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Abstract: Mountain farming sustains human well-being by providing various ecosystem services (ES).
In the last decades, socio-economic developments have led to worldwide changes in land-use/cover
(LULC), but the related effects on ES have not been fully explored. This study aimed at assessing
the impacts of the transformation of agricultural land on ES in the European Alps. We mapped
19 ES within the agriculturally used areas in the year 2000 and analyzed LULC changes by 2018.
We compared eight regions with a similar development, regarding social–ecological characteristics,
to outline contrasting trends. Our results indicate that the ES decreased most strongly in regions
with a massive abandonment of mountain grassland, while ES in the ‘traditional agricultural region’
remained the most stable. In regions with an intensification of agriculture, together with urban
sprawl, ES had the lowest values. Across all regions, a shift from ES that are typically associated
with mountain farming towards forest-related ES occurred, due to forest regrowth. By relating
differing trends in ES to social–ecological developments, we can discuss our findings regarding new
landscapes and farming systems across the European Alps. Our quantitative and spatially explicit
findings provide a valuable basis for policy development, from the regional to the international/EU
level, and for adopting sustainable management strategies.

Keywords: social–ecological system; mountain region; spatial analysis; land-use change; farming

1. Introduction

The IPBES (Intergovernmental Platform on Biodiversity and Ecosystem Services) con-
ceptual framework names three interactions between human societies and the non-human
world: nature, nature’s benefits to humans, and a good quality of life. To value NCPs
(nature’s contributions to people; defined here as any positive contribution or benefit, and
occasionally negative contributions, losses, or degradations, that humans receive from
nature), the concept of ecosystem services (ES) is often used. Since, NCPs are consistent
with the original use of the term ES in the Millennium Ecosystem Assessment [1], we define
ES as the contributions ecosystems make to human well-being, including the goods and
benefits that people subsequently derive from them. The IPBES further reinforces the need
for initiatives at the science–society interface, aiming at sustainable futures in the light of
global change [2]. Our study applies the ES concept to value the transformation of land-
scapes in this context, contributing to a possible sustainable adaptation of land-use/cover
changes (LULC). Here, we focus on agricultural landscapes, as they are particularly affected
by global change, with wide-ranging consequences for society [3–5]. Agricultural ecosys-
tems contribute to a variety of ES, such as food and fodder provision, soil conservation,
erosion protection, climate regulation, habitat provision, aesthetics, and recreation [6–8]. In
particular, organic or traditional farming systems provide high levels of multiple ES, while
conventional farming systems are focused on food production [9–13]. In mountain regions,
small-scale farming systems and sustainable management practices have been developed
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over centuries to cope with the challenging topographic and climatic conditions [14]. This
has shaped appealing mountain landscapes, which are rich in biodiversity and provide
many ES to local people, tourists, and adjacent lowland populations [15–24]. However,
institutional and political drivers, socio-economic shifts, urbanization, and technical devel-
opments have reduced the competitiveness of these marginal areas and induced a massive
abandonment of alpine pastures and meadows in European mountain regions during
the last century [25–32]. At the same time, less steep areas in the valley bottoms with a
favorable climate and easy access have been intensified, often managed by larger and more
specialized farms [33,34]. Such changes have led to still ongoing transformations in agri-
cultural landscapes, with implications for biodiversity and manifold ES [22,23,35–37]. For
example, the intensification of agricultural land causes a decline in water quality, because
of higher nutrient input, and a reduction in pollination, due to the use of pesticides and
a habitat loss [6,38,39]. In addition to a decline in forage provision, the abandonment of
alpine pastures and meadows leads to a loss of many cultural ES. In contrast, the provision
of timber and non-wood products, and the regulation of the climate and protection from
hazards increase due to forest regrowth [33,36]. Hence, previous conditions and past pro-
cesses not only show an impact on current landscape patterns and functions, but can also
determine, to a great extent, future pathways of landscape change [40].

