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Abstract: Land use and land cover change (LULC) is known worldwide as a key factor of environ-
mental modification that significantly affects natural resources. The aim of this study was to evaluate
the dynamics of land use and land cover in the Matenchose watershed from the years 1991, 2003,
and 2020, and future prediction of land use changes for 2050. Landsat TM for 1991, ETM+ for 2003,
and Landsat-8 OLI were used for LULC classification for 2020. A supervised image sorting method
exhausting a maximum likelihood classification system was used, with the application using ERDAS
Imagine software. Depending on the classified LULC, the future LULC 2050 was predicted using
CA-Markov and Land Change Models by considering the different drivers of LULC dynamics. The
1991 LULC data showed that the watershed was predominantly covered by grassland (35%), and
the 2003 and 2020 LULC data showed that the watershed was predominantly covered by cultivated
land (36% and 52%, respectively). The predicted results showed that cultivated land and settlement
increased by 6.36% and 6.53%, respectively, while forestland and grassland decreased by 63.76%
and 22.325, respectively, from 2020 to 2050. Conversion of other LULC categories to cultivated land
was most detrimental to the increase in soil erosion, while forest and grassland were paramount in
reducing soil loss. The concept that population expansion and relocation have led to an increase
in agricultural land and forested areas was further reinforced by the findings of key informant
interviews. This study result might help appropriate decision making and improve land use policies
in land management options.

Keywords: land use; land cover; CA-Markov; Matenchose watershed; Rift Valley Basin

1. Introduction

Land use and land cover (LULC) is a term that refers to both land use categories and
different types of land cover. The material that physically shelters the terrestrial surface
is referred to as the land cover. Human activities on the land are known as land use, and
it typically but not always has something to do with land cover [1]. Changes in land use
and land cover are a vital part of current sustainable land conservation and environmen-
tal change supervising strategies [2]. Changes in LULC are pervasive, quickening, and
taking place at the local, regional, and global levels. LULC dynamics are a pervasive,
quickening, and important process that is primarily fueled by human activity and results
in modifications that have an impact on people’s quality of life.

The LULC dynamics affect the availability of many crucial resources, including water,
soil, and vegetation. These modifications have adverse effects [3]. Ethiopia’s natural
resources are impacted by a number of interconnected problems, including population
increase, agricultural expansion, emigration, resettlement, rapid urbanization, extreme
weather, and environmental degradation [4]. The severity of most erosion processes
has been demonstrated to increase as a result of deforestation and the establishment of
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permanent agriculture, according to studies conducted in northern Ethiopia [5]. Thus, it
suggests that at the local, national, and international levels, human activity is the principal
driver of ecological disturbance and climate change. Land use and land cover changes are
projected to have a considerable influence on ecosystems and natural resources, notably
by accelerating soil erosion [6]. Soil erosion rates are influenced by the type of land use,
as well as the overall consequences of land use and conservation. Poor land protection
can exacerbate soil erosion, and human-dominated landscapes are more vulnerable to it
than other types of landscapes [7]. The most dangerous shift in land use was found to be
the development of agricultural land at the expense of grassland and shrublands, which
resulted in the greatest change in soil erosion intensity [4,8,9].

The highlands of the surrounding hills, perennial and ephemeral rivers, and Lake Boyo
frequently flood the Matenchose watershed. Due to this, flora is harmed, livestock and
livelihoods are affected, wetlands are destroyed, cultivated land is damaged, deforestation
occurs, cultivated land is expanded, overgrazing occurs, and the population grows.

In addition, there is a lack of complete information on the dynamics of changes in land
use changes and its drivers over three decades in the studied watershed, the environment,
the accessibility of various goods and services for human, livestock, and agricultural
production, and knowledge about the implications of future LULC predictions in the
studied watershed.

CLUMondo allocates future land change in locations with a highest preference for a
defined land system, the relationships between the spatial occurrence of a specific land
system and location factors [10] used to explore land management practices in Mediter-
ranean landscapes.

The FLUS model is applicable for exploring the impacts of climate change and human
activities on future land use dynamics for the simulation of multiple LUCC dynamics [11],
aimed at stimulating urban growth to explore the model and impact of urban enlargement
in the city [12,13]

SLEUTH is a bottom-up approach and it is not dependent on intensive preliminary
studies regarding the general causes of urban growth in a study area or the location-specific
driving forces [14]. SLEUTH, among the many models, is the most popular model used
for modeling and forecasting city expansion. It has been a popular CA model for studying
land use change, especially urban growth in Ethiopian cities [13,15].

Markov Chain and Cellular Automata modeling are effective ways to monitor and
predict land use change and urban expansion as compared with other models in the
prediction of land use changes [16]. A Markov Chain model is commonly used to quantify
transition probabilities of multiple land cover categories from discrete time steps. These
probabilities are then used with a CA model to predict spatially explicit changes over
time [17].

The Cellular Automata-Markov Chain (CA-MC) model is one of the most commonly
used and effective methods for modeling the spatiotemporal change in LULC [18–20]. It
is capable of simulating multi-directional LULC change analysis and provides ways for
projecting different future scenarios [21,22]; therefore, due to the abovementioned factors,
the CA-Markov model is selected for this study to simulate LULC changes in 2020 and to
predict 2050 in the Matenchose watershed.

Among different models, the Markov Chain and Cellular Automata model is one of
the most effective land use change simulation models, which is known as a bottom-up
approach. As a user-friendly model for future LULC prediction through the identification
of dynamics of complex systems and prediction of the future spatial model by taking into
account both physical and socioeconomic variables under consideration, it fits this study.

In the Ethiopian Rift Valley, alarming trends in LULC change have been observed due
to diverse driving factors, namely increasing population and unwise utilization of natural
resources [21,23].

The spatiotemporal variation in LULC is expected in the future, yet no study has
attempted to simulate the future LULC dynamics and their effect on the Matenchose
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watershed. This study identified a lack of studies focused on predicting future trends of
LULC in the watershed. Moreover, in the Ethiopian context of the Rift Valley Basin, a
limited number of studies tried to model the future trends of LULC changes [24–27].

Evaluating trends of historical LULC changes and predicting future 2050 LULC with
the Cellular Automata- Markov Chain model was useful for the implementation of effective
and efficient sustainable natural resource management practices, spatial land management,
decision making, and policy development [28]. Therefore, this particular study focused on
evaluating the trend of LULC change, assessing and analyzing LULC change dynamics,
and predicting the future fate of LULC.

2. Materials and Methods
2.1. Description of the Matenchose Watershed

In terms of geography, the Matenchose watershed is situated between latitudes 7◦30′

and 7◦46′ north and 38◦2′ and 38◦6′ east, with heights varying from 1872 to 2342 m above
sea level (Figure 1). The research area’s geographic center is 120 km west of Hawassa and
200 km south of Addis Ababa, the country’s capital. In this watershed, 359,413 people reside
based on CSA [29] and population projection of the country [30]. The study watershed
covers an entire area of 9990.42 hectares (ha).

