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Abstract: Forest carbon sequestration offset protocols have been employed for more than 20 years
with limited success in slowing deforestation and increasing forest carbon trading volume. Direct
measurement of forest carbon flux improves quantification for trading but has not been applied
to forest carbon research projects with more than 600 site installations worldwide. In this study,
we apply carbon accounting methods, scaling hours to decades to 28-years of scientific CO2 eddy
covariance data for the Harvard Forest (US-Ha1), located in central Massachusetts, USA and estab-
lishing commercial carbon trading protocols and applications for similar sites. We illustrate and
explain transactions of high-frequency direct measurement for CO2 net ecosystem exchange (NEE,
gC m−2 year−1) that track and monetize ecosystem carbon dynamics in contrast to approaches
that rely on forest mensuration and growth models. NEE, based on eddy covariance methodology,
quantifies loss of CO2 by ecosystem respiration accounted for as an unavoidable debit to net carbon
sequestration. Retrospective analysis of the US-Ha1 NEE times series including carbon pricing,
interval analysis, and ton-year exit accounting and revenue scenarios inform entrepreneur, investor,
and landowner forest carbon commercialization strategies. CO2 efflux accounts for ~45% of the
US-Ha1 NEE, an error of ~466% if excluded; however, the decades-old coupled human and natural
system remains a financially viable net carbon sink. We introduce isoflux NEE for t13C16O2 and
t12C18O16O to directly partition and quantify daytime ecosystem respiration and photosynthesis,
creating new soil carbon commerce applications and derivative products in contrast to undifferenti-
ated bulk soil carbon pool approaches. Eddy covariance NEE methods harmonize and standardize
carbon commerce across diverse forest applications including, a New England, USA regional eddy
covariance network, the Paris Agreement, and related climate mitigation platforms.

Keywords: commercial eddy covariance; daytime ecosystem respiration; forest carbon sequestration;
Harvard Forest; NEE; t13C16O2; t18O12C16O; ton-year accounting

1. Introduction

Forest carbon net ecosystem exchange (NEE) for US-Ha1 employing eddy covariance
(EC) for direct in situ CO2 measurement for research purposes has been reported [1–6].
An objective of this study focuses on the requirements for implementing and validating a
commercial protocol for net forest carbon storage products suitable for financial market
transactions, requirements that have not been elucidated. Existing forest carbon protocols,
based on exclusion of direct CO2 measurement, limited forest mensuration, and use of
forest growth models [7], are ineffective, resulting in offsets representing ~4% of volun-
tary carbon trading transactions worldwide in 2019 [8,9], despite ~20+ years of protocol
usage [10]. In contrast, GHG trading platforms are expanding rapidly, outpacing the
development and implementation of improved direct measurement protocols for forest
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CO2, N2O, and CH4 [8,11]. Over 60 carbon pricing initiatives are in place or scheduled
for implementation, consisting of 31 emission trading systems and 30 carbon taxes (46
national, 32 subnational jurisdictions) [8], all of which could incorporate directly measured
forest carbon product trading. Typically, diverse offsets are differentiated and purchased
as voluntary or compliance products priced in 2019 approximately at $1.62 and $25 tCO2
(annual averages), on 36.7 million and 8734 million annual totals for tCO2equivalent
(CO2e) [12], respectively [9]. Price differentials for carbon offsets, however, are based on
similar estimation-based protocols that exclude CO2 precluding equitable and justifiable
fundamental prices on forest carbon. Direct measurement and verification of GHG’s across
forest project sites would fundamentally improve trading and pricing transactions while
harmonizing GHG markets across trading platforms [5], another objective of this study. Im-
proved forest carbon protocols will benefit local-to-global forest management projects [13]
and diverse landowners including Indigenous People [14] and land subject to continued
deforestation of ~4.7 million hectares per year in 2010–2020 [15].

