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Abstract: The surface fluxes calculated in land surface models (LSMs) are sensitive to the determi-
nation of the stability parameter. Further, calculation of the surface fluxes over the Tibetan Plateau
(TP) is crucial in the simulation of regional and global weather and climate. In this study, we use
2-year micrometeorological data measured from Shiquanhe, located in the western TP, to evaluate
the performance of the widely used Noah LSM with five stability parameterization schemes. Results
show that all five stability parameterization schemes can generally reproduce the observations, but
the scheme proposed by Li has the smallest bias. The reason is that Li’s scheme is more accurate
under the unstable condition, and the surface layer at Shiquanhe is mostly unstable. Further, the four
non-iterative schemes show an advantage in terms of their computational efficiency compared to the
iterative scheme adopted by the Noah LSM.

Keywords: land surface model; the Tibetan Plateau; stability parameter; non-iterative scheme

1. Introduction

The Tibetan Plateau (TP) plays an important role in regional and global weather
and climate through its thermodynamic and mechanical forcing [1–3]. To understand the
thermodynamic forcing of the TP and to accurately estimate the exchange of mass and
energy over the TP, field experiments have been conducted in recent decades, and many
studies revealed that the land–atmosphere interactions over the TP greatly affected the
climate [4–10]. In recent years, studies showed that the TP was a “hot spot” for land–
atmosphere interaction. Therefore, accurately estimating the exchange of mass and energy
has great importance for understanding the TP and global climate.

A land surface model (LSM) alone, or coupled to an atmospheric model, has been
widely used to simulate the surface mass and energy flux and the climate over the TP.
However, apparent biases in LSMs can be detected [11–13]. These surface flux biases in
LSMs constitute one of the uncertainty sources in numerical weather or climate models,
which can then lead to low skill in the simulation of rainfall and temperature over the
TP [14]. Hence, improving the performance of the parameterization of surface layer fluxes
in LSMs is essential to the accuracy of weather and climate model simulations over the TP.

By comparing different land surface process models and related parameterization
schemes, it was found that the near-surface parameterization scheme was the most essential
for the simulated flux over the TP. Therefore, how to reasonably parameterize the near-
surface layer in the model was particularly important. For parameterizing the near-surface
layer, the Monin–Obukhov similarity theory (MOST) [15] has been widely applied in
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LSM [16]. According to MOST, land surface fluxes of momentum and heat can be calculated
via the surface wind speed, temperature gradient, and bulk transfer coefficient [17]. While
the first two variables can be provided by either observation or numerical modeling,
estimation of the bulk transfer coefficient is crucial for the calculation of surface fluxes. In
an LSM, the bulk transfer coefficient is usually determined by the aerodynamic roughness
length, thermal roughness length, profile function, and stability parameter. The bulk
transfer coefficient is not sensitive to the profile function, but is sensitive to roughness
lengths, as shown in a real case simulation using the Noah LSM [18]. The value of the
aerodynamic roughness length is dependent on the land cover properties, while various
methods have been proposed to calculate the thermal roughness length [19–22].

The last parameter, i.e., the stability parameter, is important in determining the bulk
transfer coefficient, and various schemes have been proposed to calculate its value [23].
A numerical iteration is usually used to solve stability equations [24,25]. In recent years,
various non-iterative schemes have been proposed to replace the iterative method [26–30].
For example, Yang [26] derived an exact solution of the stability parameter equation for
a stable surface layer and proposed an approximate analytical solution for an unstable
surface layer by using a bulk Richardson number and profile functions. Li [27], Sharan [30],
and Wouters [29], using theoretical calculations or observational data from certain stations,
performed non-iterative calculations or linear fitting of stability parameters and found
that the stability can be calculated more accurately, thereby improving the flux simulation.
However, the research of Sharan et al. is only an offline calculation, and it is not really
applied to the land surface model, so it is difficult to evaluate the impact on the overall
land surface process. In addition, the fitting coefficients given in this type of study may be
related to the site, making it difficult to assess its applicability over the TP. Non-iterative
schemes are computationally efficient theoretically, but how well the surface layer over the
western TP can be simulated by these schemes remains unknown.

The objective of this work is twofold: (1) to assess the sensitivity of the land surface
flux and other variables to different parameterizations of stability in the Noah LSM and
(2) to evaluate the performance and applicability of four currently developed non-iterative
schemes on land surface processes in the Noah LSM against field observations at Shiquanhe
in the western Tibetan Plateau. The Noah LSM is selected because it is widely used and has
been adopted for operations and research in National Centers for Environmental Prediction
(NCEP) weather and climate predictions models and relevant data assimilation systems.
Following the introduction, descriptions of the data, the model, and the experimental
design are all presented in Section 2. The main results are given in Section 3, with some
further discussion provided in Section 4. Finally, a summary is presented in Section 5.