Such developments require the attention of decision-makers and land managers, to
foster a sustainable development of mountain regions and maintain high levels of multiple
ES provision [41–44]. There is growing evidence that the concept of ES, acknowledging the
human benefits obtained from the interaction with ecosystems, provides a valuable basis to
support landscape planning and management, in various ways [41,45]. This may include
raising the awareness of stakeholders, developing management strategies, and taking
decisions [46]. In particular, ES maps can be supportive for identifying developments of
ES over space and time [36,38,47]. They can be used for revealing synergies and trade-
offs among multiple ES [24,48,49], and consequently, for setting priorities in land-use
decisions; for example, how intensive agricultural use maximizes provisioning ES, while
reducing other ES [50,51]. Maps can also help to identify the spatial separation between
farming activities and consumers, which is responsible for trading agricultural products
globally [19,52,53]. On this basis, decision-makers can develop nature-based solutions,
such as promoting dietary shifts, to strengthen the consumption of local products.

However, quantitative and spatially explicit information on the impacts from the
transformation of agricultural land is often not available [54,55]. One reason is that studies
on LULC in agricultural landscapes are often not sufficiently linked to the concept of ES [51].
Although there is an increasing number of studies dealing with ES in mountain regions
in general, many studies have not considered changes in ES over time [56] or did not
specifically analyze agricultural landscapes [51]. Regarding spatial coverage, most studies
concentrated on the local level, e.g., [28,57–59], or, if carried out at regional or national level,
largely neglected social–ecological differences within and across regions [21]. Consequently,
national or even regional policies fail to consider diverging local developments, which
occur due to the high complexity of large mountain ranges, such as the European Alps, that
include a high variety of climatic, topographic, socio-cultural, and political conditions [14].
Furthermore, many studies focused on a limited number of ES [60]. Data on ES that are
not directly linked to land-use/land-cover (LULC) or that are more difficult to assess (e.g.,
many cultural ES) are largely lacking. Therefore, ES are still rarely integrated into policies
and decision-making [60].

To contribute to a more comprehensive understanding of recent developments in the
European Alps, this study was aimed at assessing the impacts of the transformation of agri-
cultural landscapes on 19 ES. By differentiating eight regions with distinct social–ecological
characteristics, our findings illustrate contrasting developments in ES and highlight diverse
pathways for agricultural landscapes in mountain regions.
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2. Materials and Methods
2.1. Study Area

The European Alps are the highest mountain chain in Europe and contain a large
variety of landscapes, species, and cultures. They count about 14 million inhabitants and
stretch over eight different countries, including parts of France, Switzerland, Italy, Austria,
Germany, and Slovenia, as well as the countries Liechtenstein and Monaco. The Alps are a
hot spot of biodiversity, and the complex topography influences the natural distribution
of soil, the typology of land, and habitat variety. About 49% of the area is covered by
forest, followed by agricultural land (27%), high mountain landscapes with shrubs, natural
grasslands and rocks (19%), artificial surfaces (3.7%), and water (1.1%).

Due to the high variety of social–ecological conditions across the Alps, the analyses
of this study are based on eight regions with different economic and social structures or
environmental situations [61]. These regions were identified by Tappeiner et al. [61] through
cluster analysis (Ward method, squared Euclidian distance), based on 21 indicators that
reflect the three pillars of sustainability in equal measure (Table S1). The classification refers
to data between 2000 and 2008, as well as between 1990 and 2002 for change indicators.
An updated classification is currently not available. The eight regions (Figure 1) can be
summarized as follows:

• ‘Employment hubs’ are municipalities to which many employed persons commute
daily. They have a good transport infrastructure and offer a good range of jobs in the
secondary and tertiary sectors.

• ‘Residential municipalities’ are typical residential and dormitory municipalities lo-
cated around major employment hubs. Daily commuting is possible without great loss
of time, due to the above-average traffic infrastructure. The residential environment
in these municipalities is attractive, and land prices are affordable, which leads to
increased urban sprawl.

• ‘Important tourist centers’ have very well-developed accommodation facilities; the
employment situation is better than average in the Alps. Most of them are rural
municipalities with largely intact agriculture and an attractive landscape.