In this study we describe the financialization process for NEE (gC m−2 year−1) forest
products through a retrospective analysis of the longest running forest carbon EC platform
in the world, the Harvard Forest, Petersham, MA, USA. Model based forest carbon protocols
that exclude CO2 measurement cannot support equivalent transactions or be subject to
retrospective analysis and validation employing direct CO2 measurement methods [4]. We
analyze the temporal and spatial dimensions of the US-Ha1 Environmental Measurement
Site NEE CO2 flux partitioned into Gross Primary Productivity (GPP) and Ecosystem
Respiration (Reco) including extrapolation of US-Ha1 tower data to the Prospect Hill area
(~1500 hectares (ha)), where the US-Ha1 EC tower is located, and to 40,468 ha, based solely
on numerical projection, to illustrate potential project revenue with increasing land area.
We demonstrate how NEE data relates to financial outcomes, including errors, discount
and exit scenarios, fundamental to contemporary commercial carbon trading protocols
but as yet not elucidated for entrepreneurs, investors, and landowners for a single long
term CO2 flux project. We propose that isoflux for NEE of t13C16O2 and t12C18O16O, CO2
isotopocules (ISONEE), be used to partition daytime Reco [16–18] as the basis for new carbon
trading offset products that also characterize forest water- and carbon-use efficiency. We
discuss the implications of the study for commercialization of NEE and the essential role of
Reco in tracking and monetizing the soil carbon assets of forests and related landscapes and
limitations of the study.

2. Materials and Methods
2.1. Eddy Covariance and Net Ecosystem Exchange

Subsequent to calculating NEE with the EC technique, it is usually partitioned into
the components of Reco and GPP, according to Equation (1). The partitioning is done using
models that predict the rates of Reco during daylight hours from nighttime observations
(when GPP is zero) [19,20]:

NEE = Reco + GPP (1)

In Equation (1), Reco includes the contribution of CO2 from heterotrophic respira-
tion (Rh) emitted by soil microbes and fauna, and autotrophic respiration (Ra) emitted by
vegetation; these components are not partitioned by typical NEE methods [16,17]. NEE
is based on established science and provides the commercial integrated carbon quan-
tity of interest, net sequestered carbon or NEE employing widely used algorithms [19]
in 600+ publications [21]. It can also be expressed as net ecosystem production (NEP):
NEP = −NEE = (−GPP) − Reco [22]. While NEE does not directly probe soil carbon pools,
Reco provides a universal method to assess and quantify dynamic soil carbon sequestration,
an approach that characterizes flux rather than bulk carbon pools that are regarded as
static over time [23,24]. The use of 13CO2 isotopic flux partitioning (IFP) [25], particularly
attractive for forests (e.g., C3 woody species [26]), further differentiates and quantifies
daytime and nighttime respiration providing the basis for new NEE derivative commercial
high precision derivative products (e.g., Day Reco, Night Reco) in contrast to non-isotopic
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NEE measurements and model based methods [27]. The need for improved quantification
of soil carbon has been identified [28–32].

Fluxes derived from the EC methodology are commonly measured at micrometeo-
rological towers with high-frequency instruments (10 Hz) and averaged over 15, 30, or
60 min periods to isolate turbulence effects from other scalar influences [33]. The towers
commonly include other instruments to measure meteorological variables such as air and
soil temperatures at different heights and depths (Tair; Tsoil), incoming global radiation
(Rg) or photosynthetically active radiation (PAR), vapor pressure deficit (VPD) or relative
humidity (rH). As the measurement sites might be located in remote places in the ambient
environment 24 h a day, 365 days a year, it is common to have ~35% of missing data [34] due
to system malfunctioning that cannot be repaired in real-time. For instance, storms, snows,
high winds, and the insects or animals that live in the forest can damage the instruments,
causing a break in data until repairs can be made, often resulting in gaps of days to weeks.
Moreover, EC methodology can underestimate NEE over low turbulence conditions [35],
thus these points have to be removed. This process may increase the number of missing
data points to over 50% [36], but it is necessary to avoid biased data. The friction velocity
(u∗; Equation (2)) is a measure of turbulence, thus a u∗ threshold can be used to classify
the data into low and high turbulence periods. Some methodologies to estimate the u∗
threshold are described in [35,37].

u∗ =
(
−u′w′

)
1/2 (2)

To calculate a CO2 budget over a year or any time frame, it is necessary to integrate the
flux value over the period, that is, to sum NEE measured at each interval over the whole
period. We argue here that the universally accepted relationship (1), established by over
600 publications, is a requirement for the commercialization of forest carbon sequestration,
and, further, we argue that the soil carbon component designated as a commercial entity
cannot be separated from its above ground counterpart (e.g., forest, agriculture, grazing).
The EC methodology integrates soil CO2 efflux (Reco) and photosynthesis (GPP) (e.g., (1)).
As we explore in this study, EC methods require careful analysis and determination of
system uncertainty to be used across project sites and ultimately as a foundation for
harmonized NEE carbon commercial products.

