fills a gap
in the literature by exploring the issues of modelling coupled LUCC and urban growth, their causes,
and the role of policymakers. Tabriz metropolitan area (TMA), located at north-west Iran, was chosen
as a case study to design an integrated framework using four well-established methods: cellular
automata (CA), Markov chains (MC), logistic regression (LR), and stepwise weight assessment ratio
analysis (SWARA). Northern, north-west, and central TMA were affected the worst by urbanisation
and the loss of cultivated and grassland between 1990 and 2020. The accessibility of arterial roadways
and proximity to major cities influenced these changes. Three scenarios characterise LUCC dynamics:
the uncontrolled growth scenario (UGS) and the historical trend growth scenario (HTGS) foresee
significant loss of cultivated land and continued urban expansion above the long-term average in
2050, while the environmental protection growth scenario (EPGS) promotes sustainable development
and compact urbanisation. The methods used in this research may be used to various contexts to
examine the temporal and spatial dynamics of LUCC and urban growth.

Keywords: land use change; land cover change; urban growth; driving force; cellular automata;
scenario simulation

1. Introduction

One of the most noticeable instances of human change on Earth is the transformation
of natural ecosystems into anthropogenic landscapes [1]. Rapid urbanisation throughout
the world is changing the world in fundamental ways. Recent rapid population increase
has resulted in extraordinary development in a number of metropolitan areas [2]. Land-
use/cover changes (LUCCs) are noticeable because of the rapid growth and spread of
urban areas [3].

Land use and cover are geographically distributed as a consequence of dynamic
interactions between complex human and environmental systems [4,5]. The significance
of LUCC in the urban context of developing countries is especially evident due to the
consumption of mass goods related to intense human activities, their substantial greenhouse
gas emissions, and the consequences of ecosystem devastation and ecological footprint [6].
Increases in LUCC may be attributed to the escalation in built environment development
in urban centres [7]. Consequently, suburban areas have lately expanded outward from
cities into once agricultural land, gardens, open spaces, and grasslands [4,8]. Furthermore,
most LUCCs emerge with high complexity and speed. It takes the form of a never-ending
increase in urban sprawl, which poses problems, including pollution and depletion of

Land 2022, 11, 1715. https://doi.org/10.3390/land11101715 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11101715
https://doi.org/10.3390/land11101715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0001-8042-410X
https://doi.org/10.3390/land11101715
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11101715?type=check_update&version=2


Land 2022, 11, 1715 2 of 26

natural resources, in rapidly developing cities [9–14]. With these enormous LUCCs, the
absence of accurate insight into the environmental impacts of urbanisation and the absence
of suitable planning processes undermines the balance of sustainable development [15].

Iran’s major urban areas have kept pace with the rapid urbanisation and population
increase seen in other emerging nations during the last few decades [16,17]. Population
growth outpacing the expansion of available resources is always going to lead to this
outcome [17]. The population, on the one hand, has grown substantially during the last
decade [18]. In contrast, most of the land is uninhabitable because of things like arid deserts
and towering mountains [19]. Due to climate change, Iran has also been experiencing
drought and diminished water availability [20,21]. All of these factors have contributed
to the growth of existing megacities and the emergence of new ones in various parts of
the nation [18,22]. Tabriz metropolitan area (TMA) is undergoing fast and expanding
urbanisation, much like the other major cities [21] in Iran [17]. Extensive land-use changes
and consequent environmental and social challenges [17,21,22] are being brought on by the
growth and spread of industrial hubs throughout the metropolitan and periphery areas, as
well as the development of industrial towns and small scattered enterprises. In addition,
the drying up of Urmia Lake in the region presents significant environmental and social
challenges to the future sustainable development of TMA [23–25].

The management of urban growth and resulting LUCC plays a crucial role in sus-
tainable urbanisation, as the United Nations has set one of the Sustainable Development
Goals (SDGs) to achieve sustainable urban growth by 2030 [26]. Certifying the effective
and sustainable use of land is one of the SDG 11 goals, and this agenda emphasises well-
managed urbanisation for integrated and long-term development [3]. Therefore, realising
the balance of development and environmental protection in metropolitan areas during
urbanisation makes it essential to formulate appropriate land-use policies for metropolises
in advance. This corresponds to distinct circumstances for the sustainable development
of the ecological, economic, and social environment [27–29] and effectively alleviate the
increasingly acute conflict between urbanization and natural resource protection.

Traditional means of recognising, analysing, and forecasting the behaviour of complex
systems such as LUCC and urban expansion are the decision-making tools and techniques at
our disposal [30,31]. Scientists have been employing Remote Sensing (RS) and Geographic
Information System (GIS) more often in the larger field of land use research thanks to
the rapid development of satellite-based technology [31,32]. There are already several
land use change models that may be used in spatial simulation to help see the results
of different planning strategies. They may also be inductive or deductive, pattern- or
agent-based, dynamic or static, spatial or non-spatial, and local or global [33–37]. Some of
the most frequent models for predicting and simulating future LULCC include the Markov
Chain Analysis (MCA) or Markov Model [14], Cellular Automata [38], Artificial Neural
Network (ANN) [38], Binary Logistic Regression [39], and CLUE-S [40–43]. Differentiating
the CA model from its predecessors (the manual technique and the suitability assessment
model) is its capacity to depict the spatial interactions actually carried out in the immediate
neighbourhood or the neighbourhood’s hierarchical structure [31]. The dynamics of urban
expansion may be simulated in CA at the landscape level [44]. The key benefits of the
dynamic model are that it is easy to understand for researchers, (ii) can be combined with
other models to improve its simulation power, and (iii) it is simple for understanding.
Therefore, attempts are made to integrate these models with supplementary approaches
in an effort to increase their accuracy; for example, by combining it with Markov Chain
(CA-MC) [30,45] or integrating with Logistic Regression (CA-LR) [39,45,46]. Models such
as SLEUTH [47], FLUS [48], and CLUE-s [49], among others, have been used to mimic
urbanisation and LULC shifts [42].