• ‘Dynamic rural areas’ are characterized by a rural location and a dynamic labor market.
The employment of women and older persons in particular has improved significantly
here, not least due to the positive development of tourism. Agriculture in these areas
is largely intact. Of concern, however, is the above-average emigration of employed
persons.

• ‘Standard Alpine regions’ reach average values for the Alps in all aspects. Typical
of these are low tourism intensity, a negative commuter balance, and a decline in
agriculture. Balanced migration and birth rates, however, prevent excessive over-
aging in these municipalities.

• ‘Traditional agricultural regions’ are characterized by a severe over-aging of society,
poor traffic infrastructure, and a moderate retreat of, mostly extensive, agriculture
from the area. The poor employment situation in these regions is likely to contribute
to the fact that the number of abandoned farms is limited. Overall, this results in a
rich, traditional landscape.

• ‘Rural retreats’ are characterized by good traffic infrastructure, which residents use to
commute to work while keeping their center of life in the rural hinterland. Agriculture
has largely retreated from the area, creating a slightly fragmented and highly diverse
landscape.

• ‘Forgotten rural areas’ are characterized by significant over-aging and a particularly
strong abandonment of agriculture. A major reason for this is remoteness and poor
traffic infrastructure. The areas show great economic weakness and are threatened by
depopulation.
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Figure 1. Location of the European Alps in Europe (small map), and the eight social–ecological
regions in the study area, as identified by Tappeiner et al. [61] (large map). Authors own elaboration.

2.2. Analysis Steps

We analyzed changes in agricultural land between 2000 and 2018 in the European
Alps for the eight above described social–ecological regions, based on LULC distribution,
and related these developments to 19 ES. The ES mapping and impact analysis in this study
comprised the following three steps (Figure 2):

1. Aggregation of LULC types: We used CORINE Land Cover data (CLC) in raster
format with a spatial resolution of 100 × 100 m for the years 2000 [62] and 2018 [63].
We aggregated the 44 CLC classes to 11 LULC types (Table S2), mainly representing
the first and second level of thematic detail, according to the hierarchical nomenclature
of CLC [62,63]. Based on the LULC distribution in 2000, we selected four agricultural
LULC types (crop cultivation, permanent culture, fertilized grassland, unfertilized
grassland), which we used to extract the aggregated LULC maps in 2000 and 2018 to
the same spatial extent, focusing on agricultural areas.

2. Calculation of ES values: We created ES raster maps by relating the LULC types in 2000
and 2018 to ES values (Table S3). Moreover, we distinguished raster cells with slope <
and ≥30◦ to distinguish flat areas that do not need ‘protection from hazards (R1)’ due
to the presence of steep areas. ES values represent the ES supply, which was weighted
by socio-cultural preferences [50]. Tasser et al. [50] and Schirpke et al. [25] derived
the ES supply from an extensive literature review on ES-relevant ecosystem processes
and functions related to water, soil, plants, animals, microorganisms, agricultural
production, and landscape structure. Socio-cultural preferences (from 1 = low to
5 = high) were obtained from surveys [18,64]. Hence, ES that were more preferred
obtained higher final ES values than those ES of lower importance (for details, see
Tasser et al. [50]). Final ES values are expressed as a dimensionless index, ranging
from 0 to 5, and were used to map ES based on the aggregated LULC types, i.e., each
raster cell of a specific LULC type was associated with the respective ES value of
Table S3.
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3. Impact analysis: To identify differing trends in LULC and ES across the eight regions
with differing social–ecological characteristics, we spatially overlaid the raster maps
(aggregated LULC, ES values) with the eight regions (Figure 1). We calculated area-
weighted mean values for each region in 2000 and 2018, which were used to map and
evaluate changes in LULC and ES values.
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3. Results
3.1. LULC Changes