Therefore, the gaps in the NEE time series have to be filled. Lookup tables are
commonly used to fill the gaps, which consists of creating a table with mean NEE values
over several ranges of temperature and radiation jointly and fill missing values with their
corresponding mean in the table [34]. For instance, all the missing NEE data points that are
between 100–150 W m−2 in Rg and 20–21 ◦C in Tair are filled with the mean NEE, calculated
with measured data, for that interval. Some variations of this methodology include VPD
and different time windows to calculate the means [19]. CO2 budgets estimated with this
methodology have a maximum error of around 180 gCO2 m−2 year−1, depending on the
ecosystem type and the quantity of missing data [34].

By signs convention, positive NEE values represent an emission of CO2 from the
vegetation to the atmosphere and negative values are CO2 sequestrations. The first occurs
mostly at night and are associated with Reco while the latter values are present in day-hours
due to GPP being higher than Reco.

Partitioning NEE (Equation (1)) into Reco and GPP is useful to better understand
how the ecosystem functions and to evaluate hypothetical scenarios, including diagnostic
indicators for the sequestration strength of a desired soil carbon commercial product. As
the sensor does not distinguish between both fluxes (it only measures NEE), Reco and
GPP have to be calculated with available methodology [19,20,32]. For this calculation,
the nighttime approach (NT) estimates Reco fitting the Lloyd and Taylor [38] model for
respiration (Equation (3)) using only nighttime data, because NEE = Reco at night, and then
extrapolating the parameters Rref and E0 found in the regression to calculate daytime Reco
(Tref and T0 are fixed). Then, GPP is calculated by difference with Equation (1) [19]. Recent
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research suggests that the Reco extrapolation might be biased [32] due to the respiration
photo-inhibition of leaves, and it suggests novel methods to partition the flux. However,
these methods are under development and most of the references up to date use the NT
approach or the daytime approach (DT) that can be found in [20].

Reco = Rre f e
E0

Tre f −T0 −
E0

Tair−T0 (3)

While all living organisms respire and increase Reco, only vegetation contributes to
GPP, thus NEE yearly budgets may oscillate between positive and negative values over
many years, following changes in the climatic and biological variables. However, data from
the longest EC flux measurements tower (Harvard Forest Eddy Covariance Tower) showed
that this ecosystem remained as a carbon sink for 15 years [3,6] without any year being a
net emission. Therefore, it is important to determine the causes of this pattern to improve
the management over similar ecosystems, which may turn to be profitable commercial
projects in the international agreements crediting framework.

