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Abstract: In New Zealand, over 87% of the population currently resides in cities. Urban trees can face
a myriad of complex challenges including loss of green space, public health issues, and harm to the
existence of urban dwellers and trees, along with domestic greenhouse gas (GHG) and air pollutant
emissions. Despite New Zealand being a biodiversity hotspot in terms of natural environments,
there is a lack of knowledge about native tree species’ regulating service (i.e., tree development and
eco-physiological responses to low air quality, GHG, rising air temperatures, and drought) and how
they grow in built-up environments such as cities. Therefore, we argue for the value of these native
species in terms of ecosystem services and insist that they need to be viewed in relation to how they
will respond to urban abiotic extremes and climate change. We propose to diversify planted forests
for several reasons: (1) to improve awareness of the benefits of diverse planted urban forests; (2) to
foster native tree research in urban environments, finding new keystone species; and (3) to improve
the evidence of urban ecosystem resilience based on New Zealand native trees’ regulating services.
This article aims to re-evaluate our understanding of whether New Zealand’s native trees can deal
with environmental stress conditions similarly to more commonly planted alien species.

Keywords: tree diversity; ecosystem resilience; native tree; urban environment; urbanization

1. Introduction
1.1. Effects of Urbanization on Tree Growth and Development

Urbanization is a worldwide phenomenon and a key driver of environmental degra-
dation and climate change [1,2]. An urban environment can generally be defined as an area
containing an aggregation of infrastructure, buildings, and open spaces that provide for the
urban community’s socio-economic functions [3]. Currently, over half of the global human
population lives in urban and metropolitan areas [4], and this proportion is expected to
increase to 70% by 2050 [5].

Trees in urban areas can suffer from chronic abiotic stresses, such as changes in the
growing season and circadian rhythm due to urban thermal discomfort, disorders caused
by air pollution, and droughts, which are typically enhanced by increasing urbanization [6].
The drastic changes in the urban landscape and environment have negatively affected
urban tree and ecosystem health as many plant species have been moved from their
provenance to cities (i.e., new environment) [7]. For instance, soil moisture, atmospheric
temperature, relative humidity (RH), and vapor pressure deficit (VPD) are often less
favorable for urban trees than for their rural environmental counterparts. This is because
they result in different tree growth rates (i.e., slower or faster), lower density root systems,
and higher leaf temperature, showing different relative tree growth rates until final tree
development [8,9]. Another environmental feature for an urban area is a specific airborne
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chemical composition produced by emissions from traffic, households, and industries,
which results in higher CO2 concentration and more air pollution, raising the atmospheric
temperature through GHG. Hence, urban trees growing in built-up areas are subjected to
a microenvironment characterized by higher pollution and GHG emission levels due to
traffic volume, additional soil drought, and contamination by the input of heavy metals
or high salinity [10], as well as a restricted area for root extension which in turn decreases
water availability (i.e., cover plate of a tree disc, tree pit covers, and road pavement) [11,12].

This article examined case studies currently used for carbon sequestration and air
pollutant removal of urban trees native to New Zealand and compiled currently available
results in New Zealand native trees in cities. However, the currently available results
are related to alien tree studies and a large degree of uncertainty due to the limitation of
applied studies on New Zealand native trees. For a better understanding of New Zealand
native trees for urban ecosystem services, it is proposed that planted forests should be
diversified for several reasons in this paper: (1) to improve awareness of the benefits
of diverse planted urban forests; (2) to foster native tree research in urban environments,
finding new keystone species; and (3) to improve the evidence of urban ecosystem resilience
based on New Zealand native trees’ regulating services. This article aims to re-evaluate
our understanding of whether New Zealand’s native trees can deal with environmental
stress conditions similarly to the more commonly planted alien species. We compiled
146 publications that reported existing data, literature, and opinion on urban forestry and
ecology. This perspective article explored and discussed whether New Zealand native
trees can provide urban ecosystem services and confirmed that the existing literature can
support the advantages of having native trees in cities.

1.2. The Decline of Native Forests after Human Settlement in New Zealand

As shown in Figure 1, the decline of New Zealand’s native forests began with the
arrival of Māori pioneers in AD 1000, who began deforestation for land-use conver-
sion [13–16]. With the arrival and establishment of the first European settlers around
1840, more natural forests were lost as more towns were developed and agricultural activity
increased. By 2000, nationally forest cover in New Zealand had been reduced to only 25% of
its pre-settlement level ([15,17]; see Figure 1A). The decline of native trees has also been
consistent with urban sprawl and the urbanization trend of New Zealand chronologically
by the early 20th century (1920s) ([18]; see Figure 1B). Currently, many introduced species
(approximately 2264 species: 30 mammals, 34 birds, and 2200 plants), including in urban
areas, are reported in New Zealand [19].
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Figure 1. (A) Changes in native tree/forest coverage (green color) over time in New Zealand, 
adapted from Stevens et al. [15] and Nomura et al. [20]; (B) functional urban areas by type, New 
Zealand [21]. 