Despite this, LUCC and urbanisation are inextricably linked [49,50]. Knowing how
people in cities see LUCC calls for an in-depth familiarity with these interactions [50,51].
In order to make informed plans and policies, we must first understand how LUCC
differs from urban growth and what factors have led to its history, current situation, and
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projected future [52,53]. There are still significant assumption gaps about LUCC and
urban development, despite the extensive research on the topic. In the past, researchers
have mostly concentrated on either modelling urban expansion exclusively [4,30,54–56]
or modelling LUCC by classifying urbanisation as a built-up sub-category [32,49,57,58].
While urbanisation is not the primary driver of LUCC, it has had a significant impact on
LUC at the metropolitan scale [2,59,60]. Thus, it is not just a subsystem of land cover but
also a separate system in its own right. Actually, LUCC in metropolitan regions is also
being impacted by the horizontal link and influence on land use changes. To this end, this
research models and forecasts LUCC and urban expansion using an integrated approach
that takes into account their interdependent vertical and horizontal dynamics.

Natural and human-caused factors both contribute to the ongoing development of
LUCC in urban settings [34,61]. Factors of the environment, such as biophysical forces or
climatic shifts, may influence the composition of land [30,62]. Human factors, including ur-
banisation trends and their underlying environmental, social, economic, [12,62,63], physical,
and environmental dimensions, are all taken into account while modelling LUCC [13,43].
Scholars have chosen a wide variety of spatial driving elements according to the magnitude
and unique characteristics of the investigations [12,49,51,62–64]. However, a comprehen-
sive knowledge base of the study region is necessary for analysing the driving forces
since they might indirectly influence LUCC at many spatial-temporal scales [13,15,43].
Despite the aforementioned models’ usefulness in spatial simulation, quantitative data
are lacking throughout the simulation phase [30]. To address the need for an integrated
model that simulates land use changes in spatial and quantitative dimensions, Dadashpoor
and Panahi [15], using the Tehran metropolitan region (TMR) as a case study, applied
socioeconomic factors as a driving force and combined System Dynamics (SD), Logistic
Regression (LR), and CA models. Aburas and Ho [30] were also interested in reducing the
CA model’s limitations, so they looked to integrate it with other quantitative models, such
as the Analytic Hierarchy Process (AHP) and the Markov Chain. They stressed the need
to include socioeconomic issues in simulations for realism’s sake. Similar to the approach
used in Fitawok and Derudder [14], “Expanding Bahir Dar: Socioeconomic Factors and
Their Impact on LUC,” takes advantage of the AHP to determine the causes of Bahir Dar’s
(Ethiopia) urban growth. Accordingly, a unified model is needed to simulate land-use
changes in both geographical and quantitative dimensions while taking into account a
wide range of drivers and types of data.

Land use, land use planning, and dealing with LUCC and its driving factors are
at the centre of spatial planning [65,66]. LUCC’s spatial simulation can show you the
results of current planning decisions [51]. Many previous LUCC researchers made use
of scenario-based simulations [37,48]. The pattern/historical context has been the sub-
ject of some research [54]. There have been various investigations into potential social
and economic [51], ecological [67], environmental [68], and landscape-level [69] outcomes.
However, efforts to include managers and policymakers in land use planning and policies,
and to provide them with the tools they need to examine the decision-making consequences
of such plans and policies, have been abandoned. However, it is not yet obvious how
planners and policymakers might contribute to the LUCC modelling process by including
their own perspectives [40]. By considering that shifting demographics and preferences
necessitate alterations to the housing supply, a more nuanced understanding of the impor-
tance of involving stakeholders in the simulation process emerges. Such shifts, for example,
can prompt the relocation of larger households from central to peripheral areas, thereby
influencing the land market and the incentive to land use in the suburbs [62]. Furthermore,
future land use planning cannot be decided solely on a single scenario. This research aims
to fill that gap by offering a comprehensive framework within which policymakers may
participate directly in the modelling process. They may use it to model, anticipate, and
assess the outcomes of alternative policies, including sustainable development, in order to
zero in on the best course of action.
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In light of these considerations, a comprehensive framework is needed to answer
questions about LUCC modelling in metropolitan areas, one that takes into account things
such as coupled modelling of LUCC and urban growth; taking both spatial and quantitative
variables into account; involving planners and policymakers in the modelling process;
and using scenario-based projections to achieve sustainable development. In this regard,
this paper proposes an integrated modelling framework by coupling four well-established
predictive methods, including CA, MC, LR, and multi-criteria evaluation (MCE), to produce
more reliable outcomes for analysing historical changes and future predictions of LUCC
and urban growth. The focus of the study is based on the empirical case of the TMA in Iran,
which is faced with the problem of rapid urban growth, extensive LUCC and the threat of
unsustainable development in the last 30 years from 1990–2020. The following research
questions are addressed:

1. How have LUCC patterns of TMA changed during the previous 30 years?
2. What factors influenced these changes, and to what extent?
3. What are the most likely spatial patterns of LUCC for TMA under different scenarios?

2. Background
Driving Forces of LUCC

Understanding the processes associated with the dynamics of urbanisation systems
requires an analysis of driving forces in LUCC studies [70]. Given that the LUCC is
influenced by a variety of factors, independent variables affecting land-use changes in
the study area must be identified before making any predictions. Urban growth’s drivers
are controversial, and there is no agreement on them due to their complex and non-
linear character. Some studies attempted to simulate LUCC with higher accuracy by
combining the main driving forces, such as physical, geographical, social, and economic
factors [71]. Each study can be unique in terms of the factors that affect urban growth [62].
Moreover, the physical scale (local, regional, global), temporal scale (year, decade, century),
and decision-making scale (local, federal, regional, global) are crucial in determining the
forces driving LUCC [6]. Dendoncker et al. [72] divide the factors driving LUCC into
five categories: biophysical constraints and potentials, economic factors, social factors,
spatial policies and interactions, and neighbourhood features. Thapa and Murayama [59]
further categorize the driving factors as follows: physical location, access to public services,
economic opportunities, land market, population growth, political position, policies, and
adopted land use conversion plans.

Access to educational centres, major cities, entertainment centres, transport networks,
population density, land value, land ownership, mining activities, rivers, land slope and
topography, faults, risk zones of earthquake and flooding, and ecologically protected lands
are among the factors listed in the literature [4,62]. A later systematic literature review
categorised the driving forces of LUCC based on Urban Growth Factors (transportation
infrastructure, industry, accessibility to services, and residential development), policy and
regulation factors (urban/land use policies, regulations), economic and financial factors
(land market, land price, land price distribution, housing prices, tourism development and
economic opportunities), and contextual factors (demographic, socioeconomic features,
and environment and natural resources) [62]. Table 1 presents the result of the literature
review conducted to explore the factors driving LUCC within the papers investigated. A
total of 25 factors, 4 sub-themes, and 2 main themes named environment, natural, human
and built environment.
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Table 1. Literature review of the factors driving LUCC.