2. Materials and Methods
2.1. Data

The micrometeorological data obtained from Shiquanhe (32.50◦ N, 80.08◦ E, 4279.3 m
above sea level), located in the western TP, are used to evaluate the performance of the
Noah LSM. The west and south sides of Shiquanhe are surrounded by the Himalayas, while
north of Shiquanhe is the Kailash Range. The site is located in the transition zone between
the monsoon region and the non-monsoon region, affected by the India monsoon to some
extent, categorized as a mid-latitude arid continental temperate climate. The annual mean
surface air temperature in Shiquanhe is 0.35 ◦C, and the total precipitation is 73 mm.
Figure 1 shows the site position, surface condition, sensors, and the meteorology element
variations during the experiment. The land surface consists of sand and some small areas
of gravel, which is typical in the western TP. The site was established in September 2013
and continues to operate today. The data from 1 September 2013 to 1 September 2015 are
used in this study, including the 30-min mean downward shortwave and longwave fluxes,
sensible heat flux, latent heat flux, soil moisture and temperature, wind speed, relative
humidity, air pressure, air temperature, and precipitation. Information on the sensors used
-to measure these parameters is provided in Table 1.
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foggy (hazy) weather, as under such conditions, eddy covariance systems work improp-
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Figure 1. (a) Geographic location of the Shiquanhe site. (b) Underlying surface and sensors. (c–h) Time series of wind
speed, wind direction, air temperature, specific humidity, air pressure, and precipitation at Shiquanhe from 1 September
2013 to 1 September 2015, respectively.

Table 1. Meteorological elements and information on related sensors.

Element Unit Sensor Sensor Heights/Depths

Air temperature and
humidity

◦C, % Vaisala HMP155A 1.03, 2.00, 4.08, 8.02, 18.17 m

Wind m s−1, ◦ Met One 010C & 020C 1.03, 2.00, 4.08, 8.02, 18.17 m
Air pressure hpa Vaisala PTB330 1.50 m
Precipitation mm Vaisala RG13H 70 cm

Radiation W m−2 Kipp & Zonen CMP22
Kipp & Zonen CGR4 1.50 m

Turbulent flux W m−2 Campbell EC150 5.45 m
Soil heat flux W m−2 HUKSEFLUX HFP01 5, 10, 20, 40, 80 cm

Soil temperature ◦C Campbell 109 5, 10, 20, 40, 80 cm
Soil moisture m3 m−3 Campbell CS616 5, 10, 20, 40, 80 cm

EddyPro 6. 2.1 (LI-COR Inc., Lincoln, NE, USA, 2017) was used in quality control
and turbulent flux calculation to obtain good performance fluxes (such as the momentum
flux, the sensible heat flux, and the latent heat flux) from the turbulent data collected by
EC150. The steps and flux corrections are as follows: (1) set 30 min as the flux averaging
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interval to compute turbulent fluxes, (2) remove the spikes of the raw time series with
a criterion of (

(
X− 4σ

)
< x(t) <

(
X + 4σ

)
), where x(t) denotes the measured variables

(i.e., three-dimensional wind speed u, v, and w), and X and σ are the mean and standard
deviation of the data block, (3) skip the turbulent data block that missed more than 10%,
(4) use the double rotation method for the sonic anemometer tilt correction, (5) use the
WPL (Webb, Pearman, and Leuning) method for density corrections, (6) use high-/low-
frequency spectral corrections to compensate for flux losses, (7) remove the flux data in
rainy (snowy) or foggy (hazy) weather, as under such conditions, eddy covariance systems
work improperly [31].

In addition, the stability parameter ξ (= z/L) based on observation was computed with
Equations (1)–(3), and it is used as the criterion to identify the stable/unstable condition
when the sensitivity of the simulations to the atmospheric stability is discussed. ξ > 0 was
considered as stable stratification, while ξ < 0 was considered unstable.

u∗ = [(−u′w′)
2
+ (−v′w′)

2
]
1/4

(1)

θ∗ = −w′θ′

u∗
(2)

L =
u2
∗

k g
θ θ∗

(3)

where z is the height of EC150 installed, u* is the friction velocity, θ* is the potential
temperature scale, L is the Monin–Obukhov length, u’, v’, w’, and θ’ are the deviations of
the observed horizontal and vertical wind speeds and potential temperatures, respectively,
k is the von Kármán constant, and g is the acceleration of gravity.

2.2. Model and Experimental Design

Our aim in this paper is to evaluate the performance of four non-iterative stability
parameterization schemes in simulating the surface layer at Shiquanhe, located in the
western TP, by using the Noah LSM. Specifically, the Community Noah Land Surface
Model, version 2.7.1, was used in this study ([32]), which we refer to simply as the Noah
LSM. The Noah LSM has been tested for different land surfaces and has also been coupled
to several numerical weather models, including the Weather Research and Forecasting
model [33–36]. This version of the Noah LSM is a standalone, uncoupled, 1-D column
version, used to execute single-site land surface simulations at Shiquanhe. It requires near-
surface atmospheric forcing data, initial soil moisture, and surface parameters. In addition
to stability parameters, vegetation and soil parameters need to be input. In this study,
the default parameters of the model were directly used to obtain the surface parameters,
which are obtained by looking up the table. Among them, SOILTYP (variable name for soil
type) and VEGTYP (variable name for vegetation) are the soil and vegetation parameters,
respectively. There are many studies on the importance of soil and vegetation parameters.
To avoid the influence of soil and vegetation parameters on the research results, this
study directly used the method of a look-up table. The land surface at Shiquanhe consists
of sand and some small areas of gravel. Thus, the values of soil type (SOILTYP) and
vegetation type (VEGTYP) were set to 1 and 11, respectively. The soil has five layers, at
0.05, 0.1, 0.2, 0.4, and 0.8 m, respectively. To directly compare with the observation, the soil
stratification is consistent with the observation. The value of the aerodynamic roughness
length is 0.108, which was calculated from measured data at Shiquanhe. The values of soil
parameters were obtained from the model’s look-up tables. The initial soil temperature
and moisture were provided by site observation at 00Z 1 September 2013. The near-surface
atmospheric forcing data are composed of the observed 30-min mean surface wind speed,
temperature, relative humidity, pressure, downward shortwave and longwave flux, and
precipitation. The simulation period was two years, from 1 September 2013 to 1 September
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2015. The simulation of the first year was regarded as a “spin-up” period, and thus only
the simulation of the last year is analyzed in this paper.