Figure 1. Matenchose watershed map.

Watershed precipitation data were calculated and mapped using the four major sta-
tions (Alaba kulito, Fonko, Hossana, and Wulbereg) in the watershed for which data were
available for the past 32 years. At all sites, the rainfall outline exhibits a bimodal nature
in the months of March to May and June to September. The extended rainy season in the
woreda is the period from June to September, when cropland has been cultivated. The mean
maximum temperature of the study area is 26.9 ◦C in February, while the mean minimum
temperature is 10.2 ◦C in December, obtained from the Ethiopian National Meteorological
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Agency. The average monthly rainfall and temperature distributions of the study area are
shown in Figure 2.

Figure 2. Mean monthly rainfall and temperature of the study area (1988–2020).

The study area has a varied natural topography, ranging from very flat to rugged.
Mountainous landforms exist in the northeastern and southeastern portions of the area.
The lowest elevation is in the southwestern part of the area, in the bottom of the main
Ethiopian Rift in the floodplains of Shashogo Woreda. Rifting, erosion, and deposition
processes gave rise to the region’s physiographic structure [31]. The Matenchose watershed
has topographically suitable agricultural purpose. Flooding is a serial problem in areas
with flat topography. The research site has slopes ranging from very gentle to quite steep,
with gentle slopes predominating. The spatial distribution of the different slope classes in
the study area is shown in Figure 3.

2.2. Soil Type

The Matenchose watershed contains seven major types of soil, according to various
studies that have been conducted so far [32,33], namely: Eutric Fluvisols, Chromic Vertisols,
Orthic Nitisols, Eutric Nitisols, Calcic Xersols, Vitric Andosols, and Leptosols. Orthic
Nitisols and Vitric Andosols were the two most prevalent soil types in the study watershed
(Figure 4). Most of the study area is characterized by pyroclastic rocks, and some other
study areas by basic and ultrabasic rocks, undifferentiated unconsolidated sediments, and
undifferentiated igneous rocks [31].
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Figure 3. The slope class map and DEM of the Matenchose watershed.

Figure 4. Major soil types map of Matenchose Watershed.

Natural vegetation’s geographic distribution is influenced by a variety of variables,
but climate, drainage patterns, and soil types are key ones. The kind and density of
vegetation in Ethiopia are significantly influenced by temperature and rainfall, which are
heavily influenced by altitude [3]. Farmers in the studied watershed grow crops and cash
crops with rainfed agriculture and irrigation. The main crops cultivated in the Matenchose
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watershed are maize, teff, sorghum, wheat, and pepper. The watershed is home to many
different tree species, primarily eucalyptus and cordial Africana Acacia species. These
tree species can be found spread across the study watershed, particularly in the cultivated
environment. The watershed has a high population and a long history of agriculture; thus,
the vegetation cover is very low. As a result, there is a great risk of erosion in locations with
steep slopes.

2.3. Data Sources

Primary data were obtained from field observations (field data collections were con-
ducted randomly to verify the supervised classification of the image and to collect the
required LULC data). Additionally, field data were gathered to corroborate the findings,
and key informant interviews were undertaken to assess the primary causes of LULC
changes in the study area. Most spatial data were generated from DEM and satellite images
using GPS. LULC datasets were generated from Landsat imagery (Table 1).

Table 1. Satellite image used in this study area.

No. Path Row Sensor Acquisition Date Spatial
Resolution (m) Source

1 169 055 TM December/28/1991 30 × 30 USGS
2 169 055 ETM+ December/2/2003 30 × 30 USGS
3 169 055 OLI December/11/2020 30 × 30 USGS

A total of 244 ground-truth points were gathered via direct and field observations
using the global positioning system (GPS) to validate the correctness of the LULC cover
map for 2020. LULC maps from Google Earth were used for 1991 and 2003, and 104
reference points for 1991 and 174 for 2003 were collected for each study year [34]. The data
such as satellite images, DEM from Advanced Space Boerne Thermal Emission Radiometer
(ASTER), meteorological data, soil data, shape files of the watershed, and soil conservation
practice data were collected from the concerned government offices in the study area.
Landsat 4–5 Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+),
and Landsat 8 Operational Land Imager (OLI) satellite images were taken at various
periods in 1991, 2003, and 2020, respectively [28,35]. All three years of images were
obtained and downloaded from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/, accessed on 16 June 2022).

The Ethiopian National Meteorological Agency provided information on temperature
and rainfall, the Global Positioning System (GPS) was used for ground verification, and
digital cameras and Google Earth satellite image 2020 were used for validation, as well as
ASTER 2020 with 30 m × 30 m resolution DEM, shape files, and FAO soil data from the
Ministry of Agriculture and Natural Resources Development. The supervised classification
of satellite images, accuracy assessment of classified images, identification of appropriate
change detection and analysis of LULC changes, and comparison of results with other
results performed for accuracy analysis of each LULC change and future predictions
were performed.

The Landsat images were TM, ETM+, and OLI; the images have a relatively medium
resolution of 30 m × 30 m. In order to detect changes in this watershed using images from
different years, the data acquisition and resolution of the images must be as comparable
as possible. LULC mapping was performed using ArcGIS 10.4. The parametric maximum
probability view was used to categorize each pixel based on recognized ground fact [26,36,37].
Google Earth and field observations were useful to obtain information about LULC during
the study period 1991 to 2020 [23]. Classification systems for digital analysis have been
established as follows: LULC’s definitions are a modification of the classification scheme [38].
Description of classified LULC in the Matenchose watershed was adopted from Bewket and
Teferi [39] and Gelagay and Minale [40]. Verification of identified land use and land cover
types to be checked and validated by ground truthing is shown in Table 2.

https://earthexplorer.usgs.gov/
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Table 2. Description of classified LULC in the Matenchose watershed.

Land Use and Land Cover Class Description

Grassland Grazing lands are those with tiny grasses and other types of
natural plants.

Forestland Area covered by dense and tall trees both natural and
plantations (>2 m height).

Bare land Highly degraded land areas with little to no vegetation
cover, primarily with typical gullies and exposed rocks.

Cultivated land Areas designated for irrigation and rain-fed farming, as well
as fallow fields and farmland with a mix of plants and trees.

Settlement
A small town’s share of an urbanized area, including its
markets, roads, and institutions such as schools, clinics,

courts, and others.

2.4. Land Use/Land Cover Change Detection

To analyze land cover changes in the study area, the area in ha and percent changes
between the 1991–2020, 1991–2003, and 2003–2020 periods were measured for each LULC
type (Figure 5). While the LULC statistics were calculated in various ways, the variation in
LULC in the three periods was determined by the difference in the values of 1991, 2003,
and 2020 of the same category [39,41], which are shown in Equations (1)–(3) below.