With agriculture, dairy farming, and township settlement, forestry activities (i.e., es-
tablishing plantation forests, logging, and timber yield) have contributed to the decline of 
native forests [22–24]. As a result of these activities, many native New Zealand tree species 
that were once common are now classified as threatened or protected in both rural and 
urban areas [25,26]. However, New Zealand is currently host to a wide range of alien spe-
cies, defined as species non-native to New Zealand [24–30]. Since the 1990s, alien (non-
native) tree species have had a significantly higher afforestation rates than native species 
in New Zealand [31,32]. Historically, the use of alien tree species, such as Quercus spp. 
and Fraxinus spp., has been preferred in urban green spaces and for garden planning 
[33,34]. The invasion of alien species in New Zealand cities has contributed to a severe 
decline in native clusters (indigenous trees clusters) over time [27–29]. In Hamilton, cur-
rently the fourth largest and second fastest-growing city in New Zealand, the distribution 
of native trees in the city is only 2.1%, which is the lowest among New Zealand’s six main 
cities—namely, Auckland, Wellington, Christchurch, Hamilton, Tauranga, and Dunedin 
[18]. The remnants or patches of native dominated vegetation in each of the cities are very 
small (2.1–8.9% in the urban boundary) [18,19] and most native trees, except for nature 
heritage parks in cities, have been planted through urban restoration projects since the 
1990s [19]. Although the resilience and flexibility of all trees to abiotic stress caused by 

Figure 1. (A) Changes in native tree/forest coverage (green color) over time in New Zealand, adapted
from Stevens et al. [15] and Nomura et al. [20]; (B) functional urban areas by type, New Zealand [21].

With agriculture, dairy farming, and township settlement, forestry activities (i.e., es-
tablishing plantation forests, logging, and timber yield) have contributed to the decline of
native forests [22–24]. As a result of these activities, many native New Zealand tree species
that were once common are now classified as threatened or protected in both rural and ur-
ban areas [25,26]. However, New Zealand is currently host to a wide range of alien species,
defined as species non-native to New Zealand [24–30]. Since the 1990s, alien (non-native)
tree species have had a significantly higher afforestation rates than native species in New
Zealand [31,32]. Historically, the use of alien tree species, such as Quercus spp. and Fraxi-
nus spp., has been preferred in urban green spaces and for garden planning [33,34]. The
invasion of alien species in New Zealand cities has contributed to a severe decline in native
clusters (indigenous trees clusters) over time [27–29]. In Hamilton, currently the fourth
largest and second fastest-growing city in New Zealand, the distribution of native trees in
the city is only 2.1%, which is the lowest among New Zealand’s six main cities—namely,
Auckland, Wellington, Christchurch, Hamilton, Tauranga, and Dunedin [18]. The remnants
or patches of native dominated vegetation in each of the cities are very small (2.1–8.9%
in the urban boundary) [18,19] and most native trees, except for nature heritage parks in
cities, have been planted through urban restoration projects since the 1990s [19]. Although
the resilience and flexibility of all trees to abiotic stress caused by human settlement and
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urbanization require further study, the physiological adaptation of urban trees that are
native to New Zealand has been investigated less (especially in urban settings) than that of
species indigenous to other countries, such as Central Europe [6,35,36], North America [37],
East Asia [38], and Australia [39]. Since the 2000s, urban restoration, including native tree
planting in cities, has continued to grow in New Zealand, but relevant research effort is
required to overcome a lack of interdisciplinary breadth (i.e., environmental science, plant
physiology and biochemistry, forest science, and urban ecology) [19].

2. Urbanization in New Zealand, Its Consequences, and the Role of Tree Diversity
2.1. Urbanization and CO2 Emission Rate Increment in New Zealand

In the case of New Zealand, as much as 87% of the population currently reside in urban
environments and cities [40], and urbanization is increasing especially in the Auckland
region, reaching suburban areas such as Tauranga and Hamilton [41]. Urbanization is a
strong influencer of population growth (including internal and international migration),
building and infrastructure construction, and the spreading of residential areas and frag-
mentation of urban forests [41,42]. Half of New Zealand’s population is expected to live in
the Auckland metropolitan area by 2050, and the country’s population is expected to reach
8 million by 2073 [41]. New Zealand is heading toward the upper end of urbanization,
defined as rapid population growth with new infrastructure, based on Auckland [43]. In
total, 76.5% of New Zealanders reside on the country’s North Island, which has four major
cities: Auckland, Wellington, Hamilton, and Tauranga [44].

Anthropogenic impacts are likely to accelerate abrupt changes in tree growth condi-
tions (i.e., atmospheric temperature, humidity, CO2 concentration, air quality, and drought
extent) in cities. Even though New Zealand has among the highest air quality in the
world [45], the amount of domestic anthropogenic greenhouse gas (GHG) emissions has
increased over time. This increase in GHG emissions (mainly CO2, SF6, and HFCs) is highly
related to urbanization in New Zealand [46,47]. However, since the adoption of the Climate
Change Response (Zero-Carbon) Amendment Act 2019 of New Zealand, it is expected that
New Zealand’s government will focus on the reduction of GHG emissions [46].

