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Abstract: Landscape patterns are a result of the combined action of natural and social factors.
Quantifying the relationships between landscape pattern changes, soil erosion, and sediment yield
in river basins can provide regulators with a foundation for decision-making. Many studies have
investigated how land-use changes and the resulting landscape patterns affect soil erosion in river
basins. However, studies examining the effects of terrain, rainfall, soil erodibility, and vegetation
cover factors on soil erosion and sediment yield from a landscape pattern perspective remain limited.
In this paper, the upper Ganjiang Basin was used as the study area, and the amount of soil erosion
and the amount of sediment yield in this basin were first simulated using a hydrological model.
The simulated values were then validated. On this basis, new landscape metrics were established
through the addition of factors from the revised universal soil loss equation to the land-use pattern.
Five combinations of landscape metrics were chosen, and the interactions between the landscape
metrics in each combination and their effects on soil erosion and sediment yield in the river basin
were examined. The results showed that there were highly similar correlations between the area
metrics, between the fragmentation metrics, between the spatial structure metrics, and between the
evenness metrics across all the combinations, while the correlations between the shape metrics in
Combination 1 (only land use in each year) differed notably from those in the other combinations.
The new landscape indicator established based on Combination 4, which integrated the land-use
pattern and the terrain, soil erodibility, and rainfall erosivity factors, were the most significantly
correlated with the soil erosion and sediment yield of the river basin. Finally, partial least-squares
regression models for the soil erosion and sediment yield of the river basin were established based
on the five landscape metrics with the highest variable importance in projection scores selected from
Combination 4. The results of this study provide a simple approach for quantitatively assessing soil
erosion in other river basins for which detailed observation data are lacking.

Keywords: landscape metrics; soil erosion; sediment yield; PLSR

1. Introduction

As a comprehensive reflection of the ecological-environmental system in a region,
the landscape pattern is a spatial arrangement of different landscape mosaics that results
from the interaction of multiple natural and human factors [1,2]. Changes in the spatial
distribution of the landscape pattern can affect the water cycle and therefore soil erosion
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and sediment yield in a region [3,4]. Hence, studying the response of the water and sed-
iment processes to landscape pattern changes in a river basin from a landscape ecology
perspective can to some extent reveal the effects of changes in natural conditions and
human activity on the water and sediment in the river basin [5–7]. Land use—an important
component of a landscape—primarily acts on the vegetation landscape pattern and pro-
cesses such as hydrological flow. The spatial land-use pattern has notable impacts on runoff,
soil erosion, and sediment yield at different scales [8]. Hence, many studies have focused
on the correlations between land-use-derived landscape metrics and the amount of soil
erosion and the amount of sediment yield [9–16]. Partial least-squares regression (PLSR) is
a new technique that combines principal component analysis (PCA) and multiple linear
regression (MLR). PLSR is an important tool for quantitatively studying the relationships
between landscape metrics and soil erosion and sediment yield in river basins [9,17,18].

Soil erosion and sediment yield in a river basin are comprehensive processes. In the
investigation of factors related to soil erosion and sediment yield in a river basin, it may be
insufficient to consider only the landscape metrics that are specific to the land use because
this neglects the effects of factors such as terrain, soil, and rainfall on the hydrological
processes in the river basin. Therefore, several models have been developed to assess soil
erosion and sediment yield, among which the revised universal soil loss equation (RUSLE)
has been extensively used worldwide to estimate soil erosion at the watershed scale due
to its simple structure, easy-to-acquire parameters, simple calculations, and consideration
of the main factors affecting soil erosion, as well as its ability to predict erosion more
accurately [19–23]. It has been widely used in the estimation of soil erosion at the basin
scale worldwide. Hence, in this study, the slope gradient and aspect (LS), the rainfall
erosivity (R), the soil erodibility (K), and the vegetation cover (C) factors in the RUSLE were
combined with the land use to establish new landscape patch units, whose relationships
with soil erosion and sediment yield in a river basin were then quantified. The results of
this study provide a new approach to exploring and developing quantitative relationships
between landscape metrics and soil erosion and sediment yield in river basins.

The upper Ganjiang Basin once suffered from severe soil erosion problems [24]. Con-
siderable efforts (e.g., afforestation, as well as water and soil conservation facility con-
struction) made to mitigate soil erosion in this region since the 1980s have significantly
changed its natural and social conditions and notably reduced soil erosion and the amount
of sediment transported into the river [25]. These conditions provide an excellent case
for conducting this study, which has the following main objectives: (1) to establish a
soil and water assessment tool (SWAT) model for the upper Ganjiang Basin, as well as
correct and validate it based on measured monthly runoff and sediment discharge data;
(2) to design multiple combinations of landscape metrics and compare the correlations
between these metrics at different sub-river basins and between these landscape metrics
and the soil erosion and sediment yield in the different combinations; and (3) to quantify
the correlations between the landscape metrics selected from the combination with the
strongest correlations and the soil erosion and sediment yield in the river basin based on
PLSR models.

2. Materials and Methods
2.1. Study Area

The upper Ganjiang Basin is located between 113◦30′ E–116◦40′ E and 24◦26′ N–27◦07′ N
(Figure 1). The basin experiences a subtropical monsoonal humid climate with an annual
precipitation of 1400–2000 mm, which shows obvious interannual variation and uneven
distribution throughout the year. The flood season is from April to September of each year.
The precipitation during this period accounts for 65% to 70% of the total annual precipi-
tation. The average temperature throughout the year is 17–26 ◦C. The rocks composing
the stratigraphy of the upper Ganjiang Basin mainly include sedimentary, magmatic, and
metamorphic rocks. Granite is a typical representative of magmatic rocks in the basin.
The main soil type is Acrisols, which is an acidic soil that is rich in iron and aluminum
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oxides and which forms in humid climates [26]. The terrain in this area is dominated by
low mountains and hills [27].
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Figure 1. The position of the upper Ganjiang Basin.