The surface layer parameterization in the Noah LSM is based on MOST, and the
following equations are used to calculate surface fluxes:

τ = ρu2
∗ = ρCDu2 (4)

H = −ρcpu∗θ∗ = −ρcpCHu(θ − θs) (5)

where τ and H are surface momentum and sensible heat fluxes, respectively; u* and θ*
are friction velocity and temperature, respectively; ρ and cp are the air density and the
air heat capacity, respectively; u and θ are wind speed and air temperature at reference
height, respectively; CD and CH are surface exchange coefficients for momentum and heat,
respectively; and θs is the surface air potential temperature. Based on MOST, u* and θ* are
written as

u∗ = uk/[ln(ξ0)− ψM(ξ) + ψM(ξT)] (6)

θ∗ = (θ − θs)k/[ln(ξT)− ψH(ξ) + ψH(ξT)] (7)

L = u2
∗T/(kgθ∗) (8)

where k is the von Kármán constant; ψM and ψH are profile functions for momentum and
heat, respectively; L is the Monin–Obukhov length; ξ = z/L is the stability parameter; z is
the reference height; ξ0 (=z0m/L) and ξT (=zT/L) are both temporary variables and have no
clear physical meaning, while z0m and zT are aerodynamic and thermal roughness lengths,
respectively; g is the acceleration of gravity; and T is absolute mean air temperature.

In the Noah LSM, the stability parameter is estimated by an iterative computational
method. We adopted the following four non-iterative schemes to replace the iterative
method in the Noah LSM in this study:

(1) Yang [26] et al. (Y01) proposed the following equations for the stability parameter
by using the bulk Richardson number:

Rib =
g(z− z0m)

u2
(θ − θs)

T
(9)

Rib
Pr0

=
(ξ − ξ0)[ln(ξT)− ψH(ξ) + ψH(ξT)]

[ln(ξ0)− ψM(ξ) + ψM(ξT)]
2 (10)

For a stable surface layer, the exact solution of the stability parameter equations can
be derived directly from the linear function, while only an approximate analytical solution
is obtained for an unstable surface layer.

(2) Li [27] et al. (L10) suggested the following form of ξ for unstable, weak–stable, and
strong–stable conditions:

ξ =


A0Rib2 + B0Rib, Rib ≤ 0

A1Rib2 + B1Rib, 0 < Rib ≤ 0.2
A2Rib + B2Rib, Rib > 0.2

(11)

where Ai and Bi (i = 0, 1, 2) are regression coefficients whose values are affected by the
observation height as well as the aerodynamic and thermal roughness lengths.

(3) Wouters [29] et al. (W12) proposed the following scheme for calculating the stability
parameter after considering the effect of the roughness sublayer:

ξ =


f1(Rib, z, z0, zT), Rib ≤ 0

f2(Rib, z, z0, zT), 0 < Rib < Rib,t
f3(Rib, Rib,t , z, z0, zT), Rib ≥ Rib,t

(12)
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where fi is a multiple regression function of the bulk Richardson number, reference height,
and aerodynamic and thermal roughness lengths, Rib, and t is the value to separate strong–
stable and weak–stable conditions.

(4) Sharan and Srivastava [30] (S14) proposed a semi-analytical scheme to parametrize
the stability parameter:

ξ3 + a0ξ2 + a1ξ + a2 = 0 (13)

Ri = g(Rib, z, z0, zT) (14)

where Ri is the gradient Richardson number; ai = ai (Ri), i = 0, 1, 2; and g is a multiple
regression function.

To evaluate the effect of the stability parameter on the simulation of the surface layer
at Shiquanhe, we ran the Noah LSM with its default iterative scheme, and the four non-
iterative schemes of Y01, L10, W12, and S14. Thus, there are five 1-year simulations, which
are referred to as Noah, Noah_Y01, Noah_L10, Noah_W12, and Noah_S14, according to
the scheme used.

3. Results

To evaluate the simulation effect of the Noah MP model more accurately, the statistical
analysis method is used in this study. The statistics used are as follows: (1) Coefficients of
correlation (R). (2) Model efficiency index (NSE, Nash–Sutcliffe forecasting efficiency) [37,38],
which is used to evaluate the predictability of the model. Its value ranges from negative
infinity to 1.0. When it is equal to 1.0, the simulated value is exactly the same as the observed
value, indicating that the model is perfect. (3) The mean bias error (MBE). (4) Root mean
square error (RMSE), which can directly give the deviation between the simulated value and
the observed value. The smaller the value, the closer the simulated value to the observed
value. The calculation formulas of the statistics are as follows:

R =
∑N

i=1
(
Oi −O

)(
Pi − P

)[
∑N

i=1
(
Oi −O

)2
]0.5[

∑N
i=1
(

Pi − P
)2
]0.5 (15)

RNSE = 1.0− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi −O

)2 (16)

MBE =
1
N

N

∑
i=1

(Pi −Oi) (17)

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)
2 (18)

where N, Pi, and Oi are the sample number, the simulated value, and the observed value,
respectively.