Total gain, loss = Area of final year − Area of initial year, (1)

Temporal LULC change = (Areal final year − area initial year)/(area initial year) × 100, (2)

Rate of change(R)(ha/yr) = (Areal final year − area initial year)/(area initial year) × 1/(time interval) × 100 (3)

Figure 5. Methodological flow chart of LULC simulation and prediction of the 1991–2050.

2.5. Assessment of Accuracy

In this study, classification accuracy based on accuracy matrix analysis was evaluated
by taking into account overall accuracy, user’s accuracy, producer’s accuracy, and Kappa
coefficient analysis. While the Kappa coefficient is an indicator of interpreter agreement,
the error matrix expresses user and producer accuracy [42]. Based on the confusion matrix,
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the Kappa coefficient, and overall accuracy, the producer’s and user’s accuracy were
determined. An error matrix is one of the most popular methods for displaying accuracy
evaluation data [43,44]. Accuracy assessment in remote sensing is required, and essential
to offer proof of the accuracy of the classification made [45].

2.6. Prediction of Future LULC

In this study, the extinction of Land Change Model (LCM) and IDRISI GIS analysis
were utilized to predict and model future LULC dynamics in the Matenchose watershed
using the MLP NN with CA-Markov Chain built in the software of terrset18.31. Reviews
of the literature argue a variety of land use modeling, including those that use time- and
space-based simulation models based on different techniques and requests [46,47]. The
conceptualization of land use change modeling can take a variety of forms. These include
Cellular-Automata-based models, models that use statistical analysis for modeling, Markov
Chain models, models that use artificial neural networks, and finally models that use
Agent-Based Modeling [47,48]. In this research study, the Matenchose watershed’s future
LULC was predicted using the CA Markov model, which combines Markov Chains and
Cellular Automata modeling methodologies.

For modeling changes in land usage, combining Markov Chains with Cellular Au-
tomata has many benefits [49,50]. Although shift prospects can be precise on a category-by-
category basis, the Markov Chain model’s intrinsic flow is its inability to provide spatially
referred output. Additionally, the distribution of each land use category’s occurrence in
space is not specified [51].

The cross-tabulation of two different images results in the creation of the transition
probability matrix, which is integrated with Cellular Automata to form the CA-Markov
model [52]. A powerful tool for describing spatial and temporal dynamics is provided by
this integration of the CA-Markov model [52].

In other words, any transition between any numbers of categories may be predicted
and simulated using the CA-Markov Chain. Future changes in land use and land cover
are typically predicted using a dynamic procedural model called CA [53]. Important CA
characteristics include showing the spatial and dynamic process, which accounts for its
widespread application in land use/land cover simulation [27]. In crux, the CA creates a
weighting that is more precise in spatial locations that are close to the prevailing land uses.
This ensures that land use change occurs near existing, comparable land use classifications
as opposed to occurring at random [54].

Several studies have utilized LULC modeling and simulation with CA-Markov [55,56].
The CA-Markov model is recognized as a trustworthy technique due to its quantitative
estimation and the spatial and temporal dynamics it possesses for reproducing LULC
dynamics [47,48]. Additionally, it is simple to include both GIS and RS data into CA-
Markov modeling [55]. The IDRISI Andis environment’s algorithms were utilized to project
the future LULC of the research sector using a CA-Markov model [20].

The CA-Markov model applies to both spatial and temporal changes in LULC and
combines Cellular Automata and the Markov Chain to predict the traits and trends of
LULC change over time [57]. Therefore, in order to comprehend the relationships between
humans and the environment from a long-term perspective, it is imperative to study the
chronological LULCC [58]. CA is a dynamic procedure model that is frequently used in
a spatial model for predicting future land use/land cover change [27,59]. The important
properties of CA models are that they show the spatial and dynamic process, and that is
why they have been broadly used in land use/land cover simulation [27].

The Markov Chain model is often used in LULC monitoring, ecological modeling,
simulation changes, trends of the LULC, and to predict the extent of the land use change
and the stability of future land development in the area of concern [48,57].

Prediction of land use from one period to another is possible using the Markov Chain
model, which is generally used for monitoring, simulating the changes, and predicting
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future land use. A transition probability matrix for land use change was developed using
the Markovian transition estimator from time one to two, as outlined in Equation (4) [60,61].

S(t, t + 1) = Pij × S(t) (4)

where S(t) is the system status at the time of t, S(t + 1) is the system status at the time of
t + 1; Pij is the transition probability matrix in a state, which is calculated as follows [48,61]:

∣∣Pij
∣∣ =

∣∣∣∣∣∣∣∣
P1, 1 P1, 2 . . . P1, n
P2, 1 P2, 2 . . . P2, n
· · · . . . . . . . . .

PN, 1 PN, 2 . . . PN, n

∣∣∣∣∣∣∣∣ (5)

P is the transition probability; Pij represents the probability of converting from the
current state i to another state j in next time; PN is the state’s probability for any time.

The low transition has a probability close to 0, and the high transition has probabilities
close to 1 [20,62,63]. Hence, transition-based models are the integration between a spatial
Markov model with a spatial Cellular Automata model to perform the regression-based
models in predicting the land use change [64].

2.7. Validating the LULC Prediction Model

The Kappa Agreement Index (KAI) approach, a method frequently used to evaluate
LULC change predictions, was used to compare anticipated or simulated LULC maps
reflecting the 2020 LULC with the actual LULC map of 2020. The output of the model was
contrasted with the current or actual land use (composition and configuration) map in
order to look for similarities between the real image and the simulated image [65,66]. For
this, IDRISI Andes’ VALIDATE module was employed.

The use of Kappa indexes for the calculation determines the overall achievement rate,
and it delivers an understanding of the real factors in the strength or weakness of the
results. When 75% ≤ Kappa ≤ 100, the resulting maps are in a high level of agreement [42];
whereas if Kappa ≤ 50, the resulting maps are in poor agreement [67].

Using the CROSSTAB Module in IDRISI, the agreements of the two maps (actual and
simulated 2020) were assessed using the Kappa Index of Agreement (KIA) components such
as Kappa for no information (Kno), Kappa for location (Klocation), and Kappa for standard
(Kstandard) [68]. The following equations express the statistics for the Kappa variations
according to Omar et al. [68] and Equations (6)–(8):

Kno =
(M(m)N(n))
P(p)− N(n)

(6)

Klocation =
(M(m)N(n))
P(p)− N(n),

(7)

Kstandard =
(M(m)N(n))
P(p)− N(n)

(8)

where no information is defined by N(n), medium grid cell-level information by M(m), and
perfect grid cell-level information across the landscape by P(p).

Moreover, the figure of merit (FOM) is also a ratio, with the numerator being the
intersection of the simulated and reference change and the denominator being the union of
the two. The intersection of observed change and simulated change divided by the union of
observed change and simulated change yields the figure of merit. The range of the figure of
merit is 0 (i.e., no overlap between actual and predicted changes) to 100% (i.e., the complete



Land 2022, 11, 1632 10 of 28

overlap between actual and predicted changes) [69,70]. Mathematically, it can be expressed
in Equation (9) as

Figure of merit =
Hits

(Hits + Misses + False Alarms + Wrong Hits)
× 100 (9)

where Misses = area of error due to reference change simulated as persistence; Hits = area
of correct due to reference change simulated as change; Wrong Hits = area of error due to
reference change simulated as a change to the wrong category; False Alarms = area of error
due to reference persistence simulated as change.