Theme Sub-
Theme Factors Studies

Bi
o-

ph
ys

ic
al

Distance to geological faults [47,59,73]
Land use or land cover [40,47,59,72,74]

Flood plain areas [4,72,73,75,76]
Earthquake [59,72]
Elevation [4,6,12,15,38,46,59,73]

Slope [4,6,12,15,38,46,47,49,59,72,73,77]
Geology [78–80]
Rainfall [64,79,80]
Altitude [40,51,64,78,80,81]

H
um

an

A
cc

es
si

bi
lit

y Proximity to transportation network [4,6,12,15,38,46,47,59,63,72,73,75]
Proximity to town centres [4,6,12,15,38,46,47,49,59,63,73]

Accessibility to public
services [4,6,46,59,63,73,77]

Neighbouring effect [82]

Ec
on

om
ic

D
em

og
ra

ph
ic Land Price [4,6,59,63,77,83]

Population growth [4,6,63,84]
Population density [12,46,59,84,85]

Employment [4,6,77,84]
Gross Domestic Production (GDP) [6,15,83,86,87]

Population migration [43,51,63,64,86]

Sp
ec

ia
lis

ed
pl

an
ni

ng
re

gu
la

ti
on

s

Distance to protected areas [4,6,47,59,75,80]
Distance to industrial sites [4,15,38,47,59,73,74,84,88]

Proximity to rivers and
water-bodies [4,6,12,15,38,46,47,49,59,72,73,84]

Adapted planning zones [6,59,63,74,77]
Administrative division

adjustment [62,63,89,90]

Developable land [63,90–92]

3. Materials and Methods

The general steps of the research include preparing the data, determining the driving
forces, setting the growth scenarios, modelling the changes through the CA-MARKOV
model, and finally analysing the results of the scenarios, which are shown in Figure 1.

3.1. Study Area

The study area is located in East Azarbaijan province and serves as this region’s politi-
cal and economic hub. This region is the largest metropolis in northern Iran and is 1340 m
above sea level. The region is divided into six counties: Osku, Azarshahr, Bustanabad, Tabriz,
Shabester, and Heris, 12 cities, and 133 villages [93]. In recent years, the TMA, known as the
hub of capital, employment, and population in the country’s northwest, has experienced a
variety of changes in population, housing, and job trends. Extending industrial centres in
urban zones such as TMA has been a goal of Iranian national and municipal programmes
and plans since at least the 1970s. Most planners and policymakers have urged the establish-
ment of new industrial estates around regional centres, the majority of which are situated in
ecological and protected zones, in order to meet the growing land/space demand brought
on by the remarkable rate of urbanisation. Typical farming, animals, the environment, and
natural resources are all negatively impacted by the accelerated degradation of land caused
by this trend. The city’s quick population expansion and influx of new residents may be
directly attributed to the availability of jobs and a wide range of other conveniences and
services. Tabriz has a strong monocentric core, which works as an absorbing pole to the
main concentration of activity due to the city’s excessive economic concentration. Most
economic activity and employment in TMA take place in the service sector; the industrial
and agricultural sectors are broken down into the following subsectors [94]. The city of
Tabriz is home to a sizable chunk of this population.
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Figure 1. Research flowchart.

Nonetheless, there has been a considerable increase in the number of people living on
the fringes of urban regions in the previous decade, suggesting that land use, urbanisation,
and landscape patterns have undergone major shifts. This kind of unrestrained develop-
ment has disrupted land-use patterns and upset the ecological harmony of the area. The
TMA has expanded at an alarming rate as agriculture gives way to industry and services
and as natural areas are wiped off.

Table 2 shows that the study area’s population and built-up area have increased signifi-
cantly over the last three decades. However, while the population has grown approximately
1.68 times between 1990 and 2020, the built-up area has increased by over 2.5 times, indi-
cating a rapid expansion of the built environment in TMA. Figure 2 shows the area of the
Tabriz metropolitan area.

Table 2. Population and built-up area change from 1990 to 2020 [93,94].

Year 1990 2000 2010 2020

Population 1,121,282 1,370,757 1,722,168 1,878,906

Built-up area (hectares) 13,530.3 21,393.4 29,635.8 35,352.2

3.2. Preparation of Land Use Data

Periods between 1990 and 2020 were selected to study the past land changes trend.
For this purpose, Landsat 5 TM and Landsat 8 OLI satellite imageries were obtained from
the USGS (United States Geological Survey) database with a spatial resolution of 30 × 30 m.
Then, geometric corrections were made on the images obtained in the ENVI 5.3 software
environment, and the maps were accurately geo-referenced. To specify the extent of the
study area, the political boundary was used based on the Tabriz urban complex plan related
to 2005, which was obtained from Tabriz municipality. The Digital Elevation Model (DEM)
for slope preparation was obtained from the USGS organisation database. Then, to prepare
the land use map, six land use categories were defined: cultivated land, garden land,
built-up land, grassland, watershed, and bare land. The supervised classification method
and maximum likelihood classification algorithm were performed in ENVI software based
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on a user-defined classification series. Then, to remove single pixels and unwanted errors,
we applied the majority filter with a 5 × 5 window to the classified images.
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Accuracy Assessment

The accuracy assessment compares classified images with reference images or ground
truth data that is thought to be correct. Following land use classification, it is essential
to evaluate the accuracy of these classification compatibilities with real-world images.
Therefore, an accuracy assessment estimates the quality of a classified land use map. The
Kappa coefficients ranging from 0.55 to 0.70 imply a good agreement, 0.70 to 0.85 indicate a
very good agreement, and values more than 0.85 show an excellent agreement between the
image and the ground [95].

The ENVI’s “confusion matrix” algorithm evaluates the accuracy of reference images.
Based on the user-controlled area, an accuracy assessment corresponding to 10% of the
land cover classes was developed. This method captures reference areas from all classes at
a given rate and validates the correctness of the results. Different methods are applicable to
select reference sample locations. Nevertheless, for this research, Google Earth and Landsat
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satellite images are employed to collect reference sample areas from different time periods.
Equations (1) and (2) show the equations used for estimating assessment accuracy [95]:

Kappa =
N ∑r

i = 1 xii − ∑r
i = 1 xi + ∗ xi + 1

N2 ∑r
i = 1 xi + ∗ xi + 1

(1)

Kappa =
(Total sum of correct)− Sum of the all the (row and column total)

Total squared − Sum of the all the (row and column total)
(2)

The Kappa index was calculated as 75% for the land use map of 1990 and 87% for the
land use map prepared in 2020, which according to similar studies, shows an acceptable
ratio [96,97].