3.1. Turbulent Fluxes

Figure 2 shows the observed and simulated monthly mean diurnal cycles of the surface
fluxes for momentum and both sensible and latent heat. To show the monthly variation of
the whole year in turn, the data from January to August in the figure are from 2015, and
the data from September to December in the figure are from 2014. Consistent with people’s
general thinking habits, the chart is arranged in the order of January to December. Table 2
lists R, NSE, MBE, and RMSE of the simulated fluxes of momentum and both sensible and
latent heat with observations. All the simulations capture the basic features of the diurnal
cycle and seasonal variation in the observed fluxes. All the correlations of the observations
with the simulated fluxes are higher than 0.6. The correlation coefficients indicate that the
Noah LSM shows the best skill for simulating the diurnal cycle and seasonal variation in
sensible heat, but the lowest skill for latent heat (Table 2). All the simulations overestimate
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the momentum flux, especially for spring. The maximum bias of the simulated momentum
flux is produced by Noah_Y01, with an MBE of 0.02 kg m−1 s−2, while the minimum bias
is found for Noah_L10, with the lowest values for both MBE and RMSE. All simulations
overestimate sensible heat for all months. Noah_L10 also produces the minimum bias of
sensible heat. There are no large differences among the other four simulations of sensible
heat, whose MBE and RMSE are higher than 20 and 60 W m−2, respectively. The differences
in latent heat flux are small among the five simulations, whose MBE and RMSE for latent
heat flux are higher than 0.1 and 10 W m−2, respectively. While the simulations capture
the general feature of sensible heat flux, they show a large bias for some months—June, for
example. The reason may be that the sensible heat flux simulated by the model is not only
related to the near surface parameterization scheme, but also closely related to other physical
processes, such as soil water and heat transfer. Moreover, the effects of surface parameters
such as albedo, emissivity, and thermal roughness cannot be ignored. These physical
processes and parameterization schemes are not the focus of this study, so they are all
default parameters of the Noah model, which may cause large deviation. Especially in June,
the western Tibetan Plateau also entered the rainy season, the precipitation increased, and
the soil moisture increased, which led to great changes in the thermodynamic parameters,
which may have a large deviation from the default parameters of the model, and eventually
led to the deviation of the sensible heat flux simulation.
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Table 2. Coefficients of correlation (R), model efficiency index (NSE), mean bias error (MBE), and root mean square error
(RMSE) between observation and simulation of momentum flux, sensible heat flux, and latent heat flux.

Model with
Scheme

Momentum Flux Sensible Heat Flux Latent Heat Flux

R NSE
MBE

(kg m−1

s−2)

RMSE
(kg m−1

s−2)
R NSE MBE

(W m−2)
RMSE

(W m−2) R NSE MBE
(W m−2)

RMSE
(W m−2)

Noah 0.87 0.68 0.02 0.08 0.94 −0.10 25.34 68.84 0.62 0.34 0.11 10.43
Noah_Y01 0.88 −1.33 0.10 0.22 0.93 −0.88 33.81 89.86 0.60 0.07 −0.19 12.38
Noah_L10 0.88 0.69 0.02 0.08 0.96 0.78 11.25 30.42 0.60 0.35 0.10 10.29
Noah_W12 0.84 0.63 0.02 0.09 0.95 0.07 20.91 63.13 0.60 0.33 0.17 10.48
Noah_S14 0.88 0.74 0.01 0.08 0.95 0.13 20.76 61.16 0.61 0.35 0.15 10.32

The above analyses indicate that estimating the stability parameters accurately can
improve the simulated sensible and latent heat fluxes, and Noah_L10 performs the best.
On the other hand, there are no large differences in the simulated latent heat. One possible
reason is that latent heat is small at Shiquanhe. Noah outperforms Noah_Y01 for all
the turbulent fluxes, but it is beaten by Noah_L10. Noah’s skill is compared to other
non-iterative schemes.

3.2. Radiative Fluxes

Figure 3 shows the observed and simulated monthly mean diurnal cycles of upward
shortwave and longwave radiative fluxes, and Table 3 lists R, NSE, MBE, and RMSE of
the simulations of radiative flux with observations of radiative flux. All the simulations
perform very well for the variation in upward shortwave and longwave fluxes, with cor-
relation coefficients nearing 1.0. The differences in upward shortwave flux among the
simulations are small, which is ascribed to the similar simulation results of the surface
albedo. As the surface albedo is significantly affected by snowfall in winter and rainfall in
summer, the Noah LSM produces a larger bias in winter and summer (Figure 3a). There are
large diversities in the simulated upward longwave flux, including large positive and
negative biases. Noah_Y01 has the largest bias, with an MBE of −19.48 W m−2 and an
RMSE of 34.58 W m−2; Noah_L10 produces the minimum bias, with an MBE of 3.19 W m−2

and an RMSE of 12.62 W m−2. The non-iterative schemes outperform Noah_L10 in simu-
lating upward longwave flux, except for Noah_Y01. The Noah LSM calculates the upward
longwave radiation (ULR) from the surface temperature using the Stefan–Boltzman law
and the modification of surface emissivity and surface temperature directly influences the
ULR [39]. It can be inferred that the emissivity and surface temperature are sensible to
stability parameter schemes.