The composition of agricultural land in 2000 varied across the eight regions (Figure 3).
The residential municipalities, employment hubs, the standard Alpine region, and the
traditional agricultural region comprised mostly intensively used LULC types, such as crop
cultivation, permanent cultures, and fertilized grassland, whereas unfertilized grassland
prevailed in the other four regions. LULC changes between 2000 and 2018 generally
consisted in the abandonment of fertilized and unfertilized grassland, and in an increase
in settlement area, forest, and abandoned grassland. Change rates, however, greatly
differed across the eight regions (Figure 3). The smallest changes occurred in the traditional
agricultural region, while the largest changes happened in rural retreats and forgotten
rural areas. Residential municipalities and employment hubs had the largest increases
in settlement areas, while forest increased above average in forgotten rural areas and
rural retreats. Agriculturally used grasslands were frequently abandoned, especially in
the latter two regions, but also in the tourist centers and in the dynamic rural areas,
resulting in forested areas or succession stages towards forest, such as dwarf-shrub habitats
and bushland. In addition, crop cultivation and permanent cultures slightly increased
around the main settlement regions, mainly in residential municipalities and standard
Alpine regions.

3.2. Changes in ES Values

Considering only agricultural LULC types (i.e., crop cultivation, permanent culture,
fertilized grassland, unfertilized grassland) that were present in 2000, ES values varied
across the eight regions (Figures 4 and A1). The lowest ES values occurred in the econom-
ically prosperous employment hubs, including the suburbanization region (residential
municipalities), mainly due to less ecosystems with high ES supply and below-average
values for cultural and regulating ES. In contrast, regions with a high increase in forest or a
high share of unfertilized grassland, including alpine pastures and traditional agro-forestry
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systems, had the highest ES values; in particular, wood production (P5), occurrence of
mushrooms and wild berries (P4), protection against natural hazards (R1), availability of
usable water (R2), preservation of valuable habitats and species (R3, R4, and R5), positive
impact on climate (R9), opportunities for leisure activities (C1), aesthetic experiences (C4),
and cultural heritage (C5). Regions with a high proportion of intensive agricultural land
(i.e., crop cultivation, permanent crops, and fertilized grassland) had lower ES values for
regulating and cultural ES.
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ES values between 2000 and 2018 mostly declined, especially, regulating and cultural
ES, mainly due to LULC changes of agricultural land towards other LULC types, including
abandoned land, forest, and settlement areas. On the other hand, provisioning ES increased
except for fodder production (P1), but the changes in ES values varied across the eight
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regions (Figures 4 and 5). Corresponding to the small LULC changes, the smallest changes
in ES values occurred in the traditional agricultural region. Changes in employment hubs
and residential municipalities were also below average, but there was a further decline in
provisioning ES, due to the increasing urban sprawl. Rural retreats had a particularly strong
decrease in many cultural and regulating ES values, with the exception of the positive effect
on the climate (R9), due to an increase of forests and abandoned land (including heathlands,
transitional woodlands, and shrub) on former agricultural land; however, provisioning
ES also increased above average, apart from fodder production (P1) and agricultural food
production (P2). Across all ES, positive trends only prevailed over negative ones in the
dynamic rural areas and the traditional agricultural regions. In spatial terms, the greatest
changes occurred in the Southern Alps in Italy and Slovenia, and the Western Alps were
more affected by changes than the Eastern Alps.
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4. Discussion
4.1. Current Trends in Alpine Agricultural Landscapes