3.3. Measuring the Driving Forces of Land-Use Change in TMA

In recent decades, Tabriz metropolitan area has witnessed significant land use change
due to underlying factors such as biophysical, socioeconomic, and political [4]. We collected
secondary data on the potential factors, especially those affecting urban growth. Sixteen
factors were finalised by taking advantage of experts’ opinions and considering local
specific conditions. Table 3 details the selected driving forces and their categorisation for
urban growth suitability.

Each factor is scored based on its potential function in the competency for urban
land use change. It quantifies each component and is converted into spatial layers in
ArcGIS (Arcmap) version 10.3 using the fuzzy standardisation method (range 0 = lowest
suitability—255 = highest suitability). The data were obtained from Tabriz municipality in
2021. The final output of the preparation of LUCC factors is evaluated and standardised in
Figure 3. The degree of suitability of each factor in affecting land-use change is displayed.

3.4. Calculation of Markov Chain (MC) Transition Probability and Uncontrolled Growth
Scenario (UGS)

MC modelling is a simulation technique used in land use analysis. ‘Markov’s analysis
of land-use change is combined with GIS to provide a tool for visualising and predicting
land-use change likelihood across land-use classes. Markov variations have been frequently
used in modelling land changes [45,53,71]. MCs are stochastic models that show how a
process may transform from state A to B. The principal part, the transition likelihood
matrix, stands for these changes. This matrix is used to calculate projections of the area of
LUCC in state B. The transition area matrix estimates the areas (pixels) transferred between
states A and B and is another output of MC. An earlier study [53] documented the detailed
description of MC and its implementation. Based on the land use maps from 1990 and 2020,
the MC model calculates the LUCC transition area matrix and the transition probability
matrix. Markov analysis is the input of the CA–Markov prediction model and is considered
the calibration stage of this model; it is necessary to evaluate the stability of findings before
proceeding to simulations. Thus, we used a past to present (1990 to 2020) simulation to
ensure the calibrated matrix accuracy and validation of its prediction results. The results of
the MC were tested in a scenario called UGS. This scenario seeks to predict the future land
use status by 2050 based on the trend of its historical changes. In other words, the aim is to
examine how the LUCC will evolve by 2050 if conditions are based on historical trends and
based solely on the conversion rates between land use classes. The LUCC transition area
matrix and the transition probability matrix are used as transition rules in the CA–Markov
model to predict future growth using TerrSet in this scenario. The layers used in this
scenario are the raster layers produced by the MC, which shows the potential for land
conversion between land use classes and the land-use layer of 2020 as the base year.
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Table 3. The selected driving forces and their measurement.

Theme Sub-
Theme Factors Unit Suitability Level (Standardised)

Bi
o-

ph
ys

ic
al

Slope Percentage
Slope class between 0–5%—suitability level = 255
Slope class between 5–10%—suitability level = 150
Slope classes between 15%—suitability level = 75

Land cover Categorial

irrigated lands = 0
urban lands = 255
orchard lands = 25

agricultural lands = 50
rangelands = 100

barren lands = 255
Flood Categorial flood-prone areas = 100, Other areas = 255

Fault Meter

Based on the Euclidean distance (in meters) from the
maximum distance (255) to the minimum distance (0),
which suitability increases uniformly with increasing

distance

Earthquake Categorial
Suitability of high-risk zones = 100

Suitability of medium risk zones = 150
Suitability of low-risk zones = 255

Elevation Meters

The degree of suitability of heights between
1200–1500 = 255

Suitability of heights between 1500–1900 = 100
heights between 1500–1900 = 20

H
um

an A
cc

es
si

bi
lit

y Access to educational
centres Meters

Based on the Euclidean Access (in meters) from the
highest access (255) to the lowest access (0), which

decreases uniformly with decreasing access

Access to entertainment
centres Meters

Based on Euclidean Access (in meters) from maximum
access (255) to minimum access (0); suitability

decreases uniformly with decreasing access

Access to the transport
network Meters

Based on Euclidean Access (in meters) from maximum
access (255) to minimum access (0); suitability

decreases uniformly with decreasing access

Access to major cities Meters
Based on Euclidean Access (in meters) from maximum

access (255) to minimum access (0); suitability
decreases uniformly with decreasing access

So
ci

o-
Ec

on
om

ic Land Price Categorial
Class 1: 255
Class 2: 150
Class 3: 50

Population density People per hectare suitability increases from 0–255 based on increasing
population density of major cities

Sp
ec

ia
lis

ed
pl

an
ni

ng
re

gu
la

ti
on

s Rivers Meters

suitability at a distance of 0–250 m = 0
suitability at a distance of 800–250 m = a uniform
increase between 0–255 with increasing distance
suitability at a distance of 800 m and above = 255

Ecologically protected
lands Categorial suitability of ecological areas = 20

Other areas = 255

Industrial buffer zone Meters

distance of 0–350 m = 0
distance of 1000–350 m = uniform increase between

0–255 with increasing distance
distance of 800 m and above = 255

Existing mines Meters

suitability in the range of mines = 0
suitability at a distance of 0–500 m = a uniform increase

between 0–255 with increasing distance
suitability a distance of 500 m and up = 255
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Figure 3. LUCC suitability analysis of driving forces due to urbanisation: (a) access to educational
centres, (b) access to major cities, (c) access to entertainment centres, (d) access to the transport
network, (e) industrial buffer zone, (f) existing mines, (g) rivers, (h) ecologically protected lands,
(i) slope, (j) land cover, (k) elevation, (l) flood, (m) fault, (n) earthquake, (o) population density,
(p) land price.

3.5. Logistic Regression (LR) and Historical Trend Growth Scenario (HTGS)

LR has been used as an experimental model in deforestation analysis, groundwater po-
tential, agriculture, landslide probability mapping, and urban growth modelling [4,15,53,56,98].
The LR is such that it considers several explanatory factors as independent (X) variables
and measures their association with a dependent variable (Y). The dependent variable,
Y, takes a binary value of 0 or 1. The value of 1 shows that the event occurred, while the
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value of 0 indicates the event did not occur. Therefore, the equation obtained from LR is as
Equation (3):

Logit (p) = ln (p (1 − p)) = a + (b1 × X) + (b2 × X2) +(b3 × X3) + . . . (bn × Xn) (3)

where p is the dependent variable expressing the probability of becoming 1; X is the
independent variable, . . . xn, x2 and x1 are independent variables, and a is the constant of
the regression equation. b3 . . . bn, b2, b1 are the coefficients of each independent variable.
The relationship between the dependent and independent variables goes along with a
logistic curve. The maximum likelihood function estimates the significance and coefficient
of each explanatory variable. The reflection of LUCC in each cell (raster image pixel) can
be binary: changed (= 1); not changed (= 0). It is assumed that the probability of change of
each cell based on the logistic curve is as in Equation (4):

f (z) =
1

1 + e−z (4)

The probability that the raster network cell will change is described based on Equation (5):

P(Y = 1/X1, X2, X3 , . . .) =
1

1 + e−(α+∑n
i = 1 βiXi)

(5)

The LR model is used to determine the power and significance of each variable in
LUCCs during the study time period. Before implementing the LR model, sub-models
should be identified. Each of the sub-models represents a change from one land class
to another. In this study, four sub-models, including gardens to built-up, cultivated to
built-up, grass to built-up, and barren lands, are defined (the watershed sub-model is not
considered because it had no significant changes). Then, the impact of each variable on the
conversion of sub-models is calculated. The role of the driving forces in LUCC concerning
urbanisation is determined. First, the layer of changed zones is entered as the response
variable, then the layers of driving forces (Figure 3) are entered as explanatory variables.
Each sub-model contains coefficients as the impact of each factor in LUCC (Table 3).

This scenario is known as HTGS, where the goal is to involve the driving forces of
LUCC in terms of urbanisation. This scenario investigates what role the driving forces
of LUCC have had in the past, furthermore, how they will impact the future of LUCC
patterns. The Weighted Linear Combination (WLC) method overlapped the layers created
in Figure 3 and retrieved a layer of LUCC potential in the TerrSet software environment. A
probability layer of LUCC was prepared to multiply coefficients of explanatory factors and
then overlay driving force layers. In the WLC step, the values obtained from LR for each
factor were regarded as coefficients of importance.

3.6. Multi-Criteria Evaluation (MCE) and Environmental Protection Growth Scenarios (EPGS)

The EPGS strives to predict future growth in order to preserve the environment
and prevent the loss of valuable agricultural and ecological assets. This scenario seeks
to investigate how the experts’ knowledge and insight can be involved in simulating
future changes and how the effects of urbanisation on future land-use changes can be
controlled. The MCE method is used because the effect of each factor on the degree of
environmental protection should be figured out in comparison with other factors. We used
the Stepwise Weight Assessment Ratio Analysis (SWARA) method. The SWARA method
involves two important steps: the first is to prioritise the criteria by consulting experts,
while the second is the weighting process. The SWARA method involves considerably
lower pairwise comparisons and is easy to use compared to other popular methods, such
as the AHP [99,100]. The mathematical expression for determining the integrated weight
of the attributes is as in Equation (6) [99]:
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w =
w∗

j wj

∑n
1 w∗

j wj
;

n

∑
j = 1

w = 1, 2, . . . , n, (6)

where w∗
j —objective weight of the j attribute; wj—subjective weight of the j attribute; w—

integrated weight of the j attribute (please see [101]).
In this method, the experts and policymakers of TMA were asked to compare each of

the drivers of LUCC listed in Table 3 with others to get a sense of their relative importance
in targeting sustainability. To this end, the questionnaire, including the criteria, indices, and
scoring system, was sent to 32 experts with high education (masters or above) considering
a mixed job and qualification status (Table 4). However, only 12 experts responded on
time, with a response rate of 37 per cent. After determining the final weights of the criteria
(see Table 4) using the SWARA method, the WLC method was used to overly the layers
prepared in Figure 3 and turn them into a potential layer in the TerrSet.

Table 4. Background information of experts.

No.

Field of expertise Environmental science/Ecology/Geology/Geographer 5
Urban & regional planning/Rural planning 7

Urban management/Public policy 4
Economics/Finance/Accounting 6

Civil engineering/Hydrology/Water
engineering/Surveying 7

Sociology/Demography 4

Gender Female 9
Male 23

Years of experience Less than 10 years 14
Over 10 years 18

Educational Level Masters 23
Ph.D. 9

Employment sector Government/Public/Public-private 21
Private 9

Self-employment 2

Total NA 32

3.7. Predicting and Simulating Changes with the CA

CA-based models have been widely used in urban expansion simulations [31] because
they show the transmission capacity of complex spatial processes, such as displaying
diverse local behaviours with global patterns [102]. In addition, the complex behaviour
of systems can be simulated and demonstrated by developing transfer rules in CA mod-
els [102].

The CA segment of the LUCC model determines land-use allocation in each cell. CA
models define the new land-use status of each cell over a distinct time period. The change
is defined by a set of exact rules that precede the implementation of this procedure. The
execution of automated cells is based on a cellular space, a neighbourhood definition, a
number of cases, and a set of transfer rules [103]. The most critical step in CA modelling
is the definition of transformation rules based on the training data that control the model.
Nevertheless, land-use dynamics are highly complex, requiring non-linear bounds to define
laws, despite using linear bounds for defining the rules [46].

Integrating the CA model with other simulating platforms is an effective way to
overcome the constraints of an older model such as SLEUTH [46]. CA-MC integrates a
deterministic modelling framework with a stochastic, time-based framework as a hybrid
modelling technique that links linear spatial strengths [53]. The model is created by
integrating MC and CA models. It is a robust way to simulate spatial dynamics and
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forecast future land use change based on the historical pattern. Hence, this approach using
a CA function can turn MC results into objective spatial outcomes [102]. Furthermore, some
studies merge CA and LR models in order to examine the model’s validity [46].

4. Results
4.1. Detecting LUCC in the 1990–2020 Period

After classifying the satellite photos and confirming the outputs for TMA, the results
are shown in Figure 4. This time period spans from 1990 to 2020. Visual inspection reveals
that the TMA’s north and northwest have received heavy LUCC. By 2020, much of the
cultivated land in these regions had broken up into smaller and smaller plots. As a result,
natural features were more isolated from the expanding urban regions. Additionally,
human activities led to the dispersal of human settlements and urban regions throughout
the metropolitan landscape. These places are concentrated mostly in close proximity to
major cities. It has been mostly concentrated in the western and northwestern portions
of TMA.
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Figure 4. Classified land use map.

Figure 5 shows that from 1990 to 2020, the proportion of built-up land increased,
whereas the proportion covered by cultivated, grass, and bare land dropped. Figure 5
shows that the proportion of the built-up has increased from 5% to 12%. Over the same
time period, the proportion of cultivated fell by around 10%. Additionally, throughout this
time period, bare land declined from 49% of the overall share to 43%.

It is essential to know about inter-class exchanges after analysing the LUCC’s com-
position and configuration pattern. Determining changes such as net decrease or rise,
variation within each class, and movement across classes are all instances of change de-
tection. TerrSet was able to discover this by comparing LUCC results from 1990 and 2020.
(Figure 6). According to the findings, the highest rate of land classification shifts occurred
in the cultivated category. The most notable shifts occurred when cultivated land was
transformed into a built-up area (5588.19 hectares) or into bare land (9799.02 ha). Between
then and now, 19,278 hectares were transformed from bare to grassland. However, the
built-up areas saw tremendous growth due to the transformation of other classes. The
majority of cultivated was turned into built-up. In addition, 10,076.49 hectares of bare land
and 2972.7 hectares of garden land were transformed into an urban setting.
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Results from the MC study pinpoint LUCC behaviour. The reasoning for modelling
future probabilities is embodied in these transition potentials and transition areas. Figure 7
suggests that conversion of garden and cultivated land to urban use occurred most likely.
On top of that, most likely, cultivated land was being converted to bare land or built-
up area. It indicated that there was a high potential for converting cultivated into the
aforementioned area. Furthermore, the transition from grassland to bare land accounted
for the vast majority of the movement.
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4.2. LR Coefficients of Driving Forces

The results of LR are shown from 1990 to 2020 in Table 5. For each of the four existing
sub-models, the coefficients of each independent variable are determined. Coefficients that
go closer to one indicate a stronger relationship between the variable and the rate at which
undeveloped land is developed. As a result, negative coefficients illustrate the opposite
relationship between variables. Table 5 shows that the coefficient of 0.0352 for proximity to
entertainment places is a major factor in the transformation of gardens into built-up areas.
Additionally, access to the transportation network has drastically transformed cultivated
land into built-up areas (with a coefficient of 0.0158).

Table 5. Results of LR in estimating the potential of changing non-built-up to built-up lands.

Theme Sub-
Theme Factors

Garden
to Built-

Up

Cultivated
to

Built-Up

Grass to
Built-

Up

Bare to
Built-

Up

Standardised
LR

Coefficient
SWARA

Coefficient

Bi
o-

ph
ys

ic
al

Slope 0.0005 0.006 −0.0032 −0.0013 0.0919 0.1301
Land cover −0.0821 −0.0243 −0.0137 0.0027 0.0817 0.1981

Flood 0.0079 0.0032 0.008 0.0043 0.0616 0.0571
Fault −0.0022 0.0024 −0.0016 0.0000 0.0567 0.0851

Earthquake −0.0036 0.0054 0.0030 0.0037 0.0823 0.0121
Elevation 0.0126 0.0232 0.0015 0.0065 0.0202 0.0541

H
um

an A
cc

es
si

bi
lit

y Access to educational centres 0.0021 −0.0037 0.0038 0.0006 0.0269 0.0131
Access to entertainment centres 0.0352 0.0151 0.0297 0.0164 0.0564 0.01501
Access to the transport network 0.00024 0.0158 0.0082 0.0139 0.2063 0.1301

Access to major cities 0.0289 0.0000 −0.0019 0.0007 0.1058 0.0101

So
ci

o-
Ec

on
om

ic Population density 0.0008 0.0022 −0.0009 −0.0032 0.0713 0.0401

Land Price 0.0081 0.0068 0.0136 0.0079 0.1969 0.0221

Sp
ec

ia
lis

ed
pl

an
ni

ng
re

gu
la

ti
on

s Rivers 0.0121 0.0058 0.0072 0.0044 0.0122 0.0741
Ecologically protected lands −0.0011 0.0004 0.0001 0.0009 0.0112 0.1091

Industrial buffer zone −0.0041 −0.0039 −0.0038 −0.0014 0.105 0.0381
Existing mines 0.0026 0.0023 0.0020 0.0027 0.0116 0.0131

Model output descriptors
Adjusted odd ratio 37.5032 42.5096 48.8362 17.2894
True-positive (%) 98.6030 98.6030 90.9090 98.5310
False-positive(%) 0.2000 0.7111 0.2492 1.0861

ROC 0.9940 0.9790 0.9710 0.9320

The land cover variable is also the most significant barrier to the transformation of
rural regions into urban centres. The LR method’s precision was measured using the ROC
index. Table 5 shows that there is a significant relationship between the transitions and
variables throughout both scenarios and across all sub-models, at a significance level of 0.9
or above, validating the model.

According to Table 5, elevation was one of the essential variables, indicating that the
urban land begins to occur at a lower altitude and then expands to height. Furthermore,
accessibility to entertainment centres and accessibility to transportation networks has had
the most significant impact on built-up land development. On the other hand, the two
variables of land cover and population density worked against built-up land development.
As expected, closeness to hazardous zones such as floods and faults had a significant role
in future development.

4.3. Results of the Spatial Simulation
4.3.1. Validation and Experimental Prediction Results

The validation of LR maps was carried out using the ROC method (Table 5). ROCs
greater than 0.9 for all types of land uses show high accuracy in explaining LUCCs. The
outputs of Markov analysis and the base map of 1990 were used as the inputs of the
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CA_MARKOV model. Furthermore, the LUCC from 1990 to 2020 were simulated. The
results of the 2020 simulation based on the Markov analysis are shown in Figure 8. The
results of the 2020 simulation show the accuracy of the Markov analysis in recording the
changes evaluated with the 2020 reference map. The Kappa coefficient method was used to
validate the model’s prediction accuracy. The calculated kappa coefficient was 70%, which
indicates an acceptable value. Land changes by 2050 can be predicted with 70% accuracy.
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4.3.2. Results of the Spatial Simulation of Scenarios up to 2050

Using the LR model’s prospective transmission maps, MCE expert assessment, and
CA model transition rules, we constructed scenarios for their geographical implementation.
Figure 9 depicts the possibility for convergence between land use/cover maps under the
HTGS and EPGS scenarios. As a whole, it is clear that HTGS has more promise for LUCC.
This will happen mostly in and around major cities and along major transit corridors.
In addition, LUCC is more prevalent in the TMA’s central and northwest regions. The
potential of LUCC is limited when applied to EPGS, which suggests that in the future,
LUCC will only occur in places immediately adjacent to existing urban centres and that
LUCC will have a far less impact on the natural environment than HTGS. The biologically
protected and high-elevation regions in the north and northwest of TMA mean that the
south parts have less LUCC potential.

TerrSet employs the CA–MARKOV to model the LUCC of TMA in the future under
three predetermined scenarios by the year 2050. The results of these simulations for all three
2050 scenarios are shown in Figure 10. The proposed scenarios predict that by 2050, each
kind of land use or cover will have a unique geographic position. Overall, TMA will contain
a lot of LUCC if Figure 10 is any indication. In general, it seems that the TMA landscape
configuration will undergo significant change. The massive growth of cities has made it
such that LUCC are most common around their borders. Fast urbanisation and rural sprawl,
together with a decline in cultivated and grass lands, characterise the period from 2020 to
2050. The findings suggest that TMA’s extensive urbanisation process from the past may be
expected to continue into the future. Mainly in the north, northwest, and west of the TMA,
where Tabriz, Azarshar, Heris, and osku are located, you will find areas with high rate of
LUCC. Land situated between urban and rural regions is being demolished and developed
into residential, industrial, and service districts, and this process is becoming increasingly
obvious. This pattern will also be seen along the major thoroughfares that link major cities.
The northwest area of TMA, where most cultivated and garden land is located, experiences
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a sharp decline in the scenarios, leading to the loss of many precious resources. In particular,
the urban core, the east-west axis, and the Tabriz-southeast axis will grow and merge, while
most of the city’s dispersed villages will link with one another. Figure 10 reveals that HTGS
has higher levels of LUCC than other scenarios, with the greatest increases seen in the
periphery of urban areas and in Tabriz itself. Further, EPGS has more densely populated
areas and lower LUCC. There will be less degradation of precious landscapes and a more
limited urban footprint in this scenario. However, under the UGS scenario, LUCC would
happen fragmented due to the conversion of cultivated land.
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Analysing the composition of TMA indicate that this landscape will be home to
significant LUCC in the future. Figure 11 displays the results of a change detection analysis,
which shows that general trends are consistent across all three scenarios. The scenarios
all predict significant growth in urban areas, consistent with historical patterns; however,
the rate of growth in the UGS is expected to be much higher than in the HTGS and the
EPGS. The pattern of cultivated land conversation is similar, but opposite. Continuing
on the downward trajectory shown in the scenarios leading up to 2050, we expect the
largest decreases in UGS, HTGS, and EPGS respectively. Figure 11 shows that grass land is
expected to move in the same direction as cultivated land. Contrary to the historical trend,
both UGS and HTGS will decrease even while garden areas continue to grow. Nonetheless,
the rate of expansion will remain slow relative to historical norms. The barren terrain and
watershed continue on a trajectory similar to that seen in the past but with a more constant
line going forwards.
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Figure 12 depicts the aggregate pattern of changes over all three scenarios, showing
an increase in developed regions and a decrease in undeveloped territory. There are major
variations in predicted LUCC growth rates across the three scenarios. The percentage of
built-up land will increase dramatically (106%) in the UGS. For HTGS, the equivalent figure
will be about 77%, whereas, for EPGS, it will be around 45%. UGS projections predict that
the area of cultivated will drop by −65%, indicating widespread devastation. For HTGS,
this equates to a −33% reduction, and for EPGS, it will be about a −25% reduction. In
contrast to the other two situations, LUCC in the EPGS has the lowest ratio. The EPGS see
a rise in urban areas by 45%, although the negative growth of cultivated and grasslands
will be lower than in any other scenario. In addition, the garden areas will fully preserved
in this EPGS.
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5. Discussion

Using an integrated framework, this research examined the regional dynamics of
LUCC and its driving mechanisms in TMA from 1990 to 2050 under several growth
scenarios. First, between 1990 and 2020 in TMA, natural and cultivated lands were harmed due
to the growth of urban areas, as shown by the findings of previous LUCC. Similar findings have
been observed in previous research on LUCC in TMA [4,97]. Tehran [15,102,104,105], Karaj [106],
Sari [7], Mashhad [107], and Isfahan [15] are only a few of the Iranian metropolises whose
natural zones are threatened by urbanisation [108]. Furthermore, the LUCC geographical
pattern reveals that most of the changes have taken place in the TMA’s north, west, and
northwest, where industrial zones and working-class suburbs have been built mostly via
edge expansion or leapfrog. New developed land is regularly expanded in close proximity
to the already developed area; this is known as edge growth. Smaller human settlements
and activities are spread out over the area in a leapfrog pattern. This shape is picked
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up in the areas northwest of TMA, close to the major highways and the places where
agricultural and industrial activities take place. This result accords with previous results
in the field of TMA [4,97]. Generally speaking, the growth of urban areas in Iran’s major
cities is thought to be the primary cause of LUCC [44,57,63,104,109]. Grass, cultivated, and
garden space all suffered as a result of the un-controlled expansion of cities. For effective
management of LUCC and urban growth [51] in TMA, it is essential to analyse driving
forces and implement scenario-based planning.

The LR model was used in this analysis because of its excellent accuracy and validity
when looking at the factors that drive LUCC [15,39,46,78,110]. According to the results,
cities have the most beneficial effect on LUCC by decreasing the amount of bare and
cultivated land in the region. Thus, it is not surprising that urban centres spring up in
proximity to transportation hubs. Figure 7 shows the high transition potential in TMA along
the western axis (Tabriz Azarshar), northern axis (Tabriz Sofian), and southern axis (Tabriz
Basmanj). Similar to the TMA, reports from throughout the world have shown that urban
sprawl has occurred around major highways, indicating that the transportation network
has a big impact on LUCC conversion as a result of human activity [44,51,62,72,98,111].
This research demonstrates the interesting connection between land price and LUCC,
particularly via the urbanisation of once agricultural territory. This is because of the
area’s closeness to human populations, where construction costs are often cheaper than
in infilled-development regions. Access to metropolitan centres and built-up regions also
influences the transformation of garden land. These places are being torn down due to edge
development, which is causing the urban core to expand [4,9,15,60,98,112]. However, the
majority of urban expansion has occurred in the periphery, not in the core or near the major
metropolis. Most dispersed enterprises and settlements have grown in size and location
around major thoroughfares throughout time. The closeness of industrial zones and slope
have had a substantial detrimental impact on previous urban development. It was less
expected that the TMA’s high slope areas, particularly those in the south and west where
there are a lot of barren and grass fields, would be converted. Results from the LR show
excellent effectivity and efficacy in this study, as they have in others when looking at the
influence of driving forces and spatial dynamics of LUCC [15,46,53,110,112].

Three different scenarios were used to describe the LUCC dynamics in TMA. The
Markov land conversion probability is an input to the UGS, which prioritises uncontrolled
development. Using the LR model, the HGTS scenario examines the effect of LUCC’s
driving factors. Expert perspectives on LUCC with an eye on preserving the environment
are at the heart of the EPGS scenario. Predictions of LUCC for 2050 under each of the three
scenarios show that urbanisation in TMA will continue to play a disproportionately large
role. The expansion of urban areas and associated environmental degradation will occur
mostly in UGS, where population densities are expected to rise to very high levels, and
in EPGS, where urban growth is expected to occur in a more concentrated fashion. This
implies that in the future, environmental deterioration will occur on a massive scale if
we do not have a great understanding of the mechanisms that lead to LUCC and instead
depend only on data that indicate the possibility for land cover type conversion. In the
future, the landscape of TMA will consist mostly of built-up areas, which will lead to the
loss of cultivated, garden, and grassland areas, which are among the most precious natural
resources. Future situations will vary in how quickly this tendency unfolds. Cultivated
and grasslands will contribute the least to the decrease in EPGS. The reduction will be
accompanied by more deterioration in the UGS, and there will be no change in the amount
of barren land or watershed. Consequently, urbanisation will have an impact on LUCC in
the TMR. The projections based on the scenarios show that the EPGS will lead to beneficial
effects on the cultivated and grass lands, and thus more sustainable LUCC, whereas the
UGS would result in tremendous development of the built-up regions having detrimental
consequences on the same fields. In reality, the EPGS emphasis on environmental protection
as part of human development. Increased frugality and long-term resource management
are the driving forces behind this situation. It makes the distribution of people and wildlife
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in the TMA landscape more equitable and sustainable. Evidence from China [41,54,67],
Iran [4,15], Turkey [40], Latin America [6] and Europe [72] show that LUCC has occurred
along major roadways and in the vicinity of existing cities, having a negative effect on the
surrounding environment. The results demonstrate that the scenario method, which is
represented by a variety of modelling outcomes for the year 2050, may provide decision
makers with access to more viable alternatives [33].

The LUCC is often regarded as one of the most important planning concerns [113,114].
These results show that the complexity of LUCC makes it hard to simulate using a single
model and set of assumptions, particularly in metropolitan settings. Accordingly, it is
essential to combine supplementary models in order to anticipate future scenarios. Al-
though the simulated CA-based models have shown to be an effective tool for LUCC
prediction [6,35,43], they have limitations that prevent a thorough examination of the influ-
ence of the various driving factors and the input of policymakers [15,30,115]. Therefore,
the CA model was integrated with MC, LR, and MCE methodologies in this research to
provide a complete and efficient framework for the modelling of LUCC in the TMA, with
an emphasis on driving forces and sustainable growth. There is much promise in the LR
model for understanding the connection between LUCC and the driving forces, and it
makes a significant contribution to explaining the key variables. Additionally, this work
discovered that the MC model may be helpful in land use transition capture to acquire
the conversation potential of land use classes. Similar research findings corroborated the
CA–MC model’s usefulness and demonstrated its considerable benefits, proving it to be a
powerful instrument for LUCC modelling [46,58,71,102,116].

In addition, scenarios and supplementary methodologies were effective in compensat-
ing for CA-based model shortcomings and producing more realistic simulation results of
potential modifications [71]. The ROC values from LR also indicate that the model is able
to simulate the dynamic process of land-use change [46]. Choosing the best land use/land
cover planning for the future is hampered by analyses that only consider the existing LUCC
circumstances. Because of this, various environmental issues arise, which in turn slows
down development objectives and leads to bad spatial planning [40]. By using the SWARA
MCE technique as a supplementary CA model, this study does two things: (a) it speeds
up the time it takes to make decisions by incorporating several criteria into one, and (b) it
provides managers and planners with more context for the outcomes of alternative devel-
opment scenarios. Experts’ perspectives on socioeconomic and geophysical driving factors
are taken into account in the MCE outcomes, making it easier to achieve the sustainable
development pattern [4].

6. Conclusions

The TMA is a rapidly expanding area, both socially and economically, and it is making
strides towards sustainability via initiatives such as urban planning and LUCC. The results
demonstrate that the region’s balance of sustainable land use has been disrupted due to
the increase in developed land and the decrease in ecological land. However, without
appropriate policymaking, this process may persist and lead to irreversible harm to the
environment and locals. Planners and politicians need to take a holistic approach to land
use planning and sustainable development if they are to succeed in these endeavours. This
research has shown that the model capabilities in LUCC analysis could be improved by
merging four complementary methodologies, including CA, MCE, MC, and LR, and the
scenario approach. By using this paradigm, we may analyse past LUCCs and isolate the
most important factors that led to these shifts and their relative importance. The multi-
scenario technique is superior to the single-scenario approach, as shown by a comparison of
the outcomes of three scenarios. In order to reap the advantages of urbanisation and LUCC
while also resolving the most pressing sustainability issues, integrated and ecologically
responsible land use planning is crucial. For this reason, we think the integrated framework
may be useful in land use policy design and successfully accomplishing diverse land use
planning goals and objectives within the context of sustainable land use development and
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management policy suggestions. Additional work and creativity are needed to collect
the information on local circumstances and include the implications of local regulations;
therefore, the methodology suggested in this research should be seen as simply a starting
point for analysing LUCC in TMA. This integrated approach cannot represent land use
changes that place insufficient focus on human behaviour, political economics, or govern-
ment action. Exploring land use from a qualitative perspective helps us arrive at more
realistic possibilities that account for all of the relevant characteristics. Testing the model’s
performance, using it at different scales, comparing its results and advantages to those of
other CA models like SLEUTH, and seeking to capture the normative features of land use
rules and policies might be the focus of future research.
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