The Harvard Forest (HF) Environmental Measurement Site tower (42.537755◦ N,
72.171478◦ W; US-Ha1) is a component of the Harvard Forest Long Term Ecological Re-
search (LTER) site in Petersham, Massachusetts, USA (Harvard Forest Long Term Ecological
Research Site, 2019), and a core site in the AmeriFlux network (US-Ha1) and the National
Ecological Observatory Network (NEON) (HARV) (https://www.neonscience.org/field-
sites/harv). US-Ha1 is the one of the most intensively studied forests in the world with
an elevation of 340 m, an approximate area of ~1500 ha and is classified as Deciduous
Broadleaf Forests (DBF; Lands dominated by woody vegetation with a percent cover above
60% and height exceeding 2 m. It consists of broadleaf tree communities with an annual
cycle of leaf-on and leaf-off periods). The area surrounding the tower is dominated by
red oak (Quercus rubra) and red maple (Acer rubrum), with scattered stands of Eastern
hemlock (Tsuga canadensis), white pine (Pinus strobus) and red pine (Pinus resinosa) with
an approximate age of 90–125 years old [3]. The growing season usually starts around
mid-May and lasts about 160 days. Canopy height is 20–24 m and the tower height is
31 m. Boston and Hartford are the nearest urban areas, located at 100 km east and 100 km
southwest respectively [39]. The climate has a mean annual temperature around 6.5 ◦C
with annual precipitation near 1000 mm, distributed approximately evenly throughout the
year. The Harvard Forest trend of net carbon sequestration was first reported in 1993 [1],
followed by publications in 2001 [2], 2007 [3], and finally in 2020 [6]. This study considers
the NEE record for the EMS tower, although two additional eddy flux towers, the Hemlock
and clear-cut towers, have been in operation for shorter periods of time. A large portfolio
of soil respiration measurements over 22 years have also been made totaling ~100,000 data
points [40]. See [6] for additional details of the measurements and data analyses for the
Harvard Forest. The climatic drivers of carbon change, while of relevance and interest to
this study, are secondary to the pricing translation of data to carbon markets, representing
financial transactions for products as described on offer. In this study periods of net carbon
sequestration, according to values of NEE, are considered to be of the highest value to
carbon markets, although external factors may also influence carbon prices such as macro
and micro-economic trends [41] and regulatory mandates [42]. Biometric and mineral soil
carbon analyses are not addressed directly in this study (see [6] for this information).

2.2. Data

Carbon dioxide fluxes data [3] were retrieved from the AmeriFlux network
(https://ameriflux.lbl.gov/sites/siteinfo/US-Ha1). It is a dataset (“US-Ha1 28-years”)
with hourly NEE values calculated with the EC methodology, and other meteorological
variables like PAR, Tair and Tsoil at different heights and depths or VPD, among others. It
started in August 1991 and continues to December 2019. In this work, NEE values outside
the range (−60; 40) micromole m−2 s−1 were labeled as outliers and discarded.

https://www.neonscience.org/field-sites/harv
https://www.neonscience.org/field-sites/harv
https://ameriflux.lbl.gov/sites/siteinfo/US-Ha1
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The R package ReddyProc 1.2.1 [36] was used to filter low turbulence periods, to
gap-fill the data, and to partition NEE into Reco and GPP. It requires some meteorological
variables as input data, besides the fluxes, which are Rg, Tair, Tsoil, and VPD or rH. As in
the dataset are many possibilities to choose for each variable, the ones with less missing
data were used, which were: above canopy Tair (TA_PI_F_1_1_1) and rH (RH_1_1_1), Tsoil
measured at the lowest depth (TS_PI_1), and PAR (PPFD_IN_PI_F_1_1_1) divided by 0.47
as Rg [43,44]. Carbon flux (FC) and carbon storage (SC) were summed to complete NEE.

To filter low turbulence periods, the software calculated yearly u∗ thresholds follow-
ing [35] using the 50 percentile criterion and it discarded the points with u∗ below that
bound. Then, it created a Look-Up Table with the remaining data points, as described
in [19], to fill the missing NEE values. NT methodology was selected over DT or others to
partition the flux because, up to date, there are more publications to compare the results.

After processing all the data, weekly, monthly, yearly, and multi-yearly NEE, Reco,
and GPP budgets were calculated to describe inter-annual and intra-annual variability, as
well as their financial extrapolations. An online platform displaying daily US-Ha1 data
(previous day) and cumulative values can be found here: www.pemcarbon.com/ecaas/.
We note that extrapolation of US-Ha1 flux tower data to larger areas is purely for illustration.
Upscaling the US-Ha1 results to surrounding areas requires additional analysis including
remotely sensed data and scale-aware models and are not addressed in this study.