Table 3. Coefficients of correlation (R), model efficiency index (NSE), mean bias error (MBE), and
root mean square error (RMSE) between observation and simulation of upward shortwave and
longwave radiations.

Model
with

Scheme

Upward Shortwave Radiation Upward Longwave Radiation

R NSE MBE
(W m−2)

RMSE
(W m−2) R NSE MBE

(W m−2)
RMSE

(W m−2)

Noah 0.98 0.96 0.17 14.42 0.99 0.90 12.87 26.24
Noah_Y01 0.98 0.96 0.38 14.57 0.98 0.82 −19.48 34.58
Noah_L10 0.98 0.96 0.15 14.41 0.99 0.98 3.19 12.62
Noah_W12 0.98 0.96 −0.21 14.41 0.99 0.93 −7.85 21.68
Noah_S14 0.98 0.96 −0.14 14.37 0.99 0.93 −7.91 21.57
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3.3. Soil Temperature and Moisture

Figure 4 presents the observed and simulated monthly mean diurnal cycles of the soil
temperature at 10 and 40 cm, separately. The soil temperature at shallow depths shows an
obvious diurnal cycle, which is not observed at the deeper depth (40 cm). Soil temperature
is higher in summer but lower in winter. All the simulations capture these features, and
the correlations between the observation and simulations are higher than 0.88. All the
simulations produce a cold bias of soil temperature, except for Noah_L10 for the soil
temperature at 5, 10, and 20 cm (Table 4). The simulations with the non-iterative schemes
generally outperform Noah, except Noah_Y01. Noah_L10 performs best. These results also
indicate that the stability parameter affects the simulation of soil temperature. Theoretically,
soil temperature can affect surface sensible heat flux, latent heat flux, and net longwave
radiation, and vice versa. When the change in stability parameters leads to the change in
sensible heat flux, the surface energy balance also changes, which will cause the change
in soil temperature. Li et al. [40] evaluated the Noah LSM with multi-parameterization
(Noah-MP) for soil temperature simulation and pointed out that Noah-MP generally
underestimates soil temperature, especially during the cold season. Further, the simulation
uncertainty is greater in the cold season and for deep soil layers. At Amdo in the central
Tibetan Plateau, Noah-MP underestimates soil temperature from the top to the bottom
layers in the monsoon season, and the underestimation might relate to the initiation of soil
state variables [41].

Table 4. Coefficients of correlation (R), model efficiency index (NSE), mean bias error (MBE), and root mean square error
(RMSE) between observation and simulation of soil temperatures at five different depths.

Model
with

Scheme

5 cm 10 cm 20 cm 40 cm 80 cm

R NSE MBE
(◦C)

RMSE
(◦C) R NSE MBE

(◦C)
RMSE
(◦C) R NSE MBE

(◦C)
RMSE

(◦C) R NSE MBE
(◦C)

RMSE
(◦C) R NSE MBE

(◦C)
RMSE

(◦C)

Noah 0.95 0.87 −2.14 4.69 0.98 0.90 −2.46 3.80 0.98 0.87 −2.68 4.27 0.96 0.81 −2.98 4.66 0.89 0.66 −3.34 5.55
Noah_Y01 0.96 0.83 −3.45 5.37 0.98 0.83 −3.77 5.01 0.97 0.78 −3.99 5.48 0.95 0.70 −4.26 5.81 0.88 0.52 −4.57 6.54
Noah_L10 0.93 0.86 0.79 4.88 0.98 0.96 0.42 2.36 0.98 0.96 0.16 2.25 0.97 0.94 −0.22 2.60 0.92 0.84 −0.77 3.80
Noah_W12 0.94 0.88 −1.18 4.45 0.98 0.93 −1.52 3.16 0.98 0.90 −1.76 3.59 0.96 0.86 −2.10 4.01 0.89 0.72 −2.52 5.00
Noah_S14 0.94 0.88 −1.19 4.45 0.98 0.93 −1.53 3.16 0.98 0.90 −1.76 3.60 0.96 0.86 −2.10 4.03 0.89 0.71 −2.52 5.01
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(b) 40 cm.

The observed and simulated monthly mean diurnal cycles of soil moisture indicate
that all the simulations have a positive bias in simulated soil moisture (figures not shown).
They also cannot capture the seasonal variation in soil moisture. There are no large
differences in the simulated soil moisture among the simulations. Thus, the stability
parameter is not a key parameter for the simulation of soil moisture at Shiquanhe by the
Noah LSM. In theory, soil moisture can affect surface evaporation, or latent heat flux.
According to the energy balance in the land surface model, soil moisture affects latent heat
flux, changes the surface energy balance, and causes the change in sensible heat flux, and
vice versa, that is, the change in energy balance will affect the latent heat flux, and then
may change the soil moisture. At Shiquanhe, the difference in sensible heat flux caused by
the difference in stability parameters can change the surface energy balance, but the area is
extremely dry and the soil moisture is very small, so the change in energy balance has little
effect on the soil moisture. Ye et al. also found that the simulation error of the Noah LSM is
larger when the soil moisture is small and considered that it is due to the observation error
and the inaccurate root system distribution parameters of vegetation [42].