2.8. Land Use and Land Cover Change Driving Variables

It is necessary to consider the independent variables’ potential power in LULC change
simulation [71]. River proximity makes it easy for locals to access resources while affecting
the use of the land [26]. One of the key factors in drawing more urban uses and encouraging
urban expansion is distance from the road, which determines accessibility [71,72]. The
most important anthropogenic element influencing land use change is population density:
the greater the density, the more frequently land use changes. The type of land cover is
strongly associated with environmental changes [73].

It is acknowledged that one of the key topographic parameters influencing LULC
alteration is elevation [26], given that the annual pace of agricultural expansion was
significant, it makes logical to develop the evidence likelihood, a quantitative variable
that indicates the likelihood of identifying change between agricultural land and all other
land classes at the relevant pixel [26,74]. The geographical trends of land cover change are
influenced by slope, which leads one to assume that changes in land use are more likely
the gentler the slope of the land.

Distance from roads and distance from streams were set as dynamic variables to
express the varying distance as they change over time. The evidence likelihood measures
the possibility that the LULC categories will change between an earlier and later map
empirically [26]. It is used to convert categorical data into numerical values, such as the
transition between different land cover classes. Utilizing Cramer’s V, which assesses the
strength of the correlation between two variable classes, the significance of variables, was
evaluated. A statistical measure of the intensity of dependence between driver variables,
Cramer’s V value has a value range of 0.0 to 1.0. Generally, variables with a total Cramer’s V
value larger than 0.15 are acceptable and those with a score greater than 0.4 are deliberated
noble [26,59,75].

The possible socioeconomic (population density) and biophysical driving forces (slope,
elevation, and distance) for the change in the LULC were also considered in the simulation
model. These data were gathered from the Central Statistical Agency of Ethiopia. A
household (HH) survey was conducted in three kebeles of Matenchose based on the
landscape position (the upstream, midstream, and downstream parts of the watershed) and
spatial patterns of the LULC. A total of 143 HHs were randomly selected and interviewed.
The questionnaires were envisioned to capture the major drivers of land use and land cover
change perception, socioeconomic status of HHs, and related information.

Focus group discussion (FGD) with Shashogo Woreda natural resource experts, kebele
elders and women, and the kebele administrative chairman, and key informant interviews
(KII) with elders, leaders, and women were conducted in the selected three kebeles for
detailed analyses of LULC change drivers.

3. Results and Discussions
3.1. Land Use and Land Cover Dynamics
3.1.1. Accuracy Assessment

Accuracy evaluations were performed for the designated LULC categories for the years
1991, 2003, and 2020. For the years 1991, 2003, and 2020, respectively, overall classification
accuracy was achieved using the stratified random sample method of 91.5, 95.4, and
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95% with a Kappa coefficient of 0.89, 0.94, and 0.94, respectively (Table 3). The accuracy
assessment results of the study area showed that the bare land, forestland, and cultivated
land were the more accurately classified LULC categories, followed by grassland and
settlement (Table 3). As a result, the estimate of accuracy based on the overall accuracy is
more accurate. The classification accuracy of the study matched the recommendation that
there must be at least 80% accuracy for sensor data [76].

Table 3. Accuracy assessment for 1991, 2003, and 2020 classified images.

Land Use and Land
Cover

1991 2003 2020

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

Cultivated lad 94.4 89.5 94.1 94.9 96.2 95.0
Grassland 95.54 91.3 92.8 96.3 93.5 93.5
Forestland 92.00 95.8 95.6 95.6 94.1 94.1
Bare land 91.70 95.7 94.1 96.9 91.4 95.5
Settlement 82.67 86.4 96.8 93.7 96.2 96.2

Overall accuracy (%) 91.5 95.4 95
Kappa coefficient 0.89 0.94 0.94

3.1.2. Land Use Land Cover Classification

Based on the supervised image sorting method system, LULC in the study watershed
was classified into five types, namely forestland, grassland, cultivated land, bare land, and
settlement area using GIS techniques (Table 4).

Table 4. Land use land cover (LULC) classification of Matenchose watershed 1991, 2003, and 2020.

Land Use
Land Cover Classes

1991 2003 2020

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

Cultivated land 2176.12 22% 3549.92 36% 5209.73 52%
Grassland 3498.76 35% 2914.97 29% 792.26 8%
Forestland 1837.63 18% 415.85 4% 348.92 3%
Bare land 2119.06 21% 2318.36 23% 1986.38 20%

Settlement area 358.84 4% 791.33 8% 1653.11 17%
Total 9990.42 100% 9990.42 100% 9990.42 100%

As shown in Table 4, the largest proportion of land use/land cover in the 1991 Landsat
TM image (Figure 5) was grassland and cultivated land, which occupied 3498.76 ha (35%)
and 2176.12 ha (22%) of the total watershed, respectively. Forestland, settlement, and bare
land LULC types, on the other hand, occupied 1837.63 ha (18%), 358.84 ha (4%), and 2119.06
ha (21%). The study watershed is dominated by grassland and cultivated land. In 1991,
Ethiopia’s land use policy under the Derge government encouraged farmers to maintain
forest resources; however, the study area’s forest resources were negatively impacted, since
they were replaced by resettlement programs.

According to the study, forestland was preserved during the initial study period, but
decreasing patterns in its conversion to agricultural were seen over time. As a result, from
22 percent (2176.122 ha) in 1991 to 36% (3549.918 ha) in 2003 to 52% (5209.734 ha) in 2020,
the share of cultivated land has increased (Figure 6).
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Figure 6. The LULC Map of Matenchose watershed in 1991.

The extent of the settlement increased in line with the trend of the cultivated land, and
in 2020 it covered an area that was roughly 4.6 times larger than it did in 1991 (Table 4).

Similar to Table 4, the findings of the land use and land cover classification from the
2003 Landsat ETM+ imagery (Figure 7) showed that around 4% of the area was forestland,
29% was grassland, 36% was cultivated land, 8% was populated, and 23% was bare land.
These findings demonstrate that cultivated and grassland areas dominated LULC.

Figure 7. The LULC Map of Matenchose watershed in 2003.

Moreover, the results of land use land cover classification from the 2020 Landsat OLI
image (Figure 8) indicated that about 3% was forestland, 8% was grazing land, 52% was
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cultivated land, 17% was settlement, and 20% was bare land. This result showed that
cultivated land was dominant.

Figure 8. The LULC Map of Matenchose watershed in 2020.