2.3. Soil Carbon Data

Data for soil respiration and for bulk soil organic content used in this study were
provided by [6,40]. The dataset employed represents a recompilation of many datasets
measured across twenty-three studies listed in [40]. Four methods were used to measure
Rs: (1) soda-lime systems where pellets were left beneath a closed chamber for 24 h to
absorb CO2 emitted from the soil; (2) static chamber systems where a chamber was placed
on a collar inserted into the soil and headspace air samples were taken at fixed intervals
over 15 to 30 min and subsequently analyzed with an infrared gas analyzer (IRGA) or a
gas chromatograph; (3) dynamic chamber systems in which a chamber was placed on each
collar, chamber air was circulated to and from a portable IRGA system, and the rate of
increase in CO2 concentration was measured in situ for a period of five minutes; (4) and
automated chamber systems, in which a datalogger-controlled system closed one chamber
at a time and circulated the headspace air through an IRGA [6,40].

2.4. Carbon Isotopocules and isoNEE

The isotopocule 13C16O2, and 18O12C16O data were measured between April and
October from 2011 to 2013 at the Harvard Forest and quality-controlled as the dataset
“hf209–10” [17] downloaded from https://harvardforest1.fas.harvard.edu/exist/apps/
datasets/showData.html?id=209 where a detailed explanation of the measurement system
can be found. It has 13CO2 isofluxes and 12CO2 fluxes obtained at irregular intervals of
around 40 min with an approximate 50% of missing data that were used to calculate 13C
yearly budgets. The isotopocules molar mixing ratios were measured by a quantum cascade
laser spectrometer, which runs in a temperature-controlled enclosure. Then, they were
calibrated on a 40-min interval by linear interpolation between two cylinders: a high span
gas cylinder containing roughly 450 ppm CO2 in air, and a low span cylinder containing
roughly 350 ppm CO2 in air. The total CO2 molar mixing ratio (to dry air) and the isotope
ratios were calculated from the individual isotopocule molar mixing ratios measured by the
spectrometer. Eddy and storage fluxes for each isotopocule and for total CO2, plus the eddy
and storage isofluxes, were calculated by EC using wind data from the sonic anemometer
that is operated as part of the existing long-term eddy flux measurement system. The
results were priced in $50 tC13O2 and $150 tC13O2 pricing scenarios (see pricing information
below) with extrapolations to 300 ha and 40,468 ha, based solely on numerical projection to
illustrate potential project revenue with increasing land area. To explore the relationship
between 13C and NEE from both datasets (“US-Ha1 28-years” and “hf209-10”), hourly

www.pemcarbon.com/ecaas/
https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=209
https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=209
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13CO2 means were used. All regressions and statistics were calculated using Python 3.7
and SciPy 1.4.1 library (https://docs.scipy.org/doc/).

Isotopic measurements for 13C are expressed as ratios in per mil (‰) in standard nota-
tion relative to Vienna Pee Dee Belemnite (VPDB) standard [45]. The purpose of employing
metric tons of 13C16O2, as defined for t12CO2, is to further partition and quantify soil CO2
respiration since Reco as reported for NEE represents both soils based heterotrophic (Rh) and
vegetation based autotrophic (Ra) carbon efflux measured during the night when GPP = 0.
In contrast, isotopic flux partitioning (IFP) [16–18,46] utilizes the inherent discrimination
against the heavier carbon isotope (13C) resulting in fractionation at the leaf level by the
Rubisco enzyme during photosynthesis between atmospheric and plant matter of up to
~29 per mil (‰) for plants with the C3 photosynthetic mode [26]. The isotopic imprint
of reduced or isotopically lighter 13C composition remains locked in plant matter until
it is transferred to the atmosphere as 13CO2 during decomposition by microbes (e.g., Ra)
differentiating respired from isotopically heavy tropospheric CO2. The fractionation occurs
instantaneously at the leaf level imprinting organic matter as substrate for respiration and
isotopic measurement. The actual δ13C of vegetation and subsequent release of soil CO2 via
respiration for a given sample will vary across the temporal changes in atmospheric δ13C
and rainfall experienced during growth among other factors [26]. For example, tree ring
δ13C for two tree species of the Harvard Forest, Quercus rubra and Tsuga canadensis, ranged
from ~−22.3 to −24.7 ‰ across seven annual rings (1997–2003) [47] while mean annual
precipitation and canopy effects of ~−28 to −33 ‰ δ13C have been reported for tropical
forests [48]. The ∆−δ13C between the atmosphere and plant matter diminishes for plants
with the dicarboxylic acid (C4) pathway plants (e.g., grasses, crops) to ~2‰ [26,49]). Eddy
covariance can be employed to determine fluxes for carbon isotopocules (e.g., 13C16O2,
and 18O12C16O, or 636 and 826, respectively, in HITRAN notation [50], with natural abun-
dances of 0.011057 and 0.003974, respectively) in much the same way as for bulk CO2
(e.g., 12CO2, 13CO2) but with a high precision isotopic analyzer (e.g., ~4 Hz response and
time averaging over the EC integration period of 30 to 60 min). In this study, 636 and 826
are analyzed: commercial analyzers are available for 726. The 826 isotopocule is of rele-
vance to intrinsic ecosystem water and carbon use efficiency [16]. The carbon isotope ratio
13C/12C is approximately equal to the isotopocule ratio 13CO2/12CO2; isoflux of 13C16O2 is
proportional and highly correlated with its 12CO2 counterpart. Isofluxes of 626 and 826
(‰ µmol m−2 s−1) result in net isoflux I13