4. Discussion
4.1. Sensitivity of the Simulations to the Stability Condition

As stability is an important factor for estimating stability parameters, how well do
the schemes perform for the stable and unstable conditions? Figure 5 shows the observed
and simulated fluxes for momentum (upper panels) and sensible heat (lower panels) for
the stable condition. The simulations generally have better skill for momentum than that
for sensible heat, except for Noah_Y01, which has the largest bias for both momentum
and sensible heat fluxes. There is no large difference in both momentum and sensible
heat fluxes among the other simulations, while Noah_S14 and Noah have the highest
correlation with the observation for momentum and sensible heat fluxes, respectively.
Based on both regression coefficients and correlation coefficients, Noah_S14 and Noah_L10
perform best for momentum flux and sensible heat flux, respectively. Overall, these three
schemes (Noah_L10, Noah_S14, Noah) are potentially applicable to the simulation of a
stable surface layer at Shiquanhe.



Land 2021, 10, 253 11 of 15

Land 2021, 10, x FOR PEER REVIEW 23 of 16 
 

In theory, soil moisture can affect surface evaporation, or latent heat flux. According to 
the energy balance in the land surface model, soil moisture affects latent heat flux, changes 
the surface energy balance, and causes the change in sensible heat flux, and vice versa, 
that is, the change in energy balance will affect the latent heat flux, and then may change 
the soil moisture. At Shiquanhe, the difference in sensible heat flux caused by the differ-
ence in stability parameters can change the surface energy balance, but the area is ex-
tremely dry and the soil moisture is very small, so the change in energy balance has little 
effect on the soil moisture. Ye et al. also found that the simulation error of the Noah LSM 
is larger when the soil moisture is small and considered that it is due to the observation 
error and the inaccurate root system distribution parameters of vegetation [42].  

4. Discussion 
4.1. Sensitivity of the Simulations to the Stability Condition 

As stability is an important factor for estimating stability parameters, how well do 
the schemes perform for the stable and unstable conditions? Figure 5 shows the observed 
and simulated fluxes for momentum (upper panels) and sensible heat (lower panels) for 
the stable condition. The simulations generally have better skill for momentum than that 
for sensible heat, except for Noah_Y01, which has the largest bias for both momentum and 
sensible heat fluxes. There is no large difference in both momentum and sensible heat 
fluxes among the other simulations, while Noah_S14 and Noah have the highest correla-
tion with the observation for momentum and sensible heat fluxes, respectively. Based on 
both regression coefficients and correlation coefficients, Noah_S14 and Noah_L10 per-
form best for momentum flux and sensible heat flux, respectively. Overall, these three 
schemes (Noah_L10, Noah_S14, Noah) are potentially applicable to the simulation of a 
stable surface layer at Shiquanhe. 

 
Figure 5. Comparison of simulated momentum and sensible heat fluxes with observed values un-
der the stable condition. The marker (a–e) represent scheme of Noah, Noah_Y01, Noah_L10, 
Noah_W12, and Noah_S14, respectively. The 1 and 2 represent momentum and sensible heat 
fluxes. For example, a1 means the simulated momentum with the scheme of Noah. 

Figure 6 shows the observed and simulated fluxes for momentum (upper panels) and 
sensible heat (lower panels) for the unstable condition. Compared to sensible heat flux, 
the simulations have better skill for momentum flux, except for Noah_Y01. All the simu-
lations overestimate sensible heat flux. Noah and Noah_L10 perform very well for mo-
mentum flux, as the regression line is generally identical to the 1:1 line. Noah_L10 also 

Figure 5. Comparison of simulated momentum and sensible heat fluxes with observed values under the stable condition.
The marker (a–e) represent scheme of Noah, Noah_Y01, Noah_L10, Noah_W12, and Noah_S14, respectively. The 1 and 2
represent momentum and sensible heat fluxes. For example, a1 means the simulated momentum with the scheme of Noah.

Figure 6 shows the observed and simulated fluxes for momentum (upper panels) and
sensible heat (lower panels) for the unstable condition. Compared to sensible heat flux, the
simulations have better skill for momentum flux, except for Noah_Y01. All the simulations
overestimate sensible heat flux. Noah and Noah_L10 perform very well for momentum
flux, as the regression line is generally identical to the 1:1 line. Noah_L10 also performs
best for sensible heat flux, while some apparent bias is noticed. Thus, Noah_L10 is suitable
for an unstable surface layer.

It can be seen from Figures 2b and 6 that although the sensible heat fluxes simulated
by the model consistently exceed the observation, there are still weak differences between
the simulated sensible heat fluxes. It seems that the stability parameter schemes can
affect the simulated surface heat flux. However, the sensible heat flux simulated by the
model is not only related to the near surface parameterization scheme, but also closely
related to other physical processes, such as soil water and heat transfer. Moreover, the
effects of surface parameters such as albedo, emissivity, and thermal roughness cannot
be ignored. These physical processes and parameterization schemes are not the focus of
this study, so they are all default parameters of the Noah model, which may cause large
deviation. Especially in June, the western Tibetan Plateau also enters the rainy season,
the precipitation will increase, and the soil moisture will increase, which lead to great
changes in the thermodynamic parameters, which may have a large deviation from the
default parameters of the model, and eventually lead to the deviation of the sensible heat
flux simulation. Hu et al. [43] pointed out that vegetation land surface processes are the
primary source of uncertainty in heat flux simulation, and that the more arid the area is,
the larger the deviation of sensible heat flux simulated by Noah. Gao et al. found that with
Noah-MP, the surface sensible and latent heat fluxes are better simulated in the monsoon
season as well in the central Tibetan Plateau [41].
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Figure 7 shows the frequency of the stability parameter ξbased on turbulence data
at Shiquanhe. The values of ξ with a frequency higher than 0.001 range from −2.0 to 4.0,
and frequent values range from −0.1 to 0.1; the total frequency of the unstable condition
(ξ < 0, the red bar) is 69.3%, and the total frequency of the stable condition (ξ > 0, the
blue bar) is 30.7%, which indicates the surface layer at Shiquanhe is mostly unstable. As
Noah_L10 performs best for the unstable condition, it is reasonable that it has the best skill
in simulating the surface layer at Shiquanhe, as discussed in the above section.
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4.2. How Stability Schemes Affect Simulation Results