2.2. SWAT Model Simulations

The SWAT model has been widely used in studies in different parts of the world [28–33].
It provides a simulation of the hydrology and associated material transport transforma-
tions in a watershed by integrating the watershed topography, soils, land-use, weather,
and land-management practices [32]. The meteorological data involved in the construc-
tion of the SWAT model were collected from 32 meteorological (rainfall) stations around
the upper Ganjiang Basin from 1975 to 2010. Daily precipitation, maximum/minimum
temperature, relative humidity, and wind speed data for 12 meteorological stations were
collected from the China Meteorological Data Service Center (http://data.cma.cn (accessed
on 11 April 2019)). Daily precipitation data for 30 rainfall stations were collected from the
Jiangxi Hydrology Bureau (Figure 1). The ASTER GDEM dataset (30 m × 30 m) was sup-
plied by the Geospatial Data Cloud site, Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn, accessed on 7 April 2017). The 1980, 1995,
and 2010 land-use data (30 m × 30 m) were obtained from the Resource and Environment
Data Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn, accessed on
19 September 2016) (Figure 2). Based on the input data requirements of the SWAT model,
the three periods of land-use data were reclassified by merging similar land-use types.
The reclassified land-use types included paddy, upland, forest, shrubland, open forest,
garden, grassland, and construction land (Figure 2). The Harmonized World Soil Database

http://data.cma.cn
http://www.gscloud.cn
http://www.resdc.cn
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(HWSD_v121) in SWAT format (1 km × 1 km) was obtained from the Water Weather
Energy Ecosystem Technology and Data website, 2w2e GmbH (https://www.2w2e.com/,
accessed on 16 December 2018). Monthly flow data for the four hydrological stations at
Hanlinqiao, Xiashan, Julongtan, and Bashang were obtained from the Jiangxi Provincial
Hydrological Bureau (Figure 1).
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The sequential uncertainty fitting (SUFI-2) method in the SWAT Calibration and Un-
certainty Program (CUP) was used for model calibration and validation using the P-factor
and R-factor to measure the effects of model rate-setting and uncertainty analysis [30,34].
The P-factor represents the percentage of observed data enveloped by the modeling result,
the 95 PPU (95% prediction uncertainty), and the R-factor represents the mean width of
the 95 PPU interval divided by the standard deviation of the measured data. In general,
the closer the P-factor is to 1 and the closer the R-factor is to 0, the closer the simulation
is to the true value. The uncertainty of the simulation is considered acceptable when the
P-factor > 0.5 and R-factor < 1.5; when the P-factor > 0.7 and R-factor < 1, the uncertainty
of the simulation is low [30]. The coefficient of determination (R2) and the Nash–Sutcliffe
coefficient (NS) were used in this paper to evaluate the applicability of the SWAT model.
R2 indicates the consistency of the trends between the simulated and measured values. A
value closer to 1 means that the simulated values are more consistent with the measured
values. R2 > 0.6 is usually used as a criterion for the degree of correlation between measured
and simulated values. NS indicates the degree of the deviation of the measured value
from the simulated value. The closer the value is to 1, the smaller the deviation between
the simulated and measured values. When NS ≤ 0.36, the simulation is considered to be
unsatisfactory. When 0.36 < NS < 0.75, the simulation is considered to be good. When
NS ≥ 0.75, the simulation is considered to be excellent [35].

2.3. Partial Least-Squares Regression

PLSR is a robust multiple regression technique that can be used to establish regression
models when there are significant multiple correlations between the independent variables.
By combining the features of PCA and MLR, the PLSR technique can produce modeling
analyses with higher reliability and integrity [36]. In this study, the landscape metrics were
treated as independent variables, while the soil erosion and sediment yield in each sub-
river basin were set as dependent variables. To establish models with both high predictive

https://www.2w2e.com/
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performance and high stability, a suitable combination of components is generally arrived
at for each PLSR model through cross-validation to achieve an optimal balance between
the explained variability in the response (R2) and the predictive ability of the model (Q2).
It is generally considered that a model with a cumulative Q2 (Q2

cum) greater than 0.5
has a high predictive ability. The root mean square error of cross-validation (RMSECV)
can be used to determine the difference between predicted and observed values. The
importance of a predictor variable to the independent and dependent variables is given
by the variable importance in projection (VIP) score. Terms with high VIP scores are the
most strongly correlated with the dependent (explained) variables. See references for
the detailed correlation algorithm and theory [18,36]. In this study, SIMCA-P software
was used to establish PLSR models, and SPSS 20 was used to evaluate the correlations
between the landscape metrics and between each landscape metric and the soil erosion
and sediment yield in each sub-river basin.

2.4. Design of Combinations

In this study, the land use in each year was combined with the LS factor, the K factor,
the C factor for each year, and/or the R factor in the RUSLE to form new landscape patch
units. Then, the landscape metrics were calculated. Based on the SWAT-calculated and
validated soil erosion and sediment yield data for each sub-river basin, the correlations
between the landscape metrics and between each landscape metric and soil erosion and sed-
iment yield in different combinations were compared. On this basis, the combination with
the strongest correlations was selected to quantify the correlations between the landscape
metrics and soil erosion and sediment yield. The following combinations were designed to
calculate the landscape metrics.

Combination 1: land use in each year.
Combination 2: land use in each year + LS + K.
Combination 3: combination 2 + C.
Combination 4: combination 2 + R.
Combination 5: combination 2 + C + R.

Here, the land-use data that were used to establish the SWAT model were used for
analysis. See the literature [37] for the data sources and calculation methods for the LS, K,
C, and R factors, which were derived from existing research results.

Of the above-mentioned factors in the RUSLE, the LS and K factors were unlikely
to have changed significantly over the time period selected for analysis in this study and
thus were considered to have remained relatively unchanged, whereas the C and R factors
varied with time. Therefore, Combination 1 was calculated as the conventional landscape
metric. From this, Combination 2 was established by adding the fixed LS and K factors to
Combination 1, while Combination 3, Combination 4, and Combination 5 were established
by adding the C factor, the R factor, and both C and R to Combination 2, respectively, with
the goal of distinguishing the possible correlations between the landscape metrics that
arose from the respective addition of the fixed and dynamic factors and the soil erosion
and sediment yield in the river basin.

To comprehensively reflect the landscape pattern features of the river basin and to
reduce redundant information, 17 landscape-scale metrics (i.e., the patch density (PD), the
largest patch index (LPI), the mean patch area (AREA_MN), the edge density (ED), the
mean nearest-neighbor distance (ENN_MN), the landscape shape index (LSI), the mean
shape index (SHAPE_MN), the mean perimeter–area ratio (PARA_MN), the perimeter–
area fractal dimension (PAFRAC), the contagion index (CONTAG), the interspersion and
juxtaposition index (IJI), the division index (DIVISION), the splitting index (SPLIT), the
aggregation index (AI), Shannon’s diversity index (SHDI), Simpson’s diversity index (SIDI),
and Shannon’s evenness index (SHEI)) were selected based on previous research and were
calculated by FRAGSTATS 4.2. See relevant references [38,39] for the calculation methods
and ecological meanings of these landscape metrics.
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3. Results
3.1. Model Calibration and Validation

Due to the uncertainty of the SWAT model parameters, if the simulation is carried out
over an extremely long time series, the effect of long-term changes in land-use patterns
on the hydrological process will be eliminated, generating pseudoparameters that will
affect the accuracy of the simulation results [35]. At the same time, since the data that can
be collected were limited, we can only perform simulations and validations for the time
period 1980–2010. Therefore, this study conducted scenario simulations for three separate
time periods—1980, 1995, and 2010—and the calibration and validation periods were as
close to 1980, 1995, and 2010 as possible. Specifically, (1) for the land-use scenario in 1980,
the periods 1977–1979, 1980–1982, and 1983–1985 were set as the warm-up, calibration, and
validation periods, respectively; (2) for the land-use scenario in 1995, the periods 1990–1992,
1993–1995, and 1996–1998 were set as the warm-up, calibration, and validation periods;
and (3) for the land-use scenario in 2010, the periods 2002–2004, 2005–2007, and 2008–2010
were set as the warm-up, calibration, and validation periods.