European land management has not been evolving unidirectionally, following pre-
defined trajectories, but rather as path-dependent processes affected by technological,
institutional, economic, and social drivers, including sudden events [31]. This is also true
for the European Alps [30,31]. Since the beginning of the 20th century, the number of farms
in most Alpine regions has decreased by more than 50%, and the share of the population
employed in agriculture has decreased from about 70% to less than 5% [34], while em-
ployment has strongly increased in the secondary, and later in the tertiary, sectors [34,65].
Due to unfavorable growing conditions, such as short growing seasons, steep slopes, and
small property parcels, which necessitate expensive management practices, while hav-
ing low productivity, mountain farming cannot compete in national and international
markets [31,32,59]. Today, many farmers generate their main income outside their own
farm, e.g., in business parks, industrial facilities, shopping centers, and tourism, and the
share of part-time farmers is about 70% in the Alps [61,66]. Therefore, the agricultural
area decreased on average by about 20%, and in some areas up to even 70% [23]. Our
results indicate that this trend is still ongoing. The abandoned grassland areas are currently
subject to a natural succession process towards site-typical climax vegetation (forest up
to the natural timberline, with dwarf shrubs and alpine grassland above) with impacts
on ecosystem structure and processes [67]. Our results also indicate that land use has
been intensified in favorable locations, mainly through conversion to permanent crops or
transformation of agroecosystems into urban or suburban areas. The extent to which these
trends will continue depends not only on socio-economic drivers, but increasingly also on
climate change. At high altitudes, climate warming will lead to a rise in the timberline,
from 300 m (at +2◦K) to 800 m (at +5◦K), resulting in a decrease in alpine grassland [67].
However, the temperature increase will cause only a marginal expansion of forested area
in 84.3% of Alpine municipalities, because they do not have areas in the alpine and nival
belts [68]. Although climate change does have impacts on land use below 2000 m a.s.l.,
economic impacts override climate effects [59,69]. As a result of temperature increase and
regionally lower precipitation, agricultural use will shift from grassland toward arable
farming and permanent crops at lower elevations, whereas grassland farming will intensify
at higher elevations [12,59].

Our results indicate that these transformations of agricultural use can jeopardize ES
provision and may simultaneously aggravate associated disservices, such as increased
leaching of soil nutrients or pests [6,70]. Many ES have declined in recent decades on land
formerly used for agriculture, due to the intensification of use or urban sprawl, resulting in
LULC types that produce fewer regulating and cultural ES, in particular (see also [25,50]).
In addition, some provisioning ES, such as food and fodder production, decreased. In
contrast, if forest growth occurs on formerly used grassland (above all in the Italian and
Slovenian Alpine regions), timber production will increase, but provision of drinking water
(i.e., streamflow) could decrease [71].

4.2. Implications for Management and Decision-Making

Our results show that ES values are reduced in most of the selected regions, but with
different expressions when divided into provisioning, regulating, and cultural ES. This
suggests that increases in ES value can be achieved through targeted regional planning,
which also conserves landscape and species diversity, as well as powerful bundles of ES [72].
Moreover, abandoned land can contribute to sustainable land use transitions, providing
opportunities to nature-based solutions based on biodiversity, cultural, and regulating
services [73]. For management and decision-making, a respective framing must be set
to comprehensively evaluate the impacts of agricultural strategies (i.e., on environment
and economy). Here, the ES concept should be better integrated into existing frameworks
such as the sustainable rural livelihood framework [65]. Moreover, a stronger focus on
transdisciplinary research, including the development of adaptive pathways would enable
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stakeholders to translate ES changes into a tangible local or regional agricultural strat-
egy [74]. To highlight the interdependence of different economic sectors and the need
for collective action at the local/regional level, to successfully tackle future challenges,
the resilience of ES needs to be addressed, in an ecosystem-based approach, in order to
duly incorporate the steadily increasing knowledge of changing ecosystem functions and
ecosystem processes due to climate change [57,75]. This requires a clear commitment to
basic research in the field of global change and the use of promising scientific approaches,
especially in topographically complex areas, in order to have results available quickly at
the landscape level [76,77].

To complete the picture, an appropriate framework must consider the historical de-
velopment of agricultural strategies, and socio-economic and landscape developments,
which means that ‘history’ must be part of future strategies. Results such as those shown
in our study can form the basis and at the same time the starting point for future devel-
opment paths, which are also increasingly taken up scientifically in landscape ecology,
e.g., [40]. However, shifting to more resilient pathways, i.e., developing innovative and
adaptive pathways that can mitigate the negative effects of global change on ES [78], can
pose significant challenges, especially if land use decisions are predominantly based on
agricultural market values. Farmers and decision makers seem to be ‘locked-in’ to their
production-oriented view [40], disregarding the importance of land-use change in promot-
ing other values such as greenhouse gas emissions and sequestration or recreational use
and biodiversity [72].