3.1.3. Land Use and Land Cover Change Dynamics between 1991–2003, 2003–2020, and
1991–2020

The rate of change is discussed by linking the rate of alteration of each LULC class over
the period measured. The rate of change in each LULC class could provide the information to
make a comparison among the different classes. Hence, the land use and land cover change of
the three periods was analyzed based on the temporal and annual rate of change (Table 5).

Table 5. Temporal and annual rate of change between 1991–2003, 2003–2020, and 1991–2020.

LULC
Class 1991 2003 2020 Temporal (%) Change The Annual Rate of the Change (%)

Area (ha) Area (ha) Area (ha) 2003–1991 2020–2003 2020–1991 2003–1991 2020–2003 2020–1991

Cultivated
land 2176.12 3549.92 5209.73 63 47 139.40 5.25 2.76 4.81

Grassland 3498.76 2914.96 792.26 −17 −73 −77 −1.42 −4.29 −2.66
Forestland 1837.63 415.85 348.92 −77 −16 −81 −6.42 −4.77 −2.79
Bare land 2119.06 2318.36 1986.38 9 −14 −6 0.75 −0.82 −0.21
Settlement 358.84 791.33 1653.11 121 109 361 10.08 6.41 12.45

Total 9990.42 9990.42 9990.42

In 1991, there were 2176.12 ha (22%) of cultivated land; this number raised to 3549.92 ha
(36%) in 2003, and to 5209.73 ha (52%) in 2020. According to this, a 63% temporal increase
was observed over the course of 12 years, from 1991 to 2003, and a 47% temporal increase
was seen from 2003 to 2020. The research area had a temporal growth in cultivated land of
139.40% over the 29-year period from 1991 to 2020. In 1991, grassland covered 3498.76 ha
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(or 35 percent of the total area), which fell to 2914.97 ha (or 29%) in 2003, and to 792.26 ha
(or 8%) in 2020. This showed that between 1991 and 2003, a 12-year period, a 17% temporal
decline was realized, and between 2003 and 2020,−73% temporal reductions were observed.
Moreover, there was a 77% temporal decline of grassland in the watershed over the 29-year
period from 1991 to 2020 (Table 5).

The coverage of settlement area in 1991 was 358.84 (4%), but this was increased to 791.33 ha
(8%) in 2003 and 1653.11 ha (17%) in 2020. This indicated that from 1991 to 2003, within 12 years,
a 121% change was observed. In addition, a 109% temporal increase was observed from 2003 to
2020 within the settlement area in the watershed, whereas in the 29-year interval (1991 to 2020)
there was a 361% temporal increase in the settlement observed in the Matenchose watershed. In
general, there was a decrease in grassland, forestland, and bare land; nevertheless, a progressive
increase in cultivated land and settlement area in the study watershed was observed.

Beyamo [3] confirmed that, from 1973 to 2005, there were 4516.92 ha of cultivated
land in Shashogo Woreda, Southern Ethiopia, but by 2010, there were 20,872 ha. This
showed that cultivated land increased by 362% during the 37-year period in the studied
Shashogo Woreda.

In another study by Mathewos et al. [77] in 1985, shrub and grassland made up the
majority of the land, followed by cultivated land (23.35%) and forestland (9.38%). However,
cultivated land in southern Ethiopia’s Bilate-Alaba sub-watershed significantly increased
in size in 2017 by 15.71%.

In the Gumara watershed of the Lake Tana Basin, northwestern Ethiopia, between 1957
and 2005, it was found that cultivated and settlement land increased by 21.9%, whereas
forestland, shrubland, grassland, and wetland decreased by 85.3, 91.3, 76.1, and 72.54%,
respectively [78]. The annual rate of land use land cover changed between 1991 and
2003; cultivated lands, bare land, and settlement area have each displayed a positive rate
of change.

Forest and agriculture land decreased, whereas home gardens, agroforestry/settlements,
and grassland increased across East Africa [79]; cultivated land and settlement area increased,
whereas forestland and bare land decreased in Jimma Geneti District, Western Ethiopia [80].
While cultivated areas and settlements expanded, woods and grassland decreased in extent
over the observation period [81]; the reverse trend was observed in the Gog District, Gambella
area of southern Ethiopia [82]. While forest and grassland were reduced, cultivated land and
class built-up area rose [24,83].

Getachew and Melesse [84] noted that although forest and rangeland decreased, built-
up and agricultural land rose. While grazing land and Acacia forests decreased, bare land,
cultivated land, and shrubland increased in the central Rift Valley Basin [85]. Sewnet and
Abebe [86] showed the rise in areas covered by agricultural and built-up land and forests;
on the contrary, grassland decreased considerably.

The settlement area displayed the highest positive rate of change (10.08%) and culti-
vated land displayed the second-highest positive rate of change, while the bare land very
slightly showed a positive rate of change (0.75%). On the other hand, grassland (−17%)
and forestland (−77%) both presented a negative rate of change in the study period be-
tween 1991 and 2003. In addition, the annual rate of LULC change between 2003 and 2020
regarding cultivated land and settlement areas each presented a positive rate of change.
Settlement area showed a peak positive rate of change (6.41%) and cultivated land showed
the second highest rate of change (2.76%); on the other hand, grassland (−4.29%), bare land
(−0.82%), and forestland (−2.7%) presented a negative rate of change in the study period.

The results of this study are in line with those of other studies conducted across
the nation. For instance, Zeleke and Hurni [87] in the Dembecha region of northwest
Ethiopia reported that between 1957 and 1995, 99% of the forest cover was converted into
cropland. Similar to this, Kindu et al. [88] reported that nearly 66.2% of woodland has been
converted to agricultural land in the Munessa-Shashemene environment of the Ethiopian
highlands. Several new local-level LULC dynamics research works designated related
trends [24,84,89,90].
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A study in the Baro River Basin in southwest Ethiopia also revealed that between
1984 and 2010, the expansion of cropland and human habitation was the primary factor
in the conversion of forest area to non-forestland [91]. On the other hand, a community
afforestation effort in a degraded hilly section of the watershed led to a 27% increase in
forestland in the Chemoga watershed of the Blue Nile [92], which indicated the worthy
arrangement between the real and simulated LULC maps [24,93].

According to a study by Wondrade et al. [94], there has been a decrease in forest and
grassland and an increase in the built-up, cropland, and bare land areas in the Lake Hawassa
watershed. In the same watershed, the proportion of cultivated land and agroforestry has
increased from 24.2% of the watershed in 1972 to 62% in 2017 [95]. In the Huluka watershed,
between 1973 and 2009, cultivated land and open land increased while forestland and
grassland decreased [96]. Similarly, in the Lake Ziway watershed, cultivation, agroforestry,
and settlement LULC categories increased by 45%, 10.9%, and 141.4%, respectively [97].

3.1.4. Land Use Land Cover Dynamics Matrix

For the LULC change matrix in this study, the LUTM (post-classification) method
was used to detect LULC change from 1991 to 2003 and 2003 to 2020. From the five LULC
classes, cultivated land was the most vulnerable, while the forestland use class was the
least vulnerable to soil erosion (Table 6).