Based on previous findings, 16 runoff sensitivity [27] and 5 sediment discharge sensi-
tivity parameters (Table 1) were determined and selected in this study to further calibrate
the model for each sub-river basin. Then, based on the monthly runoff and sediment dis-
charge data measured at four hydrological stations (i.e., the Hanlinqiao, Xiashan, Bashang,
and Julongtan stations) in the periods 1980–1985 (P1980s), 1993–1998 (P1995s), and 2005–2010
(P2010s), the sequential uncertainty fitting 2 (SUFI-2) algorithm in the SWAT calibration
uncertainty program was used to analyze the uncertainty of the output of the SWAT model
at each relevant sub-river basin, as well as to calibrate and validate the SWAT model. The
results showed the following.

Table 1. The parameters for model calibration and validation and their maximum theoretical range.

Parameter Description Maximum
Theoretical Range

PRF Peak rate adjustment factor for sediment routing 0–2
CH_COV Channel cover factor −0.001–1

CH_EROD Channel erodibility factor −0.05–0.6

SPCON Linear parameters for calculating the channel
sediment routing 0.0001–0.01

SPEXP Exponent parameter for calculating the channel
sediment routing 1–2

The SWAT model was well-calibrated for the runoff at all four hydrological sta-
tions [27]. There was a very low degree of uncertainty in the simulated sediment at each of
the four hydrological stations (Table 2). In both the calibration and validation periods, the
R2 values for the four hydrological stations in the three historical scenarios were greater
than 0.6, suggesting a strong correlation between the trends of the simulated and measured
values. The Nash–Sutcliffe (NS) coefficient was above 0.5 for the Hanlinqiao and Xiashan
stations for each period, indicating that the quality of the simulated values ranged from
good to excellent. The NS coefficient was above 0.36 for the Julongtan station in P1980s and
P1995s, indicating that the simulated values were acceptable. However, the NS coefficient
was low for the Julongtan station in the calibration period of P2010s. For the Bashang
station, the NS coefficient ranged from 0.73 to 0.89 in P1980s and from 0.72 to 0.73 in the
calibration periods of both P1995s and P2010s, suggesting that the simulated values were
good. However, the simulated values for the Bashang station in the validation periods were
unsatisfactory. Overall, the performance of the SWAT model in simulating the runoff and
sediment in the upper Ganjiang Basin in each period varied. The SWAT model displayed
good performance in simulating runoff, whereas its simulation accuracy for sediment in
some sub-river basins in the validation periods of P1995s and P2010s was low. Nevertheless,
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the trends of the simulated values generated by the SWAT model were close to those of the
measured values. Hence, the SWAT model could be used for further analysis.

Table 2. Results of uncertainty analyses and evaluations of the sediment simulations under three historical scenarios—1980,
1995, and 2010—at each hydrological station.

Station Land-Use Scenario Calibration &Validation P-Factor R-Factor R2 NS

Hanlinqiao

1980
Calibration (1980–1982) 0.54 0.45 0.87 0.54
Validation (1983–1985) —— —— 0.82 0.59

1995
Calibration (1993–1995) 0.78 0.9 0.73 0.7
Validation (1996–1998) —— —— 0.76 0.61

2010
Calibration (2005–2007) 0.89 0.77 0.85 0.8
Validation (2008–2010) —— —— 0.92 0.75

Xiashan

1980
Calibration (1980–1982) 0.82 0.86 0.93 0.9
Validation (1983–1985) —— —— 0.87 0.86

1995
Calibration (1993–1995) 0.92 0.97 0.86 0.79
Validation (1996–1998) —— —— 0.92 0.64

2010
Calibration (2005–2007) 0.99 0.97 0.92 0.71
Validation (2008–2010) —— —— 0.93 0.7

Julongtan

1980
Calibration (1980–1982) 0.61 1.08 0.85 0.77
Validation (1983–1985) —— —— 0.83 0.62

1995
Calibration (1993–1995) 0.89 1.07 0.85 0.81
Validation (1996–1998) —— —— 0.86 0.38

2010
Calibration (2005–2007) 0.76 1.88 0.65 0.61
Validation (2008–2010) —— —— 0.81 −7.11

Bashang

1980
Calibration (1980–1982) 0.97 1.01 0.91 0.89
Validation (1983–1985) —— —— 0.76 0.73

1995
Calibration (1993–1995) 0.83 1.76 0.76 0.73
Validation (1996–1998) —— —— 0.84 −3.73

2010
Calibration (2005–2007) 0.99 1.2 0.8 0.72
Validation (2008–2010) —— —— 0.77 −3.97

3.2. Analysis of Land Use, Soil Erosion, and Sediment Yield Changes

A comparison of the land-use types in the upper Ganjiang Basin at the three time points
showed no significant change in the proportion of the total land area used for each land-use
type (Table 3, Figure 2). Specifically, paddy fields, dry lands, forests, shrublands, open
forests, other wooded lands, grasslands, water bodies, and construction lands accounted
for 11.53–11.66%, 6.5–6.77%, 2.25–53.72%, 3.36–3.92%, 15.63–17.80%, 0.32–1%, 5.79–6.02%,
0.89–0.92%, and 0.88–1.16% of the total land area, respectively.

Table 3. Land-use changes in the upper Ganjiang Basin, 1980, 1995, and 2010.

1980 (km2) 1995 (km2) 2010 (km2)

Paddy 3889 3847 3883
Upland 2184 2170 2258
Forest 17,429 17,498 17,919

Shrubland 1241 1306 1120
Open forest 5936 5795 5213

Garden 118 106 335
Grassland 1965 2009 1931

Water body 298 291 306
Built-up land 292 331 388

Bare land 3 2 2

However, a horizontal comparison of the area of each land-use type among the three
time points reveals some notable changes. The area of paddy fields was 1.08% smaller
in 1995 than in 1980 but recovered in 2010 to 99.85% of the reference level. The area of
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dry lands was 0.64% smaller in 1995 than in 1980 but recovered rapidly and surpassed
the reference level by 3.39% in 2010. The area of forests increased: it was 0.40% and 2.81%
larger in 1995 and 2010 than in 1980, respectively. The area of shrublands was 5.24% larger
in 1995 than in 1980, after which it decreased rapidly to 9.75% smaller in 2010 than in
1980. The area of open forests continuously decreased: it was 2.38% and 12.18% lower in
1995 and 2010 than in 1980, respectively. The area of other wooded lands first decreased
and then increased at an extremely high rate. Specifically, compared to 1980, the area of
other wooded lands was 10.17% smaller in 1995 but was 183.90% larger in 2010. Of all the
land-use types, the area of other wooded lands increased by the greatest percentage and
thus warrants close attention. The area of grasslands first increased and then decreased.
The area of water bodies first decreased and then increased with a narrow range with
±7 km2 over 30 years. Construction lands are another land-use type that merits attention.
Compared to 1980, the area of construction lands was 13.36% larger in 1995, and this
number increased to 32.88% in 2010.