N = σ13
N FN , [17] or, for carbon trading, expressed in

metric tons as ISONEE t13C16O2 and ISONEE t18O12C16O. Commercial, off-the-shelf carbon
isotopic analyzers and typical EC components are available as described in [16–18,25].

2.5. Carbon Pricing

We have selected carbon pricing to illustrate the financial value of NEE had it been
sold at $10 and at $30 tCO2. A price of $10 reflects the initial price floor for CARB forest
carbon offsets [51]. A price of $30 reflects the lower end of estimated carbon pricing to
cover the social cost of carbon [52]. Isotopocules of CO2 have not been proposed or priced
as carbon financial instruments, however, NEE isoflux for 13C16O2 is expected to provide
partitioning of Reco into fluxes for Ra and Rh, reducing the uncertainty of CO2 efflux, and
thus should command a higher price than undifferentiated Reco. We use the arbitrary
pricing of $50 and $150 to illustrate the potential financial value of carbon isotopocules.

2.6. Ton-Year Accounting

In the Kyoto Protocol [53], emission avoidances are considered to be permanent,
whereas CO2 captured and stored in trees or wood products may return to the atmosphere
due to fire or decomposition, creating a need for an equivalence system to quantify both
activities contributions to the climate change mitigation [54]. Up to date, there are at least 15
different methodologies to account for this, with no agreement of the most appropriate [55].
One of these is the ton-year Moura-Costa [56] accounting method, selected for this study
because it is the simplest and easiest to understand for a nontechnical audience, which

https://docs.scipy.org/doc/
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makes it a more attractive option to this kind of investors. It has an Equivalence Time (Te)
and it is estimated according to Equation (4) (M-C), but with Te calculated following the
revised Bern Model (Equation (5)), which is 46 years [54]. Therefore, if one tCO2e credit is
equivalent to delay an emission for 100 years, M-C assigns 1/46 tCO2e credits to a CO2 ton
sequestered for one year, 55/46 tCO2e credits to a CO2 ton stored for 55 years, etc.

tCO2e =
tCO2 − tCO2 baseline

Te
(4)

[CO2(year)] = 0.18 + 0.14 e
−year

421 + 0.19 e
−year

71 + 0.24 e
−year

21 + 0.26 e
−year

3.5 (5)

The M-C ton-year accounting method, supposing tCO2 baseline = 0, was used to explore
5, 10, 15 and 20 years exit options profitability, along with Net Present Value calculations
(NPV; Equation (6).) of a hypothetical project that started in 1992 and finished at any year,
discounted at 0%, 1%, 3%, 5%, 10%, 15% discount rates. These results were compared
with the same projects but compensated with the California Air Resources Board (CARB)
protocol. Also, they were extrapolated to a hypothetical 40,468 ha (100 k acres) land and the
Prospect Hill area (300 ha; 741 acres), while different carbon price scenarios were applied
($10 or $30 a tCO2e) to analyze the financial value of both lands.

NPV = ∑
year

Cash f lowyear

(1 + interest)year (6)

2.7. Study Limitations

We note that extