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Abstract: Understanding the relationship between different essential urban land use categories and
the urban thermal environment is essential for urban planning, resource allocation and decision
support. However, most of the spatiotemporal correlations between land use types and LST are
focused on industrial land use and urban green space, and there are fewer discussions on the totality
of urban land use types. Here, using multi-source remote sensing images, correlation analysis and
the stepwise regression method, we elaborate the relationship between landscape structure and land
surface temperature (LST) across the different seasons of 850 planning management units in Jiaozuo,
China. Our results show that the degree of explanation of surface temperature by landscape structure
increased with a fine division of land use. The imprint of urban–rural gradients on LST was largely
masked by the land use categories at the regional scales. Moreover, the tridimensional structure
of buildings significantly affected the LST of residential regions, and the large number of low-rise
buildings in urban planning practice contributes to high LSTs. This study provides a comprehensive
analysis of the effects of each land use type and landscape structure on surface temperature in urban
space and also provides strategies and methods for urban planning in rapidly developing regions of
the country.

Keywords: land surface temperature; land use categories; landscape structure; urban–rural gradients

1. Introduction

Over the past few decades, urbanization has increased with unprecedented speed
around the world, especially in China [1]. The urbanization rate in China has risen from
17.29% in 1978 to 64.72% in 2021, according to documents released by China’s National
Bureau of Statistics in 2021 [2]. One of the direct results of rapid urbanization is the
conversion of green spaces in urban spaces to impervious surfaces; fast urbanization is
also a critical contributor to climate change [3]. The urban heat island (UHI) effect is
considered one of the most serious challenges today [4]. Because of the high intensity
of human activities in city areas and the large amount of impervious and architectural
surfaces, the LST of urban areas is substantially higher than that of the neighboring areas;
the phenomenon is known as UHI [4]. UHIs affect people’s health seriously in many ways,
on the one hand increasing the incidence of many diseases [5], and on the other hand
increasing urban energy and water consumption [6], which indirectly increases urban
population mortality rates [7]. Due to rapid urbanization, it is difficult to reduce land
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surface temperatures in an increasingly crowded urban space by increasing the area of
green space. Therefore, many studies have proposed a new approach to reduce LST by
changing the green space structure of urban spaces [8,9]. Can we possibly reduce urban
surface temperatures by changing the landscape configuration of the landscape from the
same urban area? Plots with various kinds of landscape configurations inside the same land
use type provide a natural laboratory for studying possible solutions to the UHI problem.
Therefore, the identification of LST trends and main drivers in different land use types is
important for LST reduction and UHI mitigation strategy [10].

Earlier land surface temperature research had many usual methods; for example, it
was based on weather station data [11] or direct in situ measurement to acquire surface
temperature [12]. However, due to the issues of fewer and sparsely distributed observation
points of surface temperature data measured by the above two methods, they cannot well
reflect the overall temperature distribution of the urban space. Following the rapidly
advancing satellite technology, the LST data derived from satellite images provide a better
description of the surface temperature distribution in urban space [13]. Meanwhile, LST
data generated from satellite images can visualize the influence of urban landscape structure
on surface temperature. Academics have studied the influence factors affecting the spatial
distribution of LST [14] and found that for urban spaces on small scales surface temperature
has a complex influence mechanism. A study of the Yangtze River Delta city cluster proves
that there is an obvious regional heterogeneity in the trend of LST as the urban density
rises, but LST at the same urbanization intensity also exhibits large differences [15]. Yuan
investigated the LST patterns and features of regional heterogeneity in different grain sizes
and found a scale-dependent LST pattern, with an optimal grain size of 120 m [16]. Many
scholars have quantitatively analyzed the spatial structure of the research area based on
the landscape metrics in previous studies, and the results showed a high correlation [3].
These metrics can be classified into three scales: patch metrics, class metrics, and landscape
metrics. Related studies have shown that landscape patches can influence LST through
ecological processes [17].

However, the LST can be affected by not only the type of land cover as a key factor
but also other factors, particularly urban land use [1,18,19]. Previous studies have shown
that land use information is more valuable at a finer spatial scale than land cover [20–22].
Compared with land cover, the relationship between land use and LST has received very
limited attention. Moreover, the effects of human activities on LST also have not been
addressed. As a result, many research results cannot be directly applied to urban planning.
Therefore, we select a research method that is relevant to the actual urban planning by
investigating the relationship between LST and landscape structure of various land use
types and suggesting scientific and reasonable policy recommendations for urban planning.

This study offers a particular perspective to observe the influence of urban landscape
heterogeneity on LST. We selected an area with high urban landscape heterogeneity and
severe UHI threat in Jiaozuo, China, as the study area. The main objectives of our research
were as follows: (1) analyzing the distribution of surface temperature in an urban area and
the differences in LST between different land use types; (2) analyzing the correlation and
driving factors of urban landscape structure with LST in different seasons; (3) providing
recommendations for urban planning to decrease LST from the perspective of landscape
structure and urban space configuration.

2. Materials and Methods
2.1. Study Scope: Jiaozuo, China

Jiaozuo city is a crucial city of the Central Plains Urban Agglomeration in China, located
at 35◦10′ N to 35◦21′ N and 113◦4′ E to 113◦26′ E (Figure 1). Surrounded by Taihang Mountain
and Huanghe River in the north and south, it contains 10 districts with an administrative
area of approximately 4072 km2. It is dominated by a tropical monsoon climate with heavy
solar radiation in summer. The nominal annual average temperature is 14.9 ◦C and the
nominal annual average precipitation is 551.6 mm (https://zh.m.wikipedia.org/, accessed
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on 11 September 2022). In the past few decades, Jiaozuo experienced rapid urban expansion,
with an increase in the urbanization rate from 46.8% in 2010 to 63% in 2021 [23]. In our study,
the core area of Jiaozuo city, which contains 850 urban planning and management units with
a total administrative area of 120.3 square kilometers, was selected.
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Figure 1. Spatial location of study area. (a) location of Jiaozuo in China. (b) location of the built-up
area in Jiaozuo. (c) built-up area in Jiaozuo.

This study uses data from 2019 to 2020, a period typical of the urbanization develop-
ment stage. The rapid urbanization process has significantly affected the urban thermal
environment, and there is an urgent need to find ways to mitigate the UHI effect and
provide new theories for urban planning and design.

2.2. Data Preparation

The Landsat 8 (path 119/row 42) remote sensing images for the four seasons used
in this study were acquired from the USGS (http://earthexplorer.usgs.gov/ (accessed on
18 April 2019, 7 July 2019, 27 October 2019 and 31 January 2020)). The GF-2 image of
Jiaozuo was prepared to extract land cover information (Table 1). In order to eliminate the
effects of wind speed, surface humidity and solar radiation intensity, we pre-processed
the images from remote sensing with atmospheric correction, radiometric calibration and
image registration [24–26]. The administrative division was derived from the Jiaozuo
Official Website (http://www.jiaozuo.gov.cn/ (accessed on 15 June 2019)).

Table 1. Information on remotely sensed data for Jiaozuo in this study.

Satellite Path/Row Resolution (m)
Period (Year–Month–Day)

2019 2019 2019 2020

Landsat 8 119/42 30 18 April 2019 7 July 2019 27 October 2019 31 January 2020
GF-2 — 0.8 5 May 2019 25 September 2019 — —

2.3. Land Surface Temperature Retrieval

In this paper, we pick a cloud-free date in each season to extract the surface temperature
to represent the spatial distribution of surface temperature in that season. The time between
each two seasons is separated by three months. Referring to the study methods of Li and
Peng, we used the LST of four dates, April 18, July 7, October 27 and January 31, to
represent the four seasons, respectively [9,27]. Band 10 and band 11 in Landsat 8 remote

http://earthexplorer.usgs.gov/
http://www.jiaozuo.gov.cn/
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sensing images are thermal infrared bands. The USGS discourages the use of the split-
window algorithm (SW) to obtain the LST because of the instabilities in the participation of
band 11 [28]. The radiation transport equation (RTE) algorithm is more accurate than single-
channel (SC) algorithm and SW [29]. Thus, we extracted the LST using the RTE method.
The calculation of this method used band 10 of Landsat 8 remote sensing images (1):

Bi(Ti) = τi(θ)
[
εiBi(TS) + (1− εi)I↓i

]
+ I↑i (1)

In the above equation, Ti is the lightness temperature sensed by the sensor, while
Bi(Ti) is the radiance of Ti. The correction parameters for the TIRS sensor can be obtained
on the USGS website. εi represents the land surface emissivity for channel I, and Bi(Ts)
is the degree of surface radiance. θ shows the sensor angle, τi(θ) is the transparency of
the atmosphere, in which i is the number of the sensor channel. I↑i and I↓i are known as
the uplink radiance and downlink radiance of the atmosphere, respectively. The atmo-
spheric correction parameters for calculations I↑i , I↓i and τi(θ) can be downloaded from the
NASA website. Bi(Ts) is the radiation intensity of a blackbody in the same apparent heat
temperature in band 9, and the equation is calculated as follows:

Bi(Ts) = 2hc2/
(

λ5
i ∗ (exp(hc/λikTs)− 1)

)
(2)

In Equation (2), Ts means the LST, c is the velocity of light, λi is the active wavelength of
frequency band i, k is the Boltzmann constant and h is the Planck constant. λi is calculated
as follows (4):

λi =

∫ λ2,i
λ1,i

fi(λ)λdλ∫ λ2,i
λ1,i

fi(λ)dλ
(3)

In Equation (3), fi(λ) is the optical response function. λ1,i and λ2,i are the underside
and upside border of fi(λ). Based on the converse function of Planck’s formula, the real
LST (Ts) can be calculated as follows:

Ts =
C1

λi ln

(
C2

λ5
i

(
Bi(Ti)−I↑i −τi(1−εi)I↓i

)
/τiεi

+ 1

) (4)

The C1 and C2 in the above equations are constants, which can be checked in the MTL
file in the image source file.

2.4. Interpretation of Land Cover and Land Use Types

According to related studies, the highest vegetation biomass season is summer; thus,
the GF-2 remote images used in our research were captured in summer, which can fully
reflect the urban vegetation information and be helpful for the classification of land cover.
The classification of land cover types was performed in ENVI software [30]. Land cover
was categorized into four kinds: green surface, barren land, built-up areas and water
bodies (Figure 2). Green space is the area marked by vegetation cover, including woodland,
shrubland and herbaceous vegetation. Water bodies include lakes, rivers and ponds. Built-
up areas include impervious surfaces such as roads, buildings and squares. The land cover
classification was assessed for accuracy; the overall accuracy rate was 98.7552% and the
kappa coefficient was equal to 0.9819, satisfying the accuracy assessment requirements [31].
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In addition, the administrative division of Jiaozuo was used to divide the land use
types manually. In previous studies, some scholars argue that roadways not only play a
role in cities to separate different use spaces but also can prevent heat exchange between
adjacent urban spaces [32]. Therefore, our study not only uses the land use division of
urban planning but also uses the urban roads as land use edges. Finally, the 850 planning
management units were classified separately into five and eight categories (Figure 3a,d).
The first category of land use was classified into five categories, namely residential zone
(RZ), industrial zone (IZ), administration and public services zone (APSZ), commercial and
business facility zone (CBFZ) and green space and square zone (GSSZ). The second category
of land was separated into eight categories, namely first-class residential zone (FRZ), second-
class residential zone (SRZ), administration zone (AZ), education and research zone (ERZ),
medical health zone (MHZ), commercial facility zone (CFZ), business facility zone (BFZ)
and recreational facility zone (RFZ).

The classification of land use types and their proportional areas are shown in Figure 3
and Table 2. The area of each planning management unit ranges from 8.6 to 54.9 km2 in the
first category and 0.43 to 31.4 km2 in the second category. The first-category land use types,
ranked from highest to lowest by area size, were RZ, IZ, GSSZ, CBFZ and APSZ (Figure 3a).
The second-category land use types, ranked from highest to lowest by area size, were FRZ,
SRZ, CFZ, ERZ, AZ, RFZ, BFZ and MHZ. The composition of land cover in each land use
type is shown in Figure 3.

2.5. Landscape Metrics

In research on ecological processes and spatial patterns, the method of quantifying
spatial heterogeneity is an important issue [33]. Landscape metrics are one of the most
helpful methods for quantifying the spatial structure of an urban zone [34]. In addition,
landscape composition and configuration have a driving effect on LST [35].

In this study, the potential drivers of LST included area and edge metrics (AREA, TA,
PLAND), shape metrics (SHAPE, PAFRAC, FRACT), core metrics (TCA, CPLAND, DCAD),
aggregation metrics (IJI, AI, NP, PD) and diversity metrics (SHDI, SIDI), a total of 15 metrics.
Area and edge metrics include landscape area, patch area and the proportion of landscape
area occupied by the same kind of patch. The shape metric describes the complexity of the
shape, where the values of each of the three metrics increase unrestrictedly with the trait
becoming irregular. Aggregation metrics indicate the degree of aggregation. The IJI and
AI metrics increase with the aggregation of patches, and the values of these two metrics
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are maximum when the same type of plate is summed as one patch, but at the same time,
the values of NP and PD will decrease. Diversity metrics describe the richness of patch
species in the landscape. SHDI and SIDI use different approaches to complete this statistical
process [36]. They were calculated for each planning management unit using Fragstats 4.2
(Kevin Mcgarigal&Eduard Ene, Amherst, MA, USA) software [37].

Land 2022, 11, x FOR PEER REVIEW 5 of 18 
 

 
Figure 2. Ground cover classification. 

In addition, the administrative division of Jiaozuo was used to divide the land use 
types manually. In previous studies, some scholars argue that roadways not only play a 
role in cities to separate different use spaces but also can prevent heat exchange between 
adjacent urban spaces [32]. Therefore, our study not only uses the land use division of 
urban planning but also uses the urban roads as land use edges. Finally, the 850 planning 
management units were classified separately into five and eight categories (Figure 3a,d). 
The first category of land use was classified into five categories, namely residential zone 
(RZ), industrial zone (IZ), administration and public services zone (APSZ), commercial 
and business facility zone (CBFZ) and green space and square zone (GSSZ). The second 
category of land was separated into eight categories, namely first-class residential zone 
(FRZ), second-class residential zone (SRZ), administration zone (AZ), education and re-
search zone (ERZ), medical health zone (MHZ), commercial facility zone (CFZ), business 
facility zone (BFZ) and recreational facility zone (RFZ). 

 

Figure 3. Land use classification of the study area: (a) land use classification of the first category;
(b) percentage statistics of land use in the first category; (c) percentage statistics of ground cover
in the first category of land use; (d) land use classification of the second category; (e) percentage
statistics of land use in the second category; (f) percentage statistics of ground cover in the second
category of land use.

Table 2. Statistics of sample size and regional information.

Land Use Types Number of Samples Area (m2)

IZ 94 16,007,740

GSSZ 50 13,032,007

RZ FRZ 218 31,412,640
SRZ 212 23,257,550

APSZ AZ 56 2,993,336
ERZ 35 5,148,938
MHZ 10 437,956

CBFZ CFZ 84 8,639,423
BFZ 28 1,495,290
RFZ 57 1,762,251
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For different urban land uses, we analyzed the LST drivers. With the multiple linear
regression method, we extracted the trends of LST with landscape structure index in
different land use types. Jamieson demonstrated that the NRMSE value of the multiple
linear regression model is less than 10% with high accuracy [38]. We explain the relationship
between each variable and the trend of surface temperature change by determination
coefficient (R2) in the multiple linear regression results.

3. Results
3.1. Spatiotemporal Pattern of LST

Based on the LST map acquired from Landsat 8 images (Figure 4), the minimum LST in
our research area is 4.7 ◦C and the maximum LST is 50 ◦C in 2019–2020. The average LSTs
in the four months were 32.8 ◦C, 39.7 ◦C, 21.7 ◦C and 10.3 ◦C, with an average difference of
10 ◦C between adjacent seasons.
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in winner.

Areas of high urban surface temperature appear to be clustered in surrounding areas;
in addition, the city center area shows a significant cooling effect in winter. The distribution
of high-LST areas in April and July is unbalanced in the city. High-LST areas in April are
clustered in the northwestern part of the city; in July, high-LST areas were distributed in
the west part of the city and a few were scattered in the south part of the city area. In
October, the LST in the city central area was greater than that in the surrounding areas,
while in January, the LST was lower in the city central area than in the surrounding areas.
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Experiments have proven that the areas of the highest urban surface temperatures are not
in the geographic city center and that the two are not identical in space.

There are high variations in LST between different land use types, and these variations
vary with seasons. Figure 5 shows that the standard deviation of LST for each land use
type was the maximum in July and the minimum in January. The LST of the industrial
zone has the maximum standard deviation in the months of April and July. The residential
zone has the maximum standard deviation in January. The first-class residential zone LST
has a high standard deviation in April and mid-July, and the gaps between the highest and
lowest temperatures are 5.96 ◦C and 6.90 ◦C, respectively.
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Comparing the LST of different land use types, the average LST of the industrial zone
was found to be higher than that of other site types in all four seasons. The LST of the
green space and square zone experienced the maximum variation among four seasons. In
addition, the LST of the green space and square zone was minimum in the season with
hot weather and maximum in the season of cold compared to other land use types. In the
category of administration and public services zone, the LST of the administration zone
was lower than that of the education and research zone and medical health zone. The
LST of the second-class residential zone was lower than that of the first-class residential
zone. The second-class residential zone is mostly distributed in the city center, while the
first-class residential zone is mostly distributed at the edge of the city. Considering the
spatial distribution of the two types of land use, the first-class residential zone in the urban
suburbs has a higher LST than the second-class residential zone in the urban center.

3.2. Spatial Changes of Landscape Metrics

Using statistics on the landscape metrics, the difference in landscape patterns between
land use types was observed (Figure 6). In particular, significant landscape structure
features were observed in the green space and square zone, residential zone and industrial
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zone. In the green space and square zone, the intensity of urbanization is low, compared to
the high proportion of green spaces and water bodies, and there is a low degree of landscape
fragmentation and a high richness of patches. Compared with the first-class residential
zone, the second-class residential zone has a larger landscape area, lower urbanization
intensity, greater landscape fragmentation and high aggregation. Compared with other
land use types, the industrial zone has a high total core area for impermeable patches.
However, the urbanization intensity in the industrial zone is lower than that in most of the
land use types.
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3.3. Correlation between LST and Landscape Pattern

On the first land use classification scale, LST was significantly correlated with urban-
ization intensity and green surface coverage for each urban land use type (Figure 7). A
remarkable positive association was observed between LST and the percentage intensity of
urbanization in April, July and October, and in January it became negatively correlated.
SIDI, SHDI and CLAND-forest were correlated negatively with LST in April, July and
October and positively correlated in January. FRAC-mn, SHAPE-mn and TCA-water were
all correlated negatively with LST, while TCA-built and IJI were positively correlated. SHDI,
SIDI and CPLAND had consistent correlations for LST. NP and PD have a negative impact
on green space and square zone LST in October and January while they have a positive
impact on LST of other land use types. Compared with AREA-mn, PAFRAC, DCAD and
AI, the results show that an increase in landscape fragmentation of industrial and green
space and square zones leads to an increase in LST.

Compared to land use types of the first category, the second-category land use types
show a complex correlation with LST. Land use types from the same first-category land use
showed similar correlations between the landscape structure and LST; they have similar
negative or positive effects but differ in value.

3.4. Relative Importance of Landscape Driving Forces

Drivers of LST exhibit complex variation across seasons and land use types (Figure 8).
LST of green space and square zone can be well explained by TCA-water (36.2%), AREA-
mn (34.3%), TA (44.4%) and DCAD (18.3%). LST of the green space and square zone is
mainly influenced by the area and the percentage of water bodies. DCAD (14.5%) and
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CPLAND-built (27.1%) act as the main drivers of LST for the industrial zone in April and
October. The high percentage of impervious surface is the primary source of high LST in
the industrial zone. SHAPE-mn and CPLAND play an important role in explaining the LST
of the residential zone in April, July and January. Residential zones with high landscape
fragmentation or high aggregation of green surface and water patches show lower LST.
SHDI can well explain the LST of the administration and public services zone (17.7%) and
commercial and business facility zone (30.3%) in July and January. In administration and
public services zones and commercial and business facility zones that lack green space or
water bodies, an appropriate amount of green surface and water body patches can well
reduce the surface temperature.
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The percentage of impervious surfaces and the degree of fragmentation can well
explain the LST of the administration zone. PLANND-built (50.2%) and CPLAND-built
(44%) can well explain the change in LST in the administration zone in July, while CPLAND-
forest plays an important role in January (16.8%). TCA-forest has the greatest impact on the
LST of the education and research zone in April (14.3%) and July (16.4%). The LST of the
education and research zone can be effectively reduced by increasing the area of core green
surface patches. The main drivers of landscape structure in first-class residential zone are
SHAPE-mn and PD. CPLAND-forest (35.5%) and CPLAND-built (28.9%) can well explain
the LST of the second-class residential zone in July and January; PD was the most important
driver in January (16%). The increase in fragmentation in impervious surfaces and the
decrease in fragmentation in green surface patches will reduce the LST of the second-class
residential zone. Furthermore, the impact on the LST of the second-class residential zone
is greater than that of the first-class residential zone. In different seasons, TA (20.2%),
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CPLAND-forest (37.5%), CPLAND-built (37.5%) and AI (41.9%) contribute to the LST of
the business facility zone. CPLAND-forest (10.6%), AREA-mn (12.4%) and SIDI (10.4%)
contributed to the LST of the recreational facility zone in April, July and January. With
the decrease in landscape area and the increase in fragmentation, the LST of the business
facility zone decreases, while the LST of the recreational facility zone increases.

4. Discussion
4.1. Relationships between Anthropogenic Heat and LST

Previous studies have demonstrated that as the intensity of built-up land varies in
different parts of the urban area, it leads to changes in the radiative surface [39]. In our
study, the spatial distribution of surface temperature in urban areas is further described. At
the spatial scale of the city, high-LST areas in the built-up area of Jiaozuo city are distributed
in surrounding areas of the city in most seasons, with low numbers of high-LST patches in
the city center area. Similar situations have emerged in previous studies. Sun found that
the high-LST areas in Beijing clustered in the northwestern part of the city, not in the central
part of the city [40]. Meanwhile, it was revealed that obvious differences in LST existed in
different urban land use types. Some research suggests that landscape heterogeneity is one
of the causes of this phenomenon [41,42]. Yue believes that the factors affecting urban LST
can be divided into three aspects: urbanization intensity, landscape structure and human
activities [4]. In our experiments, we also found a positive correlation between urbanization
intensity and each urban land use type, and we try to provide some theoretical basis for
solving the UHI effect by explaining the effect of landscape structure on different land
use types.

The impact of heat emissions from human activities on LST is frequently difficult
to calculate. Changes in population density and per capita energy use can affect urban
consumption of energy forms such as electricity and gas, resulting in anthropogenic heat
emissions [43]. The results of Chapman’s study revealed that anthropogenic heat emissions
could lead to a 4 ◦C increase in LST; such human activities include transportation, building
energy and human metabolism [44]. It is not sufficient to explain the urban-scale LST
distribution by a small amount of human activity alone, but it proves that the impact of
human activities on LST cannot be ignored. Previous experimental results reveal a spatial
pattern of the anthropogenic exothermic activity always associated with the industrial
zone [45], and the LST of the industrial zone tends to be higher than that of other land use
types [40,46,47].

The warming trend appears greater in peri-urban areas compared to urban centers.
The spatial distribution of newly expanded high-LST areas agrees with that of the industrial
zone [48,49]; we have similar experimental results. At the same time, considering the effects
of changes in solar radiation intensity and changes in human activity intensity on LST in
different seasons, comparisons were made between each of the four seasons. From the
experimental results, it is found that the surface temperature of commercial and park land
is similar to that of industrial land in July and January. Kato and Du et al. demonstrated
that heat rejection from human activities is maximum in summer and winter and minimum
in spring and autumn [50]. This is to some extent corroborated by our experimental results.
The commercial and business facility zone in our study area has a high percentage of
commercial facility zone with a high percentage of imperviousness, and it is also subject to
more heat emissions from human activities in the summer, therefore suffering high LST.
Both the commercial and business facility zone and the industrial zone are distributed in
the peripheral areas of the city, resulting in the clustering of high-LST areas in the periphery.
The percentage of green surface was correlated negatively with LST in January, implying
that the green surface has a warming effect in the low-temperature season, and it is subject
to higher anthropogenic heat emissions, which result in higher LST in the green space and
square zone in winter. Our results showed that the administration and public services zone
and second-class residential zone had lower LST. Similar findings were obtained in the
study of Zhao and were attributed to the high greening rate [51].
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4.2. Relationships between Landscape Structure and LST

The results of our study prove that both urban land use types and urban landscape
structure have explanatory effects on LST, and this correlation has seasonal differences.
Previous studies have generally concluded that the UHI effect can be effectively mitigated
by controlling land cover types and adjusting urban landscape patterns [52]. In urban
areas, hybrid land cover types have lower surface temperatures compared to a single
impervious surface [9]. This phenomenon may be attributed to the fact that the complex
patch morphology favors heat transfer [3,53,54]. We obtained similar results in this study.
Moreover, by comparing the LSTs in different periods, we concluded that the explanation
effect of landscape structure on LST has seasonal variability. In addition, large differences
also occur between different land use types in the same season. Rinner concluded that
the areas of the industrial zone and the green space and square zone have an opposite
contribution to driving surface temperature [47]. Our study again proves these conclusions.
On this basis, the results of our experiments demonstrate that the reason for the difference
between the industrial zone and the green and square zone is the extreme imbalance
between the percentages of impervious and green surfaces in the landscape.

As shown in Figure 5a,b, the maximum standard deviation of the surface temperature
of industrial land occurs during April and July, the period of higher air temperature.
The possible explanation for this result is that different types of industrial zones have
different implications for LST; significant differences can be found between the LSTs of
heavy industry and high-tech industries [55]. In addition, there are more heat sources in the
high-temperature season compared to the low-temperature season, which will contribute
to a greater difference in LST [56–58]. Peng’s study demonstrates a significant decrease in
LST in landscapes with a proportion of green space above 70%, and a strong correlation
between landscape pattern index and LST emerges in landscapes with a proportion of green
space above 70% [59]. For green space and square zone, we reached a similar conclusion.
Furthermore, we found that in the actual urban planning, only the green surface ratio of
the green space and square zone is within this range (Figure 3c).

Our results show that the surface temperature of the first-class residential zone is
higher than that of the second-class residential zone (Figure 5). Similar results were
observed in a previous study showing that the LST of a low-architecture zone is higher
than that of high-building areas [60]. Such a finding can be explained by the varying
three-dimensional structure of the architecture. Gage and Yin’s results also suggest that
architectural structure plays a more significant role in LST than land cover in the residential
zone [61]. Lan’s study demonstrated that LST received increased influence from the
three-dimensional structure of the architecture as the architecture density and height
increased [62]. Li believes that this phenomenon can be explained by aerodynamics [9];
buildings with taller floors have stronger aerodynamic conductivity to carry heat away
from the surface. Giridharan and Magli attribute this to the masking effect of tall buildings,
where the ground receives less radiation, resulting in lower surface temperatures [63,64].
However, it has been suggested that high-density high-rise buildings impede air circulation
in urban areas [65,66], which leads to heat accumulation and a continuous increase in LST.
This implies that high-rise buildings can reduce some LST, but this cooling effect decreases
with increasing building density.

In terms of spatial location, we find that the second-class residential zone with lower
LST is mainly distributed in the urban center area, while the first-class residential zone
with higher LST is mainly located in the peripheral areas of the city. Compared with
the UHI effect, which causes the high LST in the urban center area, the urban land use
classification shows a greater explanatory effect on LST, and it has a masking effect on the
spatial distribution of LST in urban areas caused by the UHI effect.

4.3. Planning Strategy Implication

In previous urban planning practices, urban planners often attempted to create a
comfortable and cool environment by expanding the number of green spaces. With the
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rapid expansion of cities, land resources available for green space compete against other
socio-economic benefits, making it difficult to carve out any other green space in urban
areas. Many scholars suggest that the perspective should be changed and efforts of optimal
spatial allocation should be made within the limited space. For example, changing the
spatial connectivity and complexity of the city can significantly reduce the LST with no
change in green space coverage [40]. In addition, the LSTs of different types of urban land
use show significant differences. Therefore, urban planners should adapt different spatial
allocation optimization methods for different types of urban land use. For example, increas-
ing the proportion of water bodies in the green space and square zone can significantly
reduce LST. Increasing the fragmentation of water bodies or green spaces and reducing the
fragmentation of impervious surfaces in the industrial zone can reduce LST (Figure 9). In
contrast to the industrial zone, the increase in the fragmentation of impervious surfaces
and the decrease in fragmentation of green surface patches are conducive to reducing the
LST of the second-class residential zone. The LST of second-class residential zone use is
lower than that of first-class residential zone use, so we can also consider vertical urban
development to avoid damage to urban green spaces as much as possible [60,67].
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The Chinese government has issued various policies to mitigate UHIs as a climate
problem, such as sponge cities, forest cities and climate-sensitive cities [68]. The implemen-
tation of the “Hundred Enterprises Retreating from the City” and “Green Shield” policies
released by the Jiaozuo city government in November 2019 has played a significant role in
reducing the urban heat island effect. Our study further provides effective theoretical and
practical information for urban planners by showing how to minimize the UHI effect by
changing the urban spatial structure when the proportion of green space in urban space
is limited.

4.4. Limitations and Suggested Future Research

We use urban planning units as our basic spatial units in our study; in comparison
to a regular grid as the basic cell, irregular spatial cells may result in a loss of edge details
in the raster image. However, there is no fixed unit of analysis for UHI studies, and the
method we use is not a bad attempt to align with urban planning and design. These results
are based on single-day LST for four months of one year, and sufficient images were not
available to analyze the LST separately for daytime and nighttime comparisons during the
day. A more accurate understanding of the variation of surface temperature over time in
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each urban site would be possible if we additionally compared and analyzed the daytime
and nighttime surface temperatures in each season, as Zhou did [57].Meanwhile, we used
four Landsat 8 images with 30 m resolution to extract the surface temperature, which
has some limitations. In future studies, the average seasonal surface temperature can be
used for research under good imaging conditions. The study conclusions are based on the
supposition that urban roads isolate most of the heat exchange between adjacent areas.
The relationship between LST and landscape structure is quantified on a per site area basis.
However, the surface temperature of each site area will be influenced by the adjacent areas,
which may affect the accuracy of our study.

5. Conclusions

Rapid urbanization has changed the surface structure, and land use types and land-
scape structure have profound impacts on the spatial variation of LST. With high-intensity
human activities, built-up areas always concentrate sophisticated land use types. Among
existing studies, numerous studies focus on the relationship between urban–rural gradient,
urbanization intensity and surface temperature; however, many research results are difficult
to translate into practical urban construction strategies. We found that few investigations
have been carried out on the relationship between land use types and LST. Land use in
urban systems is very complex, and there are numerous elements that interact with the
urban thermal environment. A comprehensive understanding of the current status of
land use in urban space and studying the relationship between landscape structure and
LST from multiple perspectives are beneficial for understanding the driving factors and
characteristics of LST in highly urbanized areas. In this research, we analyzed the impacts
of urban landscape structure on LST by a regression method based on the example of
Jiaozhou, China. Particularly, we investigated the effects of landscape metrics in different
land use types on LST to determine the main driving factors of LST. The results of this
study indicate that the spatial distribution of the industrial zone in the city can well explain
the distribution of high-LST areas. Green space and square zones have the capacity to raise
the surface temperature in winter. By comparing the correlations and regression analysis
between the landscape metrics and LST under different land use types, we found that an
increased landscape fragmentation will lead to an increase in LST for the industrial zone
and green space and square zone but will lead to a decrease in LST for the residential zone.
The LST of first-class residential zone is higher than that of the second-class residential
area; in addition, the landscape metrics in the first-class residential zone show less of an
ability to explain the LST. This finding demonstrates that different LSTs of the residential
zone can be explained by the 3D structure of buildings. LST can be reduced through old
city renovation.
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