An observation of the spatial distribution maps of the soil erosion and sediment yield
in the river basin during the three periods reveals a notable decline in both the soil erosion
and sediment yield (Figures 3 and 4). The average soil erosion modulus decreased from
92.63 t/ha/yr in P1980s to 72.92 t/ha/yr in P1995s and further to 37.88 t/ha/yr in P2010s,
translating to a rate of decrease of 21.28% and 59.11%, respectively. The average sediment
yield decreased from 36.23 t/ha/yr in P1980s to 26.61 t/ha/yr in P1995s and to 12.70 t/ha/yr
in P2010s, translating to a rate of decrease of 26.55% and 64.95%, respectively (Table 4).
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Figure 3. Soil erosion distribution of each sub-basin for the years 1980s, 1995s, and 2010s (t/ha/yr).

The distribution patterns of the soil erosion in different years were similar. An analysis
of the distribution maps of the soil erosion and sediment yield in conjunction with the
regional terrain and land-use maps shows the following. Generally, the soil erosion was
higher in hilly areas with fragmented terrain and smaller in river valleys with flat terrain.
The soil erosion was higher in areas where uplands and construction lands accounted for
more of the sub-river basin and lower in areas where forests and grasslands accounted
for more of the sub-river basin. In addition, the sediment yield was correspondingly high
in the high-soil erosion areas. However, except for the upper reaches of each tributary,
the sediment yield was notably low in the valleys through which the Ganjiang runs. This
phenomenon also reflects the role of flat terrain in intercepting sediment produced by
soil erosion.
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Figure 4. Sediment yield distribution of each sub-basin for the years 1980s, 1995s, and 2010s (t/ha/yr).

Table 4. Statistical analysis of the soil erosion and sediment yield for the upper Ganjiang Basin for
the years 1980s, 1995s, and 2010s (t/ha/yr).

Soil Erosion Sediment Yield

P1980s P1995s P2010s P1980s P1995s P2010s

Maximum 605.67 493.05 467.54 204.49 106.65 58.01
Minimum 13.8 7.85 5.34 0.68 0.78 0.60
Average 92.63 72.92 37.88 36.23 26.61 12.7

Standard Deviation 78.06 69.46 56.02 43.26 29.83 14.18

3.3. Correlation Analysis of Landscape Metrics in Different Combinations

As shown in Figure 5, overall, similar correlations were found between the parameters
across the five combinations, although with some individual differences. Comparing all
the combinations, similar correlations were found between the area metrics (i.e., PD, LPI,
and AREA_MN). Specifically, PD was negatively correlated with LPI and AREA_MN,
while there was a positive correlation between AREA_MN and LPI. For the fragmenta-
tion metrics (i.e., ED and ENN_MN), a negative correlation was found between them in
Combination 1, Combination 3, and Combination 5, while no significant correlation was
found between them in Combination 1 or Combination 4. For the shape metrics (i.e., LSI,
SHAPE_MN, PARA_MN, and PAFRAC), their correlations differed considerably from
combination to combination. Specifically, in Combination 1, LSI was positively correlated
with PAFRAC and PARA_MN and was nonsignificantly correlated with SHAPE_MN;
SHAPE_MN was significantly positively and negatively correlated with PAFRAC and
PARA_MN, respectively; and PARA_MN was negatively correlated with PAFRAC. In
Combination 2–Combination 5, similar correlations were found between the shape met-
rics. LSI was negatively correlated with SHAPE_MN and PAFRAC in Combination 2–
Combination 5. LSI was similarly negatively correlated with PARA_MN in Combination 2
and Combination 4 but was nonsignificantly correlated with this metric in Combination 3
and Combination 5. Moreover, in Combination 2–Combination 5, SHAPE_MN was nega-
tively correlated with PARA_MN and PAFRAC, while PARA_MN was positively correlated
with PAFRAC. For the spatial structure metrics (i.e., CONTAG, IJI, DIVISION, SPLIT, and
AI), in each combination, CONTAG was negatively correlated with IJI, DIVISION, and
SPLIT and was positively correlated with AI. In each combination, IJI was negatively
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correlated with AI and was positively correlated with DIVISION and SPLIT, although the
correlation between IJI and DIVISION was nonsignificant in Combination 2 and Combi-
nation 4. For the evenness metrics (i.e., SHDI, SIDI, and SHEI), positive correlations were
found between them in each combination.
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3.4. Correlation Analysis of the Soil Erosion and Landscape Metrics in Different Combinations

The correlations between the soil erosion and landscape metrics differed significantly
from period to period and from combination to combination (Table 5). In Combination 1,
soil erosion in P1995s was positively correlated with PD, IJI, SHDI, SIDI, and SHEI and
was negatively correlated with LPI and CONTAG, while the soil erosion in P2010s was
positively correlated with IJI, and SHEI was negatively correlated with CONTAG and
was nonsignificantly correlated with the other metrics. In Combination 2, the soil erosion
in P1980s was negatively correlated with PD and ED and was positively correlated with
AREA_MN and SHAPE_MN. The soil erosion in P1995s was positively correlated with
PAFRAC and AI and was negatively correlated with PD, ED, DIVISION, and SIDI. The
soil erosion in P2010s was positively correlated with AREA_MN, SHAPE_MN, PAFRAC,
CONTAG, and AI; was negatively correlated with PD, ED, LSI, SHDI, and SIDI; and was
nonsignificantly correlated with the other metrics. In Combination 3, the soil erosion
in P1995s was positively correlated with LPI, AREA_MN, SHAPE_MN, and AI and was
negatively correlated with PD, ED, ENN_MN, LSI, DIVISION, SHDI, and SIDI. The soil
erosion in P2010s was positively correlated with SHAPE_MN and PAFRAC, was negatively
correlated with SHDI and SIDI, and was nonsignificantly correlated with the other metrics.
In Combination 4, the soil erosion in P1980s was positively correlated with AREA_MN,
SHAPE_MN, and AI and was negatively correlated with PD and ED. The soil erosion
in P1995s was positively correlated with LPI, AREA_MN, SHAPE_MN, and AI and was
negatively correlated with PD, ED, and DIVISION. The soil erosion in P2010s was positively
correlated with AREA_MN, SHAPE_MN, PAFRAC, and AI; was negatively correlated with
PD, ED, LSI, and DIVISION; and was nonsignificantly correlated with the other metrics. In
Combination 5, the soil erosion in P1980s was only positively correlated with SHAPE_MN.
The soil erosion in P1995s was positively correlated with LPI, AREA_MN, SHAPE_MN, and
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AI and negatively correlated with PD, ED, ENN_MN, LSI, DIVISION, and SIDI. The soil
erosion in P2010s was positively correlated with SHAPE_MN and PAFRAC, was negatively
correlated with ENN_MN, and was nonsignificantly correlated with the other metrics.