The GHG inventory report of New Zealand’s government largely attributed the
increases in GHGs to the energy/transport sectors, determining that these sectors are
responsible for 38.2% of the net increase in CO2 emissions since 1990. In addition, land
use, land-use change, and forestry activities (LULUCF) have not shown a decreased rate
(i.e., carbon sequestration process in plants and soils) against the build-up of atmospheric
CO2 over time (+7203.3 Kt(CO2) increment between 1990 and 2017) ([46]; see Appendix A).
Approximately 20% of New Zealand’s annual energy consumption is from road trans-
portation in urban areas [48], and the emission rate from road transportation steadily
grew during the last two decades with an increased rate of private vehicle ownership [49].
Consequently, 47% of New Zealand’s total domestic CO2 emissions come from the road
transportation sector and these emissions have tripled over the past three decades [50].

2.2. High Private Vehicle Usage and Deterioration Extent in New Zealand

Over time, road transportation and the use of fossil fuel-dependent vehicles have
dramatically increased. They are consistent with the 2020 population growth rate per year
(2.1–2.8%). Although Auckland has 52.4 km of bicycle routes [51], private vehicle usage is
still the most common form of daily transport [41,52]. In Christchurch, the second most
populated city in New Zealand [53], the proportion of CO2 emissions from vehicles has
increased over the last two decades [48]. The use of private vehicles is very dominant in
Christchurch, being used for the daily commute by 84% of commuters, which is similar
to Auckland (85%). However, the proportion of public transportation use in many cities
is still low (2–8%), except for Wellington (21%) ([52]; see Appendix B). This dominance
of private vehicles is likely to affect New Zealand’s urban environment and contribute
to global climate change (GCC), especially as the population growth rate of Christchurch



Land 2022, 11, 92 5 of 18

has been 13.5% for five years since 2013 [52], and therefore, the population is predicted to
continue to rise.

The deterioration of private vehicles is likely to have a profound effect on New
Zealand’s GHG emissions. The average age of New Zealand’s vehicle fleet is estimated
at 14.2 years [54], which is older than that of most OECD countries; the average private
vehicle ages in USA, Canada, and Australia are lower than 12 years [55]. Between 2000 and
2017, the proportion of vehicles over 15 years old in New Zealand increased from 24.5% to
42.3% [55,56], and this trend is likely to continue [55]. In addition, over the last 15 years,
the proportion of 0–4-year-old vehicles remained under 20% [55,56]. Kjellström and Mer-
cado [57] reported that the average age of vehicles is an important indicator of urban
environmental health; old vehicles are likely to be less energy efficient than newer vehicles,
have lower fuel efficiency, and their exhaust fumes have stronger links to GHG emissions
in cities, including CO2, CO, NO, NO2, and particulate matter of less than 10 or 2.5 µm
(PM10 and PM2.5, respectively) [58]. In the case of Auckland, the concentration of multiple
air pollutants (PM2.5, black carbon (BC), and NO2) is highly related to a high density of ve-
hicular traffic, showing 2.5-fold (PM2.5) and 2.9-fold (NO2) higher concentrations in the city
center (central business district) than other suburban areas in Auckland [59]. Consequently,
it might affect human health and tree disservices issues to urban dwellers (87% of New
Zealand population). Therefore, it is important to find proper urban tree species among
various genetic diversity pools for effective GHG mitigation and air pollutant removal in
the changing environment of New Zealand cities.

2.3. The Role of Tree Diversity in Ecosystem Resilience

Ecosystem services are the varied benefits to people provided by the natural environ-
ment and healthy ecosystems [60,61]. Ecosystem resilience can generally be defined as
the ability to absorb disturbance and provide a stable condition for the ecosystem with-
out loss of ecological function or ecosystem service [62]. Therefore, understanding the
role of species diversity of native trees in ecosystem resilience can be vital for strategic
ecosystem management tactics to combat anthropogenic disturbances, because it supports
functional diversity based on species interaction under interwoven abiotic factors [63].
As a sufficient level of species diversity affects the maintenance of resilience-based man-
agement [64], native species can constitute an important proportion of resilience. Species
richness is empirical evidence of plant biodiversity [65] and can contribute to effective
ecosystem resilience [66]. Species diversity can improve ecosystem stability and act as
an environmental buffer [66]. Moreover, increased diversity of trees in an ecosystem can
mitigate the disturbance of carbon cycling through trees’ species-specific eco-physiological
functions and different spreading extent of root systems [67]. Thus, understanding tree
diversity is important for climate change regulations [63]. One example of the vital role of
native species in imparting resilience is that they attract more pollinator species than alien
species [68]. The flowering and fruit production of trees are significantly increased when
the monotonous alien proportion decreases [68]. In addition, native trees provide diverse
faunal biodiversity habitats [69–71].

Tree species diversity in cities can provide a characterized tree population for improved
species structure, function, and value [72]. However, native trees tend to be underutilized
in cities [73,74]. Relying excessively on a small number of species threatens urban forest
resilience and reduces ecosystem services [75]. Urban tree species are generally removed
and/or replanted once they are regarded as having disservice and/or no use in urban forest
management [2,76]. Complex interactions between biotic and abiotic factors can affect
species imbalances and/or deletions in resilience [77]. Hence, it is important to conduct
strategic management of urban ecosystems and vegetation to create a sustainable urban
forest that is resilient to environmental disturbances (e.g., fragmentation and imbalances
caused by invasive species) [78].

During the last five years, in the Auckland area, there was a net increase of 226 ha
in tree canopy cover in built-up areas, 46 ha in urban parkland/open space, and 4 ha
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in transport infrastructure. However, owing to limited information on the effectiveness
of native trees in urban ecosystems and environmental services in New Zealand, there
remains an imbalance between alien and native species in this new tree canopy cover,
possibly hindering the long-term environmental, cultural, and socioeconomic impacts on
urban areas [71].

Planting alien trees in cities can be suitable for environmental regulating, different cul-
tural or heritage purposes, and ecosystem services in some cases, especially for deciduous
trees required to enlarge the canopy, or to establish community orchards [65]. Previous
studies have noted that alien species on diversity can foster soil nutrients by increasing
nitrogen cycling and the composition of soil microbial communities [79]. However, alien
species can affect local native plant communities and diversity by minimizing species
richness [80] and by affecting pollinators and soil carbon-degrading enzymes of native
species [81,82]. In addition, native trees might provide better ecosystem services (with bene-
ficial environmental regulating services) than alien trees in cities. Rahman et al. [2] reported
that Central European native tree species planted in cities showed better regulating services
(i.e., cooling effect) with 2.8 ◦C air temperature reduction (∆AT) and higher transpiration
rate than that of alien tree species in a case study of an urban area in Munich, Germany.
Many urban trees (alien and native) have differing wood anatomies that highly affect trees’
strategies under urban environmental stress such as drought and urban heat island (UHI).
Moser-Reischl et al. [83] reported that diffuse-porous and anisohydric trees have a higher
cooling effect with high canopy-scale transportation rates amid thermal discomforts in
cities, whereas ring-porous and isohydric trees provide higher water potential with high
survival rate (low maintenance) by affecting urban hydrology over time. Sonti et al. [37]
reported that North American native trees planted in cities showed higher or equivalent
stress tolerances with alien trees (i.e., increased air temperature stress, air pollution, and
drought) by showing higher chlorophyll fluorescence parameters (e.g., Fv/Fm) than those
of alien trees in cities (case studies of New York, NY; Philadelphia, PA; Baltimore, MD).
Therefore, it is likely important to find native trees’ characteristics (e.g., benefits on reg-
ulating services) [37,83], control the number of alien species, and reject uniformity [68].
According to previous studies, however, species diversity showed positive or negative im-
pacts on ecosystem resilience to environmental stresses in many case studies. For instance,
Mulder et al. [84] and Steiner et al. [85] reported that diversity enhances plant communi-
ties with species interactions by reducing drought impact. However, Wardle et al. [86],
Griffiths et al. [87], and Caldeira et al. [88] reported that species diversity did not affect
ecosystem resilience, resistance, or mitigating effects on drought. Hence, further studies
of the impact of tree diversity on ecosystem resilience to abiotic stressors in urban areas
are required.

3. Lower Proportion of Native Trees That Live in New Zealand’s Cities

In this article, we define urban forest as a collection of trees that grow in a city and/or
town that encompasses green space in a developed (built-up) area, yards and corridors,
and park/roadside trees [89]. New Zealand’s urban forests are dominated by alien tree
species [90]. There are no well-documented reports on whether trees native to New Zealand
have prominent ecosystem functions and increase resilience to abiotic stressors in the city.
Because of their well-known benefits (environmental regulating services, e.g., carbon
storage and air pollutant removal) [91], alien trees are often planted in urban forests
and streets, leading to an imbalance in the ratio between alien and native tree species
particularly in Auckland [92] and Christchurch [34]. Despite Christchurch being named
the “garden city” of New Zealand (due to an urban botanic garden area and the number
of urban parks), native species vegetation, clusters, and forests have become increasingly
fragmented and insignificant in size [24,34], with the trend being toward small numbers of
alien species, leading to a small genetic pool of native trees [34,90]. There are several reasons
for the unequal distribution of tree cover across the region in New Zealand cities, such
as land ownership (public/private greenspace), land use (urban/industrial/agricultural),
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geography, and natural heritage for legal protection. For instance, except for natural
heritage sites in urban areas and some public/private green spaces, mostly alien species
have planted and grown with higher coverages in the cities [90]. Historically, the types
of tree planting and development, street trees, and urban vegetation are influenced by
municipal urban planning manuals, funding resources, available space, urban dwellers’
species preferences, practitioners’ preferences based on alien species well known for their
environmental regulating services and physiological functions for tree planting rather
than genetic diversity, cultural services, and provenance [2,92–94]. Consequently, alien
tree species (mainly Betula pendula, Fraxinus ornus, Quercus palustris, Prunus yedoensis,
Liquidambar styraciflua, and Quercus robur) have become more dominant than native trees
(mainly Plagianthus regius, Sophora tetraptera, Cordyline australis, and Sophora microphylla) in
parklands and on streets in Christchurch [34,95]. Previous case studies of other countries’
cities reported that increasing tree diversity and enlarging green spaces through planting
native trees may increase physiological resistance to environmental stressors (regulating
service), including those caused by urbanization [91,93] with the fulfillment of cultural
services (i.e., cultural identity (e.g., Māori culture, local history) and aesthetic inspiration
in New Zealand cities). This means that high genetic diversity with native trees might
improve ecosystem resilience to miscellaneous abiotic extremes in cities. Native species
can, therefore, constitute an important proportion of resilience [94].

Native trees in cities are generally planted in private greenspaces, where they have
moderate to high canopy cover rates but offer a low level of protection to biotic/abiotic
stressors and management [94]. Many native tree species are statistically highly distributed
across housing estates with a high New Zealand Social Deprivation Index (NZDep) [92].
Huang [92] reported that alien street trees were higher in species richness (75.76% of total
species) and abundance (68.51% of total individuals) than native trees in many urban
forests and street trees in Auckland. A previous study in Christchurch also found that
84.1% of street trees were alien species, and found a similar array of alien street tree species
in Auckland (i.e., Acer spp., Betula spp., Quercus spp., Prunus spp., Ulmus spp., and Fraxinus
spp.) Recent data also show that tree cover canopy of all the land in Christchurch is
15.59%, and alien street trees are more dominant than native tree species in Christchurch
([33,34,96,97]; see Table 1).

Table 1. List of the main street trees of Christchurch and planting status in 2020 [33,34,96–98].

Species Common Name Provenance Species Abundance ††

Betula pendula Silver birch Europe 4642

Fraxinus ornus Manna ash southern Europe,
southwestern Asia 4384

Quercus palustris Swamp Spanish oak United States 4241

Plagianthus regius † Lowland ribbonwood New Zealand 3340

Prunus yedoensis Yoshino Cherry Japan 2722

Liquidambar styraciflua Sweetgum North America, Asia 2594

Sophora tetraptera † Large-leaved Kōwhai New Zealand 2472

Cordyline australis † New Zealand cabbage tree New Zealand 2411

Sophora microphylla † Kōwhai New Zealand 2291

Quercus robur English oak Britain 2242

Sum of main trees 31,339

Others (mixed with small numbers of numerous alien species) 81,547

Total (total abundance of street trees) 112,886
† native tree species; †† number of trees.
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4. Current Roles and Further Research Direction for Urban Ecosystem Services
Provided by New Zealand Native Trees
4.1. Definition of Ecosystem Service in New Zealand

Urban forests have a history of providing ecosystem services (i.e., cultural, provision-
ing, supporting, and regulating services) and increasing resilience to abiotic stresses in
cities and can help to mitigate GHG emissions and GCC caused by urbanization, road
transport, and prolonged exhaust exposure [89,99,100]. The planting and management of
trees in urban forests offer effective ecosystem services [101] (e.g., pleasing esthetic val-
ues [102], shade/shelter functions against thermal disservices [2], and cooling effects [6]).
New Zealand focuses on six major ecosystem services (benefits) for forestry: (1) carbon stor-
age, (2) soil erosion control, (3) biodiversity for threatened species, (4) water purification,
(5) provision of agroforestry/understory crops, and (6) recreation [103]. However, there are
certain ecosystem services that are more likely to affect urban dwellers in New Zealand’s
cities, that present many opportunities to support ecosystem services in urban areas, which
is not possible in rural landscapes [60]. Meurk et al. [61] reported that ecosystem services in
New Zealand’s urban areas can be classified as (1) provisioning services, (2) environmental
regulating services, and (3) cultural services. They noted that regulating services have
more direct benefits for human health, well-being, and environmental rehabilitation for
urban dwellers.

For urban ecosystem services, such as the conversion of land use and biodiversity
conservation, tree species selection can substantially contribute to developing biosphere
reserves. Urban forests have a wide spectrum of environmental ecosystem services, such
as air, water, soil, and climate regulation, as well as ecological habitat quality through the
function of various tree species and their assemblage [104]. Trees are crucial for carbon
reduction and GHG elimination in cities as part of New Zealand’s Zero-Carbon Act (Climate
Change Response Act) in the post-Paris Agreement era [46,105]. Under Article 7 of the Rio
Earth Summit ratified in 1992, New Zealand is required to submit an annual inventory
of GHG emissions to the UNFCCC [106]. With these regulating services, planting native
trees in cities can also contribute to diversity conservation and educating society about
native species (e.g., cultural and supporting services). Clarkson [107] reported that native
tree species such as Cordyline, Sophora, and Carex can be important for the restoration of
native vegetation in New Zealand’s urban areas. However, there is less understanding of
native trees in New Zealand’s cities than in cities of other countries [108], as there is less
preference for native trees [70,109,110]. Therefore, developing an understanding of native
trees for suitable species selection and utilization is likely to contribute to improved urban
ecology and urban ecosystem services provision.

4.2. Urban Trees’ General Environmental Regulating Service: Carbon Sequestration

Proper tree species selection and management contribute to carbon storage and act
as urban ecosystem services. Various perspectives and approaches to species selection
for urban ecosystem services have been proposed to reduce GHG emissions in many
cities [99]. For instance, in an urban forestry context, “carbon-neutral carbon commonly
involves measuring carbon emissions through emission reduction actions and carbon
offsets” [111]. Moreover, urban forests can contribute to carbon neutrality and sequestration
through urban tree management with updated tree inventories [72]. In addition, carbon
management and urban ecosystem service functions are strongly influenced by the level of
urbanization, knowledge of carbon sequestration management, and education levels, such
as management skills and environmental awareness, and familiarity with the ecosystem
services and carbon storage functions of urban trees [100]. For example, Akbari et al. [112]
reported that atmospheric temperature reduction by vegetation in cities has an equivalent
effect of 7 kg of total CO2 emission reduction. Urban areas can contribute to long-term
carbon storage for carbon emission mitigation through absorbing CO2 with urban trees and
forest resources through alternative methods such as chemical carbon substitution [2,43,113].
Forests are non-artificial terrestrial carbon sinks that account for approximately 45% of
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global land surface [114,115]. Moreover, forests account for 80% of the global above ground
and 40% of the global below-ground carbon storage in terrestrial ecosystems [116]. During
the last two decades, the carbon sink in temperate forests increased by more than 10%.
However, the carbon sink of tropical forests decreased and that of boreal forests showed
insignificant changes [114]. The decrease in tropical forests was driven by decreases in
tree size, shifts in tree species distribution, and elevated tree respiration rates under high
temperatures due to GCC [117,118]. Conversely, in boreal forests, the significant change
was due to vulnerability to GCC and the very low nutrient-absorption ability of trees [119].
New Zealand belongs to the temperate region, except for some subtropical parts of North
Island [120]. Therefore, focusing on the role of temperate forest trees and urban forests in
GHG mitigation is important for New Zealand.

The importance of forest conservation in global efforts to fight climate change was
recognized by Article 5 of the Paris Agreement, on Forests, which endorsed the role forests
play in mitigating GHG emissions [115]. Unlike natural forest (non-urban forest), urban
forests generally include green space/infrastructure and roadside trees located within or
close to cities, namely population centers of building aggregation, such as commercial,
residential, and industrial areas [89,121,122]. Therefore, scientists are debating how to use
native trees as “green infrastructure for climate change adaptation” and for mitigation in an
urban forestry context [69,107] to try to ameliorate environmental problems that threaten
ecosystems and human health [107,123]. There are also discussions about the role of urban
forests in ecosystem services for urban dwellers in the post-COVID-19 era [124]. Social
restrictions and changes in lifestyle paradigms may fundamentally alter the relationship
between urban dwellers and urban green spaces [125]. Hence, it is crucial to study and
determine the roles of native trees in tackling current challenges such as climate change,
water scarcity, after-effects of COVID-19, and plant biodiversity loss [109,123]. Each tree
species has different climate change-adaptation strategies and responds with different
mechanisms and/or resistances to these changes [126,127].

4.3. Unexploited Potential of Native Trees’ Regulating Service in New Zealand’s Cities

Past studies have demonstrated that trees native to New Zealand (see Appendix C for
pictures of a sample of common native trees) are valuable for urban ecosystem services. By
adopting selective native tree planting, afforestation in built-up environments might have
similar effects as those of natural native forests on carbon storage potential and absorption
rates in New Zealand [128–130].

Huang [92] reported that the mean diameter growth rate of abundant street trees
managed by the city council in Auckland was 13.54 ± 1.04 mm y−1. Even though
the average growth rate of native trees (9.59 ± 4.76 mm y−1) is slower than alien trees
(13.15 ± 7.08 mm y−1) in urban areas, several scientists have suggested that Auckland’s
urban forests/street trees composed of native trees have equivalent or better climate change
mitigation potential than alien trees and can support enhanced provision of ecosystem ser-
vices through eco-assessment and carbon sequestration [131–133]. By studying the carbon
sequestration potential of native trees, Carswell et al. [134] found that the sequestration rate
of Kānuka (Kunzea ericoides) was approximately 2.3 MgC ha−1 y−1 (slower sequestration
rate than average of alien trees through comparison study). In addition, Schwendenmann
and Mitchell [133] reported that the carbon sequestration values of native trees ranged
from 69.8 to 290.9 kgC, with carbon concentration values of 44.9–49.6%. This is based
on a case study of native tree species widely planted in Auckland for urban revegeta-
tion and restoration project fulfilment: Kānuka, Karaka (New Zealand laurel; Corynocar-
pus laevigatus), Lemonwood (Tarata; Pittosporum eugenioides), and Kōhūhū (Pittosporum
tenuifolium). Compared with the sequestration rate of New Zealand’s common alien tree
Pinus radiata (8 MgC ha−1 y−1) and the common trees of U.S. cities (2.8 MgC ha−1 y−1)
(Nowak et al., 2013, as cited in [133]), the average value of these four native trees in urban
areas (2.1 MgC ha−1 y−1) was significantly lower (Maclaren 2000, as cited in [133]). Never-
theless, Carswell et al. [134] stated that native trees have significant potential to mitigate
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GHG emissions, providing that they have success in long-term woody succession. They
reported that Kānuka and red beech (Nothofagus fusca) showed notable carbon storage
potential after 50 years of succession with values of 148 ± 13 MgC ha−1 50 years−1 and
145 ± 19 MgC ha−1 50 years−1 with biodiversity fulfilment, respectively.

Marden et al. [130] reported that the eight most distributed native trees in New
Zealand are conifers—Matai (Prumnopitys taxifolia), Kauri (Agathis australis), Miro (Prumno-
pitys ferruginea), Totara (Podocarpus totara), Kahikatea (Dacrycarpus dacrydioides), and Rimu
(Dacrydium cupressinum)—and broadleaved species: Tı̄toki (Alectryon excelsus) and Puriri
(Vitex lucens). Native conifers collectively contribute 90% of New Zealand’s total live-plant
carbon by volume, with the softwoods Rimu, Totara, Miro, and Kahikatea being the most
abundant species (Peltzer and Payton, 2006, as cited in [130]). Among them, only Tı̄toki
and Totara trees are relatively dominant in proportion to the Auckland urban area [131].
However, the potential for carbon storage and sequestration of large native trees is scarcely
reported in urban areas.

Nı̄kau (Rhopalostylis sapida) and Pōhutukawa (Metrosideros excelsa) are the most com-
mon native tree species in New Zealand cities. In particular, Pōhutukawa is the most
numerous street tree in the Wellington urban area, and it has the highest air pollutant (PM10
and O3) removal efficiency (75 g (PM10) tree−1 y−1, 61 g (O3) tree−1 y−1) in the Auckland
urban area [132]. Dale [131] investigated the carbon sequestration potential of seven native
species (Nı̄kau, Pōhutukawa, Northern rata, Pōhutukawa × Northern rata hybrid, Taraire,
Puriri, and Karaka) in the Wynyard Quarter area, Auckland, and estimated the total tree
carbon storage potential for the sample street trees to be 1.5 MgC y−1, which is equivalent
to the carbon emissions from driving 30,000 km in a private vehicle (57 tree samples of
7 native species). Dale [131] also reported that Pōhutukawa trees had the highest average
storage potential (0.099–0.11 MgC tree−1 y−1) due to higher wood density and tree maturity.
In addition, in a case study of the Wynyard Quarter area, Findlay [132] determined Nı̄kau
and Pōhutukawa as having the highest carbon removal efficiencies with higher canopy
values and biomass. These findings can have significant implications for the debate over
diversity needs and ecosystem services along with environmental acclimation through the
provenance of trees in cities, but more information is still required (i.e., carbon storage,
physiological responses, and long-term assessment) for various types of native tree species
in urban settings.

4.4. Further Research Direction of Urban Ecosystem Services in New Zealand

Most studies on tree responses in urban areas to GCC have focused on species alien
to New Zealand, and there is a lack of knowledge regarding how native urban trees will
respond to the changing climate in New Zealand’s cities. The annual precipitation in
New Zealand is predicted to be strongly affected by changing patterns of evaporation,
which are influenced by higher surface temperatures [135]. Moreover, intensification of
the El Niño cycle is likely to enhance the regularity, severity, and duration of droughts in
New Zealand [136,137]. Indeed, recent New Zealand climate change projections indicate
that droughts are likely to increase in both intensity and duration in many cities on the
North Island [138]. Currently, drought in New Zealand is not a serious issue, despite a
drought occurring in Huapai, Auckland during the summer season of 2013. During this
drought, the soil volumetric moisture content was recorded in the range of 29–51% at 10 cm
depth, compared with 43–60% in 2012 [139]. The threat of drought leading to urban water
shortages has been raised as a severe issue on the Kapiti Coast and in Wellington. This is
because climate change can lower the water level and yield of the Waikanae River, leading
to water shortage in surrounding urban areas that rely on the river for water [140,141].
More frequent drought events are therefore likely to lead to water shortages from the
river to the built-up environment in the Kapiti Coast/Wellington and Wairarapa regions.
In the Auckland and Northland regions, the frequency and intensity of El Niño events
are associated with periods of drought [138]. Changes in the physiological responses and
carbon and nitrogen budgets of New Zealand native trees in response to climatic conditions,
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such as drought, higher temperatures, and elevated CO2, especially in urban environments,
have seldom been explored in New Zealand [95]. There is also very little information
available on fluxes of nutrients (e.g., carbon allocation) in New Zealand’s native trees [139].
Consequently, there is a poor understanding of native tree growth and responses in New
Zealand, as most research and management in New Zealand urban forestry has focused on
alien tree species [95,107].

Species diversity contributes to a better provision of urban ecosystem services [142].
It affects ecosystem resilience in terms of urban forest protection from pests and plant
diseases, climate change, warmer (higher) temperatures, and abiotic extremes [142,143].
Therefore, tree diversity is an important buffer against catastrophic tree loss in managed
forests, including urban forests [144]. Generally, monocultures are more vulnerable to
biotic and/or abiotic stressors [75,144]. Urban forests with low tree diversity and biotic
homogenization may be vulnerable to ecological disturbances and are at greater risk from
local/regional climate changes [145]. Therefore, it is necessary to confirm whether these
findings are consistent with the large body of evidence that shows that most urban trees
grow better with a diverse mixture of species rather than in a monoculture or with less
diversity.

5. Conclusions

Urban trees grow under extreme/harsh/difficult and complex conditions. There has
been continuous debate and controversy regarding whether native trees are resilient to
urban abiotic stresses and should be planted in cities instead of alien trees [70,107,109,110].
In the case study that explored the carbon sequestration potential of native trees growing in
an Auckland urban park, the potential sequestration of native trees was estimated to be in
the range of 69.8–290.9 kgC, with a carbon concentration of 44.9–49.6%. Even if these carbon
sequestration rates are lower than those of alien trees such as Pinus radiata, New Zealand
native trees may have significant potential in mitigating GHGs if they are competitive in
long-term woody succession.

The stress resistance of native tree species in New Zealand cities to GCC and air
pollution has received less attention [47,95,108]. This is due to the relatively short history of
anthropogenic environmental changes in the growth of trees in urban settings. Therefore,
further investigations are needed on the growth and physiological changes in response to
future GCC projections, including high temperatures, elevated O3, PM2.5, and CO2 levels,
and increased drought severity. Previous studies have considered the effects of individual
components of GCC on tree species. However, few studies have assessed the interactive
effects of stress factors, such as higher temperatures, drought stress, and elevated CO2 [146].
Therefore, these must be assessed together more in future studies. In particular, intensive
tree physiological studies during drought and the combined effects of more than two factors
on species tolerance to GCC will aid in proper tree species selection and environmental
policy in New Zealand’s cities. Research on the adaptability to urban abiotic extreme
conditions would improve the current poor understanding of native trees’ responses in the
urban areas of New Zealand. Therefore, it is necessary to pay attention to the role of native
trees in cities to develop novel ideas that can positively affect New Zealand’s climate policy
in the post-Paris Agreement era.
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Appendix A

Table A1. New Zealand’s CO2 emissions by sector between 1990 and 2017.

Sectors
Kt (CO2)-Equivalent Change from 1990

(Kt (CO2)-Equivalent) Change from 1990 (%)
1990 2017

Energy and road transport 23,785.7 32,876.6 +9090.9 +38.2

Industrial processes and
product use 3579.9 4968.6 +1388.7 +38.8

Agriculture 34,257.2 38,880.7 +4623.5 +13.5

Waste 4041.9 4124.7 +82.9 +2.1

Gross (excluding
LULUCF †) 65,668.3 80,853.5 +15,185.2 +23.1

LULUCF −31,161.8 −23,958.4 +7203.3 +23.1

Net (including LULUCF) 34,506.5 56,895.0 +22,388.5 +64.9

Source: MfE [46]. † LULUCF refers to land use, land-use change, and forestry sector under the United Nations
Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol.

Appendix B

Table A2. Comparison of the ‘means of transportation for daily commute’ among New Zealand’s six
biggest cities [43,44,52].

Private Vehicle Fleet Usage
Region 2020 Population Growth Rate (%)

City (Population in 2020) Percentage (%) Rank

Tauranga (136,700) 91 1 Bay of Plenty 2.8

Hamilton (160,900) 87 2 Northland 2.6

Auckland (1,571,700) 85 3 Waikato 2.3

Christchurch (369,000) 84 4 Auckland 2.2

Dunedin (126,300) 82 5 Canterbury † 2.2

Wellington (202,700) †† 54 6 National wide 2.1

Bus/Train Usage Walk

City Percentage (%) Rank City Percentage (%) Rank

Wellington 21 1 Wellington 21 1

Auckland 8 2 Dunedin 12 2

Christchurch 4 3 Hamilton 7 3

Hamilton 3 4 Christchurch 5 4

Dunedin 3 5 Auckland 5 5

Tauranga 2 6 Tauranga 4 6
† Selwyn’s growth rate is 5.2%, which means the largest net internal migration, followed by Tauranga city and
Waikato. †† This value has excluded the population of Upper Hutt and Lower Hutt.

https://www.stats.govt.nz/information-releases/national-population-estimates-at-31-march-2020-infoshare-tables
https://www.stats.govt.nz/information-releases/national-population-estimates-at-31-march-2020-infoshare-tables
https://environment.govt.nz/acts-and-regulations/acts/climate-change-response-amendment-act-2019/
https://environment.govt.nz/acts-and-regulations/acts/climate-change-response-amendment-act-2019/
https://www.stats.govt.nz/information-releases/2018-census-population-and-dwelling-counts
https://www.stats.govt.nz/information-releases/2018-census-population-and-dwelling-counts
https://www.nzpcn.org.nz/flora/species/
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(E) Karaka (F) Pōhutukawa (G) Puriri (Retrieved from New Zealand Plant Conservation Network 
(NZPCN), 2021). Image credit by Mike Wilcox (Kānuka), John Barkla (Kōhūhū), Peter J. de Lange 
(Lemonwood), Colin C. Ogle (Nīkau), Simon Walls (Karaka), Gillian M. Crowcroft (Pōhutukawa), 
and John E. Braggins (Puriri), CC BY 4.0 [147]. 
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