4.3. Methodological Considerations

In this study, we applied a simple approach for mapping and quantifying ES values
based on LULC maps, which is often applied to generate comprehensive information
suitable for decision-making, because it sufficiently accounts for underlying mechanisms
and directly illustrates possible impacts from LULC changes [79,80]. While this approach
is easily replicable, the results contain some uncertainties that need to be considered.
One issue regards the LULC types that were used to map ES values, as we differentiated
only four types of agricultural use. These are linked to different levels of fertilizer use
and have distinct ecological functions and differing species composition [50]. Further
levels of fertilization of grassland or differently stocked pastures [12,13], as well as specific
types of annual and permanent crops [55,81] could not be distinguished, due to lacking
spatial information at a cross-national level. A further refinement could also include
a distinction between conventional and organic farming systems for annual crops or
permanent cultures [9–11].

There are also limitations with regard to the underlying databases. An updated version
of the classification of the eight Alpine regions was not yet available and the classification
of some municipalities may have changed, as socio-economic indicators, especially, are less
stable than environmental conditions. This may have greater effects on municipalities at low
to medium elevations compared to municipalities located higher [82]. Nevertheless, future
studies should reclassify the Alpine regions using recent data, which would be particularly
important when predicting future agricultural landscapes. Another uncertainty is related
to the LULC maps, which originates from methodological issues during the interpretation
of different remote sensing data over time, for generating the CLC [83]. To reduce mapping
uncertainties, we used the newer versions of CLC. However, in this relatively short time
period, only the immediately visible changes from an intensification of use are reflected,
while long-term effects such as forest regrowth on abandoned grassland can only be
captured over longer monitoring periods [36,67]. Over such short periods as in our study,
only transitional stages to forest (e.g., heathlands, transitional woodland, shrub) could be
considered. In future studies, the results may be improved by differentiating ES values
between young and mature forests. Basing our analysis on earlier time steps with a
greater extent of agriculturally used land would have revealed greater transformations of
agricultural landscapes and related impacts on ES [36,77,84].
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Furthermore, it has to be noted that our results represent the potential ES supply
weighted by socio-cultural preferences, that is, the capacity of ecosystems to provide ES
independently of their actual use [80]. However, many studies indicated spatial mismatches
between ES supply and ES demand, i.e., the demand exceeds the supply at the local or
regional level, requiring the transfer of goods or the movement of people [19,52,85,86]. Such
dynamics need to be taken into account in the development of sustainable management
strategies, and our results should, therefore, be complemented with spatial information on
ES demand [20,24].

5. Conclusions

By applying the concept of ES, the consequences for society can be assessed in a
comprehensive way, highlighting both the direct impacts on agricultural production and
the associated effects on regulating and cultural ES. Our results reveal that the agricultural
area in the Alpine region is under massive pressure, as up to 30% of agricultural land in
some regions has been abandoned or converted to other uses within the last two decades,
despite the efforts made within the framework of the Common Agriculture Policy (CAP)
of the European Union (EU). Consequently, ES values mostly declined between 2000 and
2018, especially, regulating and cultural ES, while some forest-related provisioning ES have
increased. Our results also indicate that LULC change rates and, hence, changes in ES
greatly differed across regions with different social-ecological characteristics. The smallest
changes occurred in the traditional agricultural region, while rural retreats and forgotten
rural areas were affected by the largest changes.

Such quantitative and spatially explicit information on impacts from the transforma-
tion of agricultural land can be used as an information basis for developing sustainable
management strategies and for evaluating underlying policies such the CAP. The frequent
abandonment of mountain grassland, providing an above-average number of ES, also
emphasizes the importance of the Green Deal in the EU, which should be an impulse for
an agricultural and food transition. The Green Deal’s target of 25% ecologically valuable
farmland in agriculture is one of the central and most important targets, and, therefore,
particular attention should be paid to the maintenance of mountain grassland in the Eu-
ropean Alps. Finally, to support decision-making in adopting tangible local or regional
strategies that can maintain cultural landscapes and multiple ES, greater efforts should be
put into transdisciplinary research, allowing for the development of adaptive pathways,
depending on the historical development of agricultural use, and socio-economic and
landscape developments.
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