Table 5. The correlation between landscape metrics and soil erosion under five different combinations.

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5
P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s

PD 0.084 0.261 * 0.099 −0.270 * −0.338 ** −0.343 ** −0.162 −0.269 * −0.150 −0.285 * −0.357 ** −0.356 ** −0.159 −0.269 * −0.152
LPI −0.130 −0.023 * −0.180 0.111 0.225 0.146 0.189 0.392 ** 0.200 0.177 0.308 ** 0.197 0.167 0.395 ** 0.212

AREA_MN −0.090 −0.200 −0.117 0.379 ** 0.406 ** 0.410 ** 0.187 0.390 ** 0.154 0.388 ** 0.421 ** 0.418 ** 0.184 0.389 ** 0.159
ED 0.109 0.204 0.083 −0.276 * −0.338 ** −0.335 ** −0.141 −0.316 ** −0.092 −0.303 ** −0.370 ** −0.354 ** −0.137 −0.316 ** −0.094

ENN_MN −0.131 −0.145 −0.152 0.130 0.143 0.100 −0.119 −0.248 * −0.218 0.080 0.139 −0.009 −0.150 −0.244 * −0.258 *
LSI −0.096 −0.166 −0.130 −0.182 −0.283 * −0.232 * −0.159 −0.269 * −0.187 −0.185 −0.285 * −0.233 * −0.158 −0.269 * −0.187

SHAPE_MN −0.053 −0.098 −0.139 0.322 ** 0.373 ** 0.386 ** 0.268 * 0.345 ** 0.333 ** 0.319 ** 0.378 ** 0.390 ** 0.276 * 0.341 ** 0.343 **
PARA_MN −0.209 −0.128 −0.135 0.082 0.052 0.153 0.153 0.146 0.203 0.111 0.044 0.117 0.160 0.141 0.188

PAFRAC 0.003 −0.052 −0.061 0.174 0.237 * 0.264 * 0.199 0.220 0.275 * 0.175 0.212 0.259 * 0.206 0.220 0.270 *
CONTAG −0.161 −0.252 * −0.230 * 0.126 0.172 0.229 * 0.153 0.178 0.144 0.152 0.202 0.195 0.175 0.179 0.100

IJI 0.161 0.248 * 0.248 * −0.017 −0.032 −0.100 −0.134 −0.042 −0.196 −0.030 −0.029 −0.065 −0.170 −0.042 −0.169
DIVISION 0.112 0.199 0.165 −0.214 −0.289 * −0.224 −0.216 −0.387 ** −0.218 −0.237 * −0.325 ** −0.247 * −0.208 −0.383 ** −0.229

SPLIT 0.095 0.200 0.145 0.027 −0.060 −0.083 −0.053 −0.143 −0.127 −0.069 −0.139 −0.128 −0.039 −0.140 −0.129
AI −0.112 −0.201 −0.081 0.280 * 0.357 ** 0.334 ** 0.143 0.330 ** 0.092 0.314 ** 0.391 ** 0.358 ** 0.147 0.335 ** 0.100

SHDI 0.152 0.247 * 0.195 −0.139 −0.221 −0.240 * −0.167 −0.261 * −0.230 * −0.074 −0.196 −0.146 −0.097 −0.228 −0.141
SIDI 0.161 0.246 * 0.203 −0.193 −0.262 * −0.285 * −0.225 −0.355 ** −0.271 * −0.161 −0.272 * −0.170 −0.195 −0.354 ** −0.176
SHEI 0.157 0.247 * 0.233 * −0.041 −0.084 −0.155 −0.093 −0.100 −0.120 −0.036 −0.099 −0.063 −0.074 −0.097 −0.022

** and * indicate significant correlations at the 0.01 and 0.05 levels (two-tailed), respectively.

A comparison of the correlations between the soil erosion and each landscape met-
ric in the five combinations shows that Combination 4 contained the most parameters
significantly correlated with soil erosion at the 0.05 level, followed by Combination 2,
Combination 3, and Combination 5 (Combination 3 = Combination 5), and Combination 1.
Thus, the landscape metrics in Combination 4 were more strongly correlated with soil
erosion in the sub-river basins.

3.5. Correlation Analysis of Sediment Yield and the Landscape Metrics in Different Combinations

Similarly, the relations between sediment yield and the landscape metrics differed
significantly from period to period and from combination to combination (Table 6). In Com-
bination 1, the sediment yield in P1980s was positively correlated with LPI and CONTAG
and was negatively correlated with ED, DIVISION, SPLIT, SHDI, SIDI, and SHEI. The sedi-
ment yield in P1995s was positively correlated with LPI, PARA_MN, and CONTAG and was
negatively correlated with IJI, DIVISION, SPLIT, SHDI, SIDI, and SHEI. The sediment yield
in P2010s was correlated with the landscape metrics in the same way as the sediment yield
in P1995s. In Combination 2, the sediment yield in P1980s was positively correlated with PD,
ED, ENN_MN, LSI, IJI, SPLIT, SHDI, SIDI, and SHEI and was negatively correlated with
AREA_MN, SHAPE_MN, PARA_MN, PAFRAC, CONTAG, and AI. The relations between
the sediment yield in each of P1995s and P2010s and the landscape metrics were similar those
between the sediment yield in P1980s and the landscape metrics. In Combination 3, the
sediment yield in each of P1980s and P2010s was positively correlated with ENN_MN, SHDI,
and SIDI and was negatively correlated with SHAPE_MN, PARA_MN, and PAFRAC. The
sediment yield in P1995s was correlated with more landscape metrics: positively with PD,
ED, ENN_MN, LSI, IJI, SPLIT, SHDI, SIDI, and SHEI (similar to the sediment yield in
P1995s in Combination 2) and negatively with LPI, AREA_MN, SHAPE_MN, PAFRAC,
CONTAG, and AI. In Combination 4, the sediment yield in each of the three periods was
correlated with more landscape metrics in mostly similar ways: positively with PD, ED,
ENN_MN, LSI, IJI, DIVISION, SPLIT, SHDI, SIDI, and SHEI and negatively with LPI,
AREA_MN, SHAPE_MN, PARA_MN, PAFRAC, CONTAG, and AI. In Combination 5,
the sediment yield in P1980s was positively correlated with ENN_MN and SIDI and was
negatively correlated with SHAPE_MN, PARA_MN, and PAFRAC. The sediment yield
in P2010s was positively correlated with ENN_MN, IJI, SHDI and SIDI and was negatively
correlated with LPI, SHAPE_MN, PARA_MN, and PAFRAC. The sediment yield in P1995s
was correlated with the landscape metrics in ways similar to those in Combination 3. Over-
all, the correlations between sediment yield and each landscape metric in Combination 1
were mostly opposite to those in other combinations. For example, sediment yield was
negatively correlated with the evenness metrics (i.e., SHDI, SIDI, and SHEI) in Combina-
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tion 1 but was positively correlated with these metrics in the other combinations. Similar
phenomena were observed for the area, fragmentation, shape, and spatial structure metrics.
Thus, across all the combinations, there were highly similar correlations between the area
metrics, between the evenness metrics, between the spatial structure metrics, and between
the evenness metrics, while the correlations between the shape metrics in Combination 1
differed considerably from those in other combinations.