Table 6. LULC change matrices of the Matenchose watershed (1991–2003).

Change to LULC 2003 (ha)

Change from
LULC 1991 (ha)

Bare Land Cultivated Land Forest Land Grassland Settlement Area Total

Bare land 590.69 922.84 8.36 448.69 169.45 2140.03
Cultivated land 463.02 1030.41 9.55 443.74 215.22 2161.94

Forestland 329.29 428.69 283.79 717.85 58.07 1817.69
Grassland 899.15 1134.72 22.85 1318.65 226.83 3602.19

Settlement area 58.67 123.82 5.06 54.21 26.79 268.55
Total 2340.81 3640.48 329.62 2983.14 696.3663

We found that soil is highly eroded, especially when another LULC is converted into
farmland, and this result is harmonized with other findings [98]. The result of the land
use land cover dynamics matrix (1991–2003 and 2003–2020) of the Matenchose watershed
shows that during the indicated period a significant land use land cover change matrix
exists (Table 7).

Table 7. LULC change matrices of the Matenchose watershed (2003–2020).

Change to LULC 2020 (ha)

Bare Land Cultivated
Land Forest Land Grassland Settlement

Area Total

change from
LULC 2003 (ha)

Bare land 467.55 1255.12 9.78 98.81 308.18 2139.43
Cultivated

land 259.09 1485.83 7.89 79.21 329.80 2161.82

Forestland 608.6 679.19 217.04 56.55 256.47 1817.84
Grassland 524.55 1946.28 21.37 460.58 649.94 3602.72

Settlement area 46.01 152.41 5.219 16.47 48.50 268.61
Column total 1905.79 5518.83 261.29 711.62 1592.88

The change detection statistics in Tables 6 and 7 provided a detailed tabulation of variations
between two classification images. Table 6 showed that regarding land use and land cover,
there was a considerable increase in the area of cultivated land (3640.48 ha) during the period
1991–2003 in the Matenchose watershed, even though the specific portion of its extent was
converted to bare land (463.02 ha), to forestland (7.89 ha), grassland (443.74 ha), and to settlement
area (215.22 ha). Shrinkage was evident in the area of grassland by 618.86 ha between 1991
and 2003, while at the same time it gained area from the classes of bare land (899.15 ha),
settlement (226.83 ha), cultivated land (1134.72 ha), and forestland (22.85 ha), although forestland
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(−1488.07 ha) decreased during the period 1991–2003 and bare land showed an increasing trend
by 200.78 ha in the Matenchose watershed.

In the 2003–2020 period, a similar pattern was observed as in 1991–2003. The area of
cultivated land increased by 1878.35 ha, although its area simultaneously was changed to
bare land (259.09 ha), forestland (7.89 ha), grassland (79.21 ha), and settlement (329.80 ha)
(Table 7). As seen in Table 7, the furthermost key providers to the increase in cultivated
land were bare land (1255.12 ha), forestland (679.19 ha), grassland (1946.28 ha), and set-
tlement (152.41 ha). This showed that throughout the same time period, cultivated land
rose with the greatest magnitude, whereas grassland and forestland decreased with the
greatest magnitude.

In terms of settlement, there were 268.55 ha in 1991, but by 2020 it increased to
1592.88 ha. Grazing land (649.94 ha), forestland (256.476 ha), cultivated land (329.80 ha),
and bare land (308.18 ha) were the land uses that contributed to the increase in settlement
in the watershed. According to Tables 6 and 7, cultivation has high pressure on grazing
land and forestland in the study area.

3.2. Land Use and Land Cover Change Driver Variables

The model includes the driver variables that influence changes as either static or
dynamic components based on spatial analysis [26]. The shift in a driver’s influence
served as the foundation for the LULC prediction in the watershed. Both topography and
proximity criteria were chosen in this study to examine the change in LULC. In this study,
all driver variables were employed to model the transitions. The two primary topographic
parameters known to effect LULC change are elevation and slope. The extent to which
forests and rangelands are converted to agricultural land, as well as the distribution of
cities, are all influenced by topography. Pontius and Malanson [49] discovered that when
the slope gradient increases, deforestation reduces.

Other factors that affect land use change include population density, distance from
roads, and distance from streams, all of which make it easier for locals to obtain resources.
Leta et al. [26] have given recommendations stating that all driving variables must be taken
into account, and it has to be checked that a total Cramer’s V value ranges between 0.15
and 1.0 for proper acceptance of the model to predict future land use change.

Based on a change in a driver’s impact, the LULC prediction in the watershed was
made. Both topography and proximity criteria were chosen in this study to examine the
change in LULC. The chosen driver variables were evaluated for their explanatory value
using Cramer’s V before being included in the model (Table 8).

Table 8. Cramer’s V values of LULC driver variables.

LULC
Driving Variables Cramer’s V

Slope 0.1375
Elevation 0.2265

Population density 0.4461
Distance to roads 0.1574

Distance to streams 0.1658

From Table 8, it was observed that the variables such as elevation, population density,
distance from stream, and distance from road are considered as useful variables of transi-
tions [26]. Some variables such as slope have low Cramer’s V values, and it shows that the
effect of slope on LULC change in the Matenchose watershed is not important [99,100]. The
variables with good Cramer’s V values show that they are the most explanatory variables
for LULC change.

Agricultural development, population growth, livestock grazing, and wood extraction
were the most significant socioeconomic drivers of LULC change in the research area,
according to the results of the household interviews (Table 9). Most importantly, agricultural
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expansion and population growth were more experienced as compared to other driving
factors. This is similar to findings in other reports in Ethiopia [24,78,101].

Table 9. The frequency of the major driving forces of LULC changes in the Matenchose watershed
based on local farmers’ perceptions (N = 143).

LULC
Changes Drivers % Rank

Agricultural activities 97.9 1
Population pressure 94.4 2
Livestock pressure 92.3 3
Wood extraction 91.9 4

Rainfall variability 90.9 5
Land tenure 83.9 6

Land degradation 82.5 7
Investment 62.9 8
Settlement 49.0 9

The mean family size in the sub-watershed was 6.68, which is greater than the country
mean (5.4), and nearly half of sampled households (47.55%) had more than 6 members in the
family, which indicated that the population engaged in agriculture increased. Farmers in
the Matenchose watershed who practiced polygamy contributed to raising the population.
This is one of the reasons that rapid population expansion and big family sizes are to blame.

Livestock and crop production are carried out together in mixed farming practices. Par-
ticularly in the Matenchose watershed where sedentary agriculture is practiced, livestock
is crucial for complementing the rural community’s means of subsistence.

According to Shashogo Woreda agriculture office report of 2020 the total number of
livestock in the Matenchose watershed was 147,633 (Table 10), but because of the growing
human population and the scarcity of grazing area, the number of livestock per person
was less than what was necessary to support a sedentary society. A lack of grazing land
(due to population pressure) and a lack of rain prevented the growth of adequate feed
resources [102].

Table 10. Livestock density in Matenchose watershed.

Livestock Quantity TLU * Density/ha LSU/ha

Cattle 36,839 36,838.62 3.69 3.69
Donkey 7130 4634.27 0.46 0.30
Horse 2243 2243.01 0.22 0.22
Mule 176 202.70 0.02 0.02
Sheep 25,904 3885.63 0.39 0.06
Goat 25,452 3817.73 0.38 0.06

Poultry 49,890 249.45 0.02 0.00
Total 147,633 51,871.41 5.19 4.35

* TLU values are given as each cattle = 1, mule = 1.15, horse = 1, donkey = 0.65, sheep = 0.15, goat = 0.15, and
poultry = 0.005 [103].

The total stocking level (4.35 LSU per ha) based on the livestock census shown in
Table 5 was higher than the study area’s carrying capability. The amount of grazing pasture
needed per total livestock unit (TLU) is 1.5 ha [104]. Accordingly, 50,006.32 ha of grazing
pasture would be needed in the study region to accommodate all the livestock units.
Compared to what is currently offered in the Matenchose watershed, this is a five-fold
increase (9990.42 ha).

Therefore, an additional 40,015.90 ha of grazing area is required in the Matenchose wa-
tershed to feed the current cattle population. The population growth may be accompanied
by an increase in animal numbers, which would have a disastrous impact on the watershed
flora and soil conditions. The overgrazing and soil degradation in the rangelands are
made worse by this situation. A similar result was reported by Babiso et al. [105] in the
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Wallecha watershed in southern Ethiopia, where the higher livestock population affected
grazing land.

In 1994 and 2007, Ethiopia conducted three national population and housing surveys,
and the possible projection was made for 2020 [29,106]. The watershed’s population was
161,527 in 1991, 229,309 in 2003, 255,666 in 2007, and 359,413 in 2020. The growth rates
were using exponential growth, with rates of 2.72, 2.62, and 2.50% between 1991–2003,
2003–2007, and 2007–2020, respectively (Table 11; Equation (9)). The population in the
sub-watershed increased from 161,527 to 359,413 between 1991 and 2020, implying that the
population doubled in 29 years.

Table 11. The population size of Matenchose watershed between 1991 and 2020.

Year 1991 2003 2007 2020

Population size (#) 161,527 229,309 255,666 359,413
Growth rate (%) 2.92 2.72 2.62 2.5

The growing rates were designed on the bases of the work of Bielli et al. [30] with the
assumption of exponential growth in Equation (10):

P2 = P1ert (10)

where P1 and P2 = the population totals for two different time periods, t = the estimated
years between the two periods, and r = the mean annual growth rate

This finding is consistent with other studies conducted in various parts of Ethiopia,
which discovered that population growth and agricultural crops were important drivers of
LULC changes [89,92,101,105,107–109].

FGD confirmed that population growth with a land certification program in 2014 in
the study area resulted in further expansion of cultivable land at the expense of forestland,
which was the main driving agent of LULC change. Rapid population growth combined
with the agricultural land expansion were the major dominant drivers of LULC in the
Gambella region [42].

3.3. Simulation of LULC Change Using Markov Chain Analysis (CA-Markov) Model

The projection of land use and land cover (LULC) in 2020 with the aid of CA-Markov
model was made possible by the use of the observed land use and land cover in 1991 and
2003. The simulated land use areas were utilized to associate the real current land use
in the watershed in order to validate the LULC forecast made by the CA-Markov model.
The performance of the model was then assessed using the Kappa index by comparing
the observed and simulated LULC 2020. Accordingly, settlement areas, cultivated land,
grassland, forestland, and bare land have the best agreements (Table 12).

Table 12. Comparison of actual and projected LULC 2020.

LULC Class Simulated Observed
Area (ha) % Area (ha) %

Cultivated land 5410.104 54% 5209.73 52%
Grassland 877.7247 9% 792.264 8%
Forestland 294.4109 3% 348.924 3%
Bare land 1803.91 18% 1986.38 20%

Settlement area 1604.27 16% 1653.11 17%
Total 9990.42 100% 9990.42 100%

For the year 2020, real and simulated LULC were constructed. As a result, the forest
cover was shown to be remarkably similar in both real and simulated maps of the year
2020, while only minor changes were shown for other LULC classes (Figure 9). According
to the area covered by the two maps, all land use/land cover classes have the best range of
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agreement with a rate of variation under 10%. In order to validate the model, a comparison
of the simulated and real LULC maps for 2020 was conducted using the Kappa Index of
Agreement (KIA).

Figure 9. Matenchose Watershed LULC map of 2020, observed (a) and simulated (b).

The actual and expected LULC changes for the 2020 period as well as the validation of
the model or KIA statistics resulted in a reasonable degree of agreement between the actual
and predicted maps for 2020 (Table 13). In a validation process, the agreement between the
two maps (forecast and real) was assessed in terms of the quantity of pixels in each LULC
class and the location of the pixels.

Table 13. Statistical validation of the CA-Markov Chain model.

Statistics Value (%)

Kstandard 75.63
Kno 80.12

Klocation 78.42
Klocation Strata 78.42

The simulated LULC map revealed that cultivated land and grassland coverage areas
are overestimated, while areas covered by forests, bare land, and settlements are under-
estimated. The top and lower limits of Kappa are +1 (when there is absolute agreement)
and −1 (happens when agreement is less likely), and they show how well the actual and
reference maps agree [55]. The IDRISI Selva environment version 17.0’s VALIDATE module
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was used to carry out the accuracy evaluation process. The overall K value (Kno = 0.8012,
Klocations = 0.7842, Klocation Strata = 0.7842, Kstandard = 0.7563) above 0.75 shows satisfactory
level of accuracy. Therefore, the CA-Markov model is strong to simulate the future for
precise forecast of future LULC changes (Table 13).

Nonetheless, the overall KIA showed a high level of agreement, and the criteria varied
from 75% to 100% [42,49,67]. This shows that the real and simulated LULC maps have a
strong agreement [24,110,111]. Therefore, the CA-Markov model is an effective tool and is
reliable to simulate, predict, and analyze different changes in LULC in 2020 and 2050. This
demonstrates a good correlation between the real and simulated LULC maps and supports
other research findings [22,42,112] that suggested the CA-Markov model might be used to
predict LULC changes

Table 14 showed the major FOM components to validate the LULC simulation in the
Matenchose watershed. The figure of merit is 50.5%, which is the size of Hits as a percentage
of the sum of sizes of the four components. Wrong Hits (20.48%) was the second-largest
category, followed by False Alarm (15.08%) and Misses (13.9%). The obtained FOM was
higher than in some previous case studies [69,113,114].

Table 14. The figure of merit (FOM) component LULC prediction.

Component Values Percentage

Hits 0.4936 50.54
Misses 0.1358 13.90

Wrong Hits 0.2000 20.48
False Alarm 0.1473 15.08

3.4. Future LULC Change with CA-Markov for 2050

Using the land use map of the 1991–2020 transition area matrixes and the 2020 transi-
tion potential map, the validation model was put into operation to anticipate the following
30-year land use and cover (2050) based on how well the validation model performed for
2020. As shown in Figure 10 and Table 15, the predicted land use and land cover were
calculated using the CA-Markov model. The acreage of grassland declined from 792.264 ha
in 2020 to 615.6 ha in 2050, while the area of forestland decreased from 348.924 ha to
126.45 ha (Table 15).

Table 15. Comparison between LULC map 2020 and predicted CA-Markov LULC map of 2050.

LULC Class
2020

Classified Area
(ha)

(%)
2050

Predicted Area
(ha)

(%)

Cultivated land 5209.73 52.15 5540.93 55.46
Grassland 792.26 7.93 615.60 6.16
Forestland 348.92 3.49 126.45 1.27
Bare land 1986.39 19.88 1946.33 19.48

Settlement area 1653.11 16.55 1761.11 17.63
Total 9990.42 100 9990.42 100
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Figure 10. The LULC map of Matenchose watershed predicted for in 2050.
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Our results show that from 2020 (52%) to 2050 (55%) and 2020 (17%) to 2050 (18%),
respectively, a steady growth in cultivated land and settlement area will be seen. In contrast,
the percentage of bare land will decline from 2020 (20%) to 2050 (19%), and its area coverage
will fall from 1986.38 ha to 1946.33 ha in 2020 and 2050, respectively. In addition, cultivated
land and settlement rose by 3% and 1%, respectively, compared to LULC 2020–2050, whereas
grassland and forestland declined by 2% and 3%, respectively (Figure 10). It is anticipated that
as population and cultivation grow, grassland and forestland will lose out.

In this study, an increasing trend can be seen in the area of cultivated land that is
anticipated to be covered by 2050, accounting for 55.46% of the total area of the watershed,
followed by the settlement area, which is at 17.63%. On the other hand, a decreasing trend
can be seen for bare land, grassland, and forestland. Ethiopian lands were converted from
forest, grazing, and shrubland to bare land and farmland cover, according to historical
land use and cover change study [115]. The next 30 years are anticipated to continue this
pattern (2050). Thus, the trend has put stress on the forest, which supports grassland and
biodiversity. Because the community’s livelihood depends on a growth in the local human
population, which will expand the settlement area by the year 2020, the conversion of
other land cover types to cultivated land may be necessary. It is generally anticipated that
over the 2020 and 2050 time periods, cultivated land and settlement areas will continue to
increase at the expense of natural vegetation covers if appropriate management measures
are not implemented. In addition, the expansion of cultivated land and built-up areas, as
well as the reduction in forest, shrubland, and grassland, were predicted to continue in
2030 and 2045 [24].

3.5. LULC Change Analysis Using Land Change Model

Using the change analysis tool accessible in the Land Change Model (LCM) in Terrset,
it was possible to examine the land change evaluated by gains and losses experienced by
various classes using LULC maps from 1991, 2003, and 2020, and the projected future LULC
map of 2050. A significant change was observed from the change analysis result in LULC
between 1991 and 2050. In the Matenchose watershed, cultivated land and settlement
areas were increased by 139.4% and 360%, respectively, whereas grassland, bare land, and
forestland declined by 77.36%, 81.01%, and 6.26%, respectively (Figure 11).

Figure 11. The gains, losses and net change of LULC Matenchose Watershed area (1991, 2003, 2020
and 2050).

This could be attributed to the increase in human population, the expansion of agri-
cultural activities, and the cutting down of trees for fuel in the Matenchose watershed.
Additionally, deforestation activities were widespread in the study area and contributed to
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the land use change because of weak land use policy [109]. Few studies have attempted
to predict how LULCCs will develop over the course of Ethiopian river basins, primarily
using CA-Markov Chain models, which allow for the accounting of both physical and
social causes of LULC dynamics [24,27,112,116]. In comparison to other approaches, this
tool is efficient and consistent to model, predict, and analyze various deviations of LULC in
2020 and 2050 in the studied watershed of the main rift (Figure 11). The CA-Markov model
may be used as an effective model in the prediction of LULC changes, as demonstrated by
the same types of agreement and disagreement that were obtained [22].

The 2050 forecast revealed a decrease in grassland and forests, while increasing crop-
land and settlements at the expense of grassland and forests in the predicted period, which
is consistent with earlier findings [18,24,116].

The application of CA-Markov has its limitations; mostly it was the non-accountability
of human influences and government policies that affect the behavior of the farmers and
occupants of the land while modeling a situation. Moreover, the unavailability of high-
resolution imagery of socioeconomic drivers also limits the power of CA-Markov analysis,
because in some cases factors that drove the change in land use in the past are assumed to
remain the same in the future [117].

4. Conclusions

This study has demonstrated the widespread, accelerating, and important process of
changing land use and land cover in the study watershed. Between 1991 and 2020, there
was a sharp decrease in grassland and forest areas, while there was a sharp increase in
cultivated land and settlement area. In comparison to other land use and land cover types,
agricultural land is expanding most rapidly. The predicted 2050 LULC result also showed
that the trend from historical to future land use and land cover change will be expanded to
be ongoing in the future.

The LULC scenario forecast indicated that this LULC would last into 2050; this would
make the Matenchose watershed more susceptible to soil erosion and effects on the water-
shed’s hydrology. Therefore, in order to promote sustainable development, safeguard the
watershed, and lessen the severity of the changes, appropriate physical soil conservation
measures, specifically bunds, depending on the slope of the Matenchose watershed, must be
planned and implemented by watershed communities with the support of watershed experts.

Based on the respondents’ ranking, the main drivers of LULC changes were identified
as agricultural expansion, human population, and fuel wood extraction. Moreover, results
from the focus group discussion (FGD) also confirmed that population growth has resulted
in further expansion of agricultural land as expanses of forestland. Generally, substantial
LULC changes were observed and will most likely continue onward until the specified
future period of this study.

In order to manage land resources sustainably, society must be educated about the best
ways to use natural resources, implement effective soil and water conservation measures,
and reduce pressure from external factors such as population growth. Additional research
is needed to address the specific land management practices, and it is important to identify
any potential impacts of anthropogenic and socioeconomic elements in order to take further
action. Moreover, more research in the area of the impact of LULC changes on climate and
hydrology is proposed. The results obtained from current and future land use and land
cover changes in the Matenchose watershed could be taken as inputs for policymakers to
revise land use policies.

The watershed’s quick and significant LULC changes could have negative environ-
mental effects. The investigation of LULC change revealed a decrease in forest cover as well
as a rapid increase in cultivated land and populated areas. To moderate the impact of land
use land and cover change, there should be appropriate and ecologically sound natural
resource management (NRM) interventions, such as agronomic measures which could be
easily implemented through development agent support and that might be practiced in the
identified research watershed.
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