The simulation results show that varied stability schemes have important effects on
the simulated turbulent flux, net radiation, and soil temperature and humidity. How does
stability affect these variables? According to the stability parameterization scheme, the
stability directly affects the turbulent exchange coefficient, which in turn affects the turbulent
flux. The difference between the turbulence exchange coefficients calculated with different
stability schemes will lead to differences in the simulated turbulent fluxes (Figure 2). The
difference will be conducted for radiation and soil temperature and moisture by the energy
balance between land and air in the LSM. However, due to the extremely dry climate at
Shiquanhe selected in this study, the impact on soil temperature is obvious, and the impact
on soil moisture is weak.

4.3. Execution Time

As a climate model usually runs for many decades, such a model needs to adopt a
scheme with a short execution time. To test the execution time for the five schemes, we
ran a 2-year simulation forced by the observed surface atmospheric elements, repeated 10
times, with the five schemes. The setups for the simulations were the same. The execution
times for the 20-year simulations were 20.46, 17.37, 17.81, 17.76, and 20.06 s for Noah,
Noah_Y01, Noah_L10, Noah_W12, and Noah_S14, respectively. It can be seen the non-
iterative schemes are generally more computationally efficient compared to the iterative
scheme. It seems that under the existing calculation conditions, there is no significant
benefit to replace the iterative scheme with the non-iterative scheme in the land surface
model. However, from a large number of model evaluation results, we can see that the
existing land surface model still has defects, and its parameterization scheme needs to
be further improved. Different researchers hold different opinions on parameterization
schemes of which physical processes should be improved and how to improve them. For the
Tibetan Plateau, the current simulation studies confirmed that the surface parameterization
scheme has the most important influence on the flux simulation. Therefore, improving
the surface parameterization scheme is a hot topic in the study of plateau land surface
processes and climate.

5. Conclusions

The TP plays an important role in regional and global weather and climate via its
thermodynamic and mechanical forcing. Thus, the exchange of energy and mass between
the surface and the atmosphere over the TP is vital for understanding its weather and
climate effects. Compared to the central and eastern TP, only a few stations exist in the
western TP and there is a lack of long-term flux observations. Thus, a high-quality land
surface simulation is imperative for both research and operational communities. In this
study, we used 2-year flux data obtained from a site at Shiquanhe, located in the western
TP, to evaluate the performance of the widely used Noah LSM with different schemes to
estimate the stability parameters for the surface layer.

The Noah LSM does a good job in simulating the surface fluxes of momentum, sen-
sible heat, and upward longwave radiation, as well as soil temperature, at Shiquanhe,
which are sensitive to the scheme used to estimate the surface layer stability parameter;
thus, the simulation ability of the land surface model can be improved by improving the
stability parameterization scheme. The four non-iterative schemes employed in this study
show an advantage in terms of their computational efficiency compared to the iterative
scheme adopted by the Noah LSM. According to the Nash efficiency coefficient, the scheme
proposed by Li [27] performs best and is better than the iterative scheme, and its simulation
efficiency of momentum flux, sensible heat flux, upward longwave radiation, and 10 and
40 cm soil temperatures is 1%, 88%, 8%, 6%, and 13% higher than Noah’s default scheme,
respectively, but its simulation efficiency of the 5 cm soil temperature is lower than Noah’s
default scheme. Further, it is suitable for an unstable surface layer, which occurs frequently
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at Shiquanhe, and has potential application value to improve the land surface model of the
Tibetan Plateau.

This study indicates that a non-iterative scheme for estimation of the stability pa-
rameter can improve the performance of an LSM. The values of the coefficients in the
equations used to estimate the stability parameter are mostly based on empirical or re-
gression methods, and thus profile functions may play a role in estimation of the stability
parameter. However, the underlying surface at Shiquanhe is the typical underlying surface
in the western Tibetan Plateau, which is well representative of the western Tibetan Plateau.
The conclusions obtained in this study may be limited to the western TP, which is a typical
alpine desert region. Whether it can be applied to the central and eastern TP with its alpine
meadow environment is deserving of further study.

Author Contributions: Conceptualization, X.Z., Q.Y. and Z.G., data curation, X.Z. and Q.Y.; funding
acquisition, Z.H., X.J. and Z.G.; methodology, X.Z., X.J., Q.Y. and Z.G.; project administration, Y.Y.
and Z.G.; software, X.Z. and Q.Y.; supervision, Z.G.; validation, X.Z. and Z.H.; visualization, X.Z.
and Q.Y.; writing—original draft, X.Z. and Q.Y.; writing—review and editing, X.Z., Z.H., X.J., Y.L.,
Y.Y. and Z.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by: 1. the Second Tibetan Plateau Scientific Expedition and
Research (STEP) program, grant number 2019QZKK0106, and 2. Sichuan Science and Technology
Program, grant number 2018JY0030. The APC was funded by 1 and 2.

Data Availability Statement: The data set used in this study is deposited at https://pan.baidu.com/
s/1N46Mq0EFNwenyWe1DB33ag (accessed on 20 October 2020). Code: t2vj.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Ye, D.Z.; Gao, Y.X. Meteorology of the Qinghai-Xizang Plateau; Science Press: Beijing, China, 1979; p. 327.
2. Wu, G.; Liu, Y.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Zhang, Q.; Duan, A.; Liang, X. The Influence of Mechanical and

Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol. 2007, 8. [CrossRef]
3. Zhou, X.J.; Zhao, P.; Chen, J.M.; Chen, L.X.; Li, W.L. Impacts of thermodynamic processes over the Tibetan Plateau on the

Northern Hemispheric climate. Sci. China Ser. D Earth Sci. 2009, 52, 1679–1693. [CrossRef]
4. Ma, Y.; Kang, S.; Zhu, L.; Xu, B.; Tian, L.; Yao, T. Tibetan Observation and Research Platform: Atmosphere-Land Interaction over a

Heterogeneous Landscape. Bull. Am. Meteorol. Soc. 2008, 89, 1487–1492. [CrossRef]
5. Zhao, P.; Li, Y.Q.; Guo, X.L.; Xu, X.D.; Liu, Y.M.; Tang, S.H.; Xiao, W.M.; Shi, C.X.; Ma, Y.M.; Yu, X.; et al. The Tibetan Plateau

Surface-Atmosphere Coupling System and Its Weather and Climate Effects: The Third Tibetan Plateau Atmospheric Science
Experiment. J. Meteorol. Res. 2019, 33, 375–399. [CrossRef]

6. Xu, X.; Zhang, R.; Koike, T.; Lu, C.; Shi, X.; Zhang, S.; Bian, L.; Cheng, X.; Li, P.; Ding, G. A New Integrated Observational System
Over the Tibetan Plateau. Bull. Am. Meteorol. Soc. 2008, 89, 1492–1496.

7. Wu, G.; He, B.; Duan, A.; Liu, Y.; Yu, W. Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its
Climate Effects. Adv. Atmos. Sci. 2017, 34, 1169–1184. [CrossRef]

8. Xin, Y.F.; Chen, F.; Zhao, P.; Barlage, M.; Blanken, P.; Chen, Y.L.; Chen, B.; Wang, Y.J. Surface energy balance closure at ten sites
over the Tibetan plateau. Agric. For. Meteorol. 2018, 259, 317–328. [CrossRef]

9. Gu, L.; Yao, J.; Hu, Z.; Zhao, L. Comparison of the surface energy budget between regions of seasonally frozen ground and
permafrost on the Tibetan Plateau. Atmos. Res. 2015, 153, 553–564. [CrossRef]

10. Yao, J.; Zhao, L.; Gu, L.; Qiao, Y.; Jiao, K. The surface energy budget in the permafrost region of the Tibetan Plateau. Atmos. Res.
2011, 102, 394–407. [CrossRef]

11. Yang, K.; Chen, Y.Y.; Qin, J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2009,
13, 687–701. [CrossRef]

12. Dirmeyer, P.; Chen, L.; Wu, J.; Shin, C.-S.; Huang, B.; Cash, B.; Bosilovich, M.; Mahanama, S.; Koster, R.; Santanello, J.;
et al. Verification of Land–Atmosphere Coupling in Forecast Models, Reanalyses, and Land Surface Models Using Flux Site
Observations. J. Hydrometeorol. 2018, 19. [CrossRef]

13. Xie, J.; Yu, Y.; Li, J.-l.; Ge, J.; Liu, C. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis
and observations. Meteorol. Atmos. Phys. 2019, 131. [CrossRef]

14. Jiang, X.; Wu, Y.; Li, Y.; Shu, J. Simulation of interannual variability of summer rainfall over the Tibetan Plateau by the Weather
Research and Forecasting model. Int. J. Climatol. 2018, 39. [CrossRef]

https://pan.baidu.com/s/1N46Mq0EFNwenyWe1DB33ag
https://pan.baidu.com/s/1N46Mq0EFNwenyWe1DB33ag
http://doi.org/10.1175/JHM609.1
http://doi.org/10.1007/s11430-009-0194-9
http://doi.org/10.1175/2008BAMS2545.1
http://doi.org/10.1007/s13351-019-8602-3
http://doi.org/10.1007/s00376-017-7014-5
http://doi.org/10.1016/j.agrformet.2018.05.007
http://doi.org/10.1016/j.atmosres.2014.10.012
http://doi.org/10.1016/j.atmosres.2011.09.001
http://doi.org/10.5194/hess-13-687-2009
http://doi.org/10.1175/JHM-D-17-0152.1
http://doi.org/10.1007/s00703-018-0595-4
http://doi.org/10.1002/joc.5840


Land 2021, 10, 253 15 of 15

15. Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad.
Sci. USSR 1954, 151, e187.

16. Beljaars, A.C.M.; Holtslag, A.A.M. Flux Parameterization over Land Surfaces for Atmospheric Models. J. Appl. Meteorol. 1991,
30, 327–341. [CrossRef]

17. Paulson, C. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface
Layer. J. Appl. Meteorol. 1970, 9, 857–861. [CrossRef]
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