Table 6. The correlation between landscape metrics and sediment yield under five different combinations.

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5
P1980s P1995s P2010s P1980s P1995s P1980s P1995s P2010s P1980s P1995s P1980s P1995s P2010s P1980s P1995s

PD −0.174 −0.154 −0.135 0.400 ** 0.415 ** 0.422 ** −0.044 0.330 ** 0.011 0.398 ** 0.412 ** 0.425 ** −0.045 0.328 ** 0.008
LPI 0.463 ** 0.498 ** 0.518 ** −0.227 −0.262 * −0.213 −0.227 −0.269 * −0.240 * −0.242 * −0.277 * −0.267 * −0.218 −0.263 * −0.241 *

AREA_MN 0.163 0.162 0.140 −0.345 ** −0.361 ** −0.353 ** 0.004 −0.315 ** −0.043 −0.348 ** −0.363 ** −0.357 ** 0.005 −0.313 ** −0.038
ED −0.255 * −0.183 −0.154 0.368 ** 0.400 ** 0.391 ** −0.091 0.308 ** −0.040 0.374 ** 0.404 ** 0.403 ** −0.091 0.307 ** −0.042

ENN_MN 0.049 0.077 0.020 0.256 * 0.170 0.206 0.450 ** 0.350 ** 0.424 ** 0.267 * 0.157 0.190 0.467 ** 0.351 ** 0.414 **
LSI 0.048 0.138 0.090 0.236 * 0.303 ** 0.239 * 0.141 0.278 * 0.142 0.234 * 0.301 ** 0.239 * 0.141 0.278 * 0.142

SHAPE_MN −0.100 −0.054 −0.046 −0.429 ** −0.399 ** −0.415 ** −0.358 ** −0.410 ** −0.366 ** −0.423 ** −0.400 ** −0.418 ** −0.354 ** −0.403 ** −0.365 **
PARA_MN 0.104 0.264 * 0.229 * −0.315 ** −0.242 * −0.248 * −0.338 ** −0.116 −0.318 ** −0.318 ** −0.269 * −0.275 * −0.338 ** −0.122 −0.322 **

PAFRAC 0.101 0.030 0.039 −0.434 ** −0.377 ** −0.405 ** −0.432 ** −0.288 * −0.420 ** −0.436 ** −0.367 ** −0.399 ** −0.434 ** −0.287 * −0.419 **
CONTAG 0.333 ** 0.344 ** 0.324 ** −0.392 ** −0.421 ** −0.426 ** −0.027 −0.318 ** −0.110 −0.383 ** −0.431 ** −0.449 ** −0.024 −0.322 ** −0.090

IJI −0.206 −0.274 * −0.256 * 0.334 ** 0.325 ** 0.366 ** 0.209 0.273 * 0.263 * 0.329 ** 0.316 ** 0.363 ** 0.210 0.271 * 0.254 *
DIVISION −0.450 ** −0.466 ** −0.494 ** 0.221 0.237 * 0.211 0.189 0.209 0.197 0.222 0.241 * 0.229 * 0.186 0.205 0.195

SPLIT −0.420 ** −0.445 ** −0.455 ** 0.259 * 0.296 * 0.273 * 0.163 0.236 * 0.204 0.213 0.232 * 0.238 * 0.155 0.238 * 0.215
AI 0.263 * 0.193 0.166 −0.365 ** −0.402 ** −0.388 ** 0.083 −0.306 ** 0.034 −0.375 ** −0.404 ** −0.395 ** 0.079 −0.306 ** 0.038

SHDI −0.310 ** −0.311 ** −0.314 ** 0.402 ** 0.428 ** 0.408 ** 0.275 * 0.436 ** 0.300 ** 0.310 ** 0.410 ** 0.394 ** 0.210 0.418 ** 0.303 **
SIDI −0.312 ** −0.313 ** −0.310 ** 0.361 ** 0.386 ** 0.357 ** 0.263 * 0.378 ** 0.284 * 0.330 ** 0.384 ** 0.372 ** 0.251 * 0.373 ** 0.283 *
SHEI −0.325 ** −0.347 ** −0.329 ** 0.365 ** 0.398 ** 0.392 ** 0.089 0.327 ** 0.157 0.325 ** 0.413 ** 0.408 ** 0.067 0.342 ** 0.165

** and * indicate significant correlations at the 0.01 and 0.05 levels (two−tailed), respectively.

A comparison of the correlations between sediment yield and each landscape metric
in the five combinations shows that Combination 4 and Combination 2 both contained the
most parameters significantly correlated with sediment yield at the 0.05 level, followed by
Combination 1 and Combination 5 and Combination 3 (Combination 5 = Combination 3).
Combination 4 contained the most parameters significantly correlated with sediment yield
at the 0.01 level, followed by Combination 2 and Combination 3 (Combination 2 = Combi-
nation 3) and then Combination 5 and Combination 1 (Combination 5 = Combination 1).
It can be concluded that the landscape metrics in Combination 4 were the most strongly
correlated with sediment yield in the sub-river basins.

3.6. Quantification of the Correlations between Soil Erosion or Sediment Yield and
Landscape Metrics

Since stronger correlations were found between the landscape metrics in Combina-
tion 4 and soil erosion and sediment yield, Combination 4 was selected in this study to
establish PLSR models between the landscape metrics and the soil erosion and sediment
yield of the sub-river basins within the upper Ganjiang Basin from the 1980s–2010s (Table 7).
Q2 is the ratio of the variances of the dependent variables (i.e., soil erosion and sediment
yield) that can be explained by all the components of the PLSR models. The Q2 values
for all the PLSR models were above 0.5 except that for the soil erosion in P2010s, whose Q2

value was only 0.292, suggesting that the dependent variables could be well explained.
Therefore, all the established PLSR models were robust.

Of the PLSR models for soil erosion, the PLSR model containing the first component for
P1980s explained 28% of the variance in soil erosion. The addition of the second component
increased the explanatory ability of the PLSR model to 59.1%. From there, the addition
of the third component and then the fourth component increased the explanatory ability
of the PLSR model to 63% and 64.2%, respectively. Further adding components did not
substantially increase the explanatory ability of the PLSR model for the dependent variable.
In total, the PLSR models for P1995s and P2010s explained 61% and 41.2% of the variance in
soil erosion, respectively.
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Table 7. Summary of the PLSR models of soil erosion and sediment yield under Combination 4.

Response
Variable Y Year R2 Q2 Component % of Explained

Variability in Y

Cumulative
Explained

Variability in Y (%)
Q2

cum
RMSECV
(t/ha/yr)

Soil erosion

1980s 0.59 0.57 1 28.00 28.00 0.26 98.88
2 31.00 59.10 0.57 74.98
3 3.89 63.00 0.58 75.13
4 1.24 64.20 0.53 78.67

1995s 0.60 0.55 1 21.30 21.30 0.20 88.54
2 31.90 53.20 0.51 69.14
3 6.48 59.70 0.55 66.98
4 1.28 61.00 0.52 68.92

2010s 0.39 0.29 1 11.40 11.40 0.11 62.79
2 20.60 31.90 0.29 55.92
3 7.32 39.30 0.29 55.98
4 1.92 41.20 0.25 57.36

Sediment
yield

1980s 0.56 0.49 1 33.70 33.70 0.30 47.85
2 11.40 45.10 0.41 43.60
3 8.71 53.80 0.48 40.77
4 1.95 55.80 0.49 40.51

1995s 0.58 0.52 1 36.30 36.30 0.31 33.45
2 12.40 48.60 0.44 30.10
3 7.39 56.00 0.51 28.09
4 1.88 57.90 0.52 27.75

2010s 0.57 0.51 1 37.00 37.00 0.33 15.75
2 11.90 48.90 0.45 14.25
3 6.57 55.50 0.51 13.44
4 1.66 57.10 0.51 13.31

Of the PLSR models for sediment yield, the PLSR model containing the first component
for P1980s explained 33.7% of the variance in sediment yield. The addition of the second
component increased the explanatory ability of the PLSR model to 45.1%. From there, the
addition of the third component and then the fourth component increased the explanatory
ability of the PLSR model to 53.8% and 55.8%, respectively. Further adding components
did not substantially increase the explanatory ability of the PLSR model for the dependent
variable. In total, the PLSR models for P1995s and P2010s explained 57.9% and 57.1% of the
variance in sediment yield, respectively. The minimum RMSECV for each PLSR model
corresponded to the maximum Q2, suggesting that the model was optimal.

Redundant variables may reduce the statistical significance of a PLSR model, so
it is necessary to further evaluate the importance of each landscape metric to generate
optimal PLSR models. The relative importance of an LR metric can be measured by its VIP
score. The key metrics affecting the soil erosion and sediment yield in P1980s, P1995s, and
P2010s were highly similar (Table 8). SPLIT, PARA_MN, ENN_MN, ED, and LSI were the
landscape metrics with the highest VIP scores. The VIP scores of SPLIT and PARA_MN
for soil erosion and sediment yield in all the periods were greater than 1. The VIP scores
of ENN_MN were greater than 1 for the soil erosion in P1980s and P1995s and the sediment
yield in P1980s and were close to 1 in the other combinations. The VIP scores of ED were
greater than 1 for the soil erosion and sediment yield in P2010s and were close to 1 in the
other combinations. The VIP scores of LSI were greater than 1 for the soil erosion and
sediment yield in P1995s and the soil erosion in P2010s and were close to 1 in the other
combinations. These findings show that these five landscape metrics play main roles in
controlling soil erosion and sediment yield in the river basin and thus can be used as the
main metrics for establishing optimal PLSR models for each stage.
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Table 8. The VIP of landscape metrics for soil erosion and sediment yield under Combination 4.

Soil Erosion Sediment Yield

1980s 1995s 2010s 1980s 1995s 2010s

SPLIT 20.745 20.528 20.315 30.116 30.181 30.230
PARA_MN 20.555 20.603 20.539 10.894 10.873 10.863
ENN_MN 10.046 10.149 0.998 10.126 0.903 0.890

ED 0.915 0.983 10.320 0.995 0.981 10.018
LSI 0.794 10.037 10.291 0.990 10.072 0.883
PD 0.442 0.510 0.757 0.580 0.549 0.589
AI 0.301 0.327 0.347 0.218 0.223 0.224

CONTAG 0.208 0.220 0.214 0.179 0.200 0.191
IJI 0.192 0.199 0.190 0.205 0.211 0.207

LPI 0.074 0.130 0.116 0.095 0.100 0.098
AREA_MN 0.025 0.027 0.041 0.019 0.018 0.019

SHDI 0.016 0.017 0.021 0.019 0.024 0.023
PAFRAC 0.005 0.005 0.005 0.003 0.003 0.003

SHAPE_MN 0.005 0.005 0.005 0.003 0.003 0.003
DIVISION 0.004 0.004 0.004 0.003 0.003 0.003

SIDI 0.003 0.004 0.003 0.003 0.003 0.003
SHEI 0.002 0.003 0.003 0.002 0.003 0.003

A PLSR analysis in the study area in all three study periods yielded the following
quantitative relationships between soil erosion (QSE) and sediment yield (QSY) in the river
basin and the landscape metrics:

QSE = −10.016XED − 0.155XLSI + 0.203XPARA_MN + 0.390XENN_MN + 0.005XSPLIT (1)

QSY = 0.385XED + 0.060XLSI − 0.194XPARA_MN + 0.315XENN_MN − 0.001XSPLIT (2)

The Q2 values for soil erosion and sediment yield are 0.51 and 0.47, respectively,
suggesting that the models have good predictive ability and robustness.

4. Discussion

Of all the land-use types in the upper Ganjiang Basin in the 1980s–2010s, other wooded
lands increased in area by the greatest percentage, followed by construction lands, dry
lands, forests, and water bodies, while open forests shrank by the greatest percentage,
followed by shrublands. This phenomenon may have been a result of economic develop-
ment and human activity in the region [25]. Economic development led to a considerable
increase in the urban construction land area. Large-scale prevention and control measures
have been implemented to prevent severe soil erosion since the 1990s. Extensive cultivation
of pioneer tree species (e.g., Pinus massoniana) for water and soil conservation in areas with
low vegetation coverage resulted in a rapid increase in the local area of local shrublands.
Later, some of these lands underwent succession and became forests with high coverage,
some were turned into urban construction lands, and some were developed into economic
forests (e.g., navel orange orchards and tea plantations), leading to a rapid expansion of
other wooded lands. In contrast, there was a continuous decrease in open forests. Similarly,
the evolution and succession of open forests resulted in notable increases in the areas
of economic forests and construction lands. The expansion of dry lands may have been
a result of the discontinuation of farming in some orchards and farmlands due to the
migration of local farmers to urban areas for work. The increase in the area of water bodies
may have only been related to the interannual variation in rainfall. The overall significant
decreases in soil erosion and sediment yield in the river basin reflect the considerable
importance attached by the local authorities to water and soil conservation as well as the
marked results of the soil erosion control measures.

The inherent defects of the SWAT model prevent it from accurately simulating long-
term soil erosion conditions [31]. In addition, the soil erosion module used in the SWAT
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model is an empirical model, whereas the actual factors affecting soil erosion and sediment
yield and their processes are much more complex than model simulations. As a result,
the SWAT model may not be able to yield simulations completely consistent with the
actual situation. But this is a common, objective problem facing model simulations and
is not within the scope of this study. Under current circumstances, collecting soil erosion
measurements at a river basin scale is an exceedingly difficult task. It is easier to measure
the runoff and sediment discharge in a river at the outlet of the river basin. Therefore, in
the presence of limited data, the powerful simulation and calibration tools of the SWAT
model can be employed to effectively evaluate soil erosion conditions within a river basin
and to provide a basis for formulating relevant policies [9].

It is suggested that there are three types of landscape structures: patches, corridors,
and matrix [1]. The landscape matrix is the largest and most connected type of landscape
element in the landscape, and as such, it can potentially have a great influence on the
dynamics of the species in the landscape [9]. However, constrained by the characteristics
of the landscape matrix and the complexity of ecological processes, reliance on the land-
scape matrix is often criticized for failing to accurately reflect landscape characteristics
and their ecological relevance [40]. How to link landscape metrics to specific ecological
processes or develop new landscape indicators is one of the current challenges in land-
scape ecology research [15]. Many scholars have conducted active explorations for this
purpose. For example, the gradient paradigm is combined with the landscape pattern
index to analyze the landscape pattern characteristics of sample strips or local areas [41].
The directional infiltration index (DLI) is used to characterize the ability of landscape
cover to hold back water and soil [3]. These studies have incorporated some theoretical
paradigms and landscape patterns into landscape metrics, which have given new dynamics
to landscape pattern analysis. However, due to the complexity of ecological processes, the
multiplicity of influencing factors and their variability at any spatial and temporal scales,
these new metrics still face many doubts and difficulties in the analysis of pattern–process
interrelationships. Therefore, this study presents a new landscape indicator and explores
the relationship between landscape metrics and soil erosion and sediment yield at larger
scales. The results show that compared to land use alone, the addition of the LS, K, R,
and C factors significantly altered the landscape pattern in the river basin but did not lead
to significant changes in the correlations between most of the landscape metrics, which
reflects their relatively deterministic mathematical relations [42].

A comparison of the five combinations of landscape metrics shows that the landscape
metrics in Combination 2 were more significantly correlated with the soil erosion and
sediment yield in the river basin than those in Combination 1, suggesting that the addition
of the relatively fixed LS and K factors can effectively improve the explanatory ability of the
landscape metrics for soil erosion and sediment yield. An analysis of Combination 3 and
Combination 4, which in addition to the Combination 2 factors had dynamically varying C
and R factors, respectively, shows that adding the R factor caused the correlations between
the landscape metrics and the soil erosion and sediment yield to further increase to their
highest levels, which also reflects the importance of R to the soil erosion and sediment
yield process. In contrast, the addition of C weakened the correlations. This may be
because the land use itself reflects certain vegetation cover conditions, while adding C,
which varies relatively significantly at seasonal and annual scales, results in a certain
degree of information redundancy, thereby interfering with the ability of the PLSR model
to explain and predict soil erosion and sediment yield. This explanation is corroborated by
the similarly weak correlations between each landscape metric of Combination 5 and soil
erosion and sediment yield.

The results of this study showed that the landscape pattern had a significant influence
on the soil erosion and sediment yield in the upper Ganjiang Basin. The PLSR model was
able to identify the main landscape metrics controlling soil erosion and sediment yield
in each sub-basin of the upper Ganjiang Basin. All landscape metrics can be obtained
relatively easily through land-use maps, DEM, etc. Therefore, in the absence of sufficient
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actual monitoring data, soil erosion and sediment yield in the basin can still be predicted
with reasonable accuracy through the new landscape indicator. However, the quantitative
relationships of the new landscape indicator with soil erosion and sediment yield in the
basin that we established in this study have limitations. These quantitative relationships
may be applicable only to the study area and the periods involved in this study and are not
universal. There are doubts about the ecological correlations of landscape metrics [43,44].
In addition, landscape metrics are unable to reflect soil erosion and sediment yield pro-
cesses [45]. While statistically significant correlations were found between the landscape
metrics and between these metrics and soil erosion and sediment yield, relevant principles
and mechanisms of action remain unclear and require further exploration.

5. Conclusions

This paper presents a case study of the upper Ganjiang Basin. Five combinations of
landscape metrics were chosen for analysis. Through simulations using a hydrological
model and PLSR, the correlations between the landscape metrics and between the landscape
metrics and the soil erosion and sediment yield of the river basin were investigated. The
main conclusions are drawn as follows:

(1) In the 1980s–2010s, the areas of other wooded lands and construction lands in the
upper Ganjiang Basin increased to large degrees, which was related to economic
factors such as urban expansion, afforestation, and extensive development of eco-
nomic forests. This period also saw considerable decreases in the soil erosion and
sediment yield of the river basin, reflecting the great importance attached by the
local authorities to water and soil conservation efforts that effectively restored the
ecological environment.

(2) Five combinations were established through the addition of the relatively fixed soil
erosion factors (i.e., the LS and K factors) and/or one or both of the dynamically vary-
ing C and R factors to the land-use. The correlations between the landscape metrics
in each combination were calculated. When we compared the correlations between
the landscape metrics across the five combinations, highly similar correlations were
found between the area metrics, between the fragmentation metrics, between the
spatial structure metrics, and between the evenness metrics in the different combina-
tions. However, the correlations between the shape metrics in Combination 1 differed
considerably from those in the other combinations.

(3) Comparison of the correlations between the landscape metrics in different combi-
nations and the soil erosion and sediment yield of the river basin showed that the
landscape metrics in Combination 4, which combined the land-use and the LS, K,
and R factors, were the most significantly correlated with soil erosion and sediment
yield. The correlations between the landscape metrics with the highest VIP scores
in Combination 4 and the soil erosion and sediment yield in the river basin were
quantified. This study explores a new indicator for the correlations between landscape
metrics and soil erosion and sediment yield and provides decision-makers with a new
quantification method for evaluating these correlations and formulating water and
soil conservation policies. While we attempted to explain why the landscape indicator
in Combination 4 were the most significantly correlated with the soil erosion and
sediment yield in the river basin, further research is needed to determine the relevant
internal principles and mechanisms of action from a landscape pattern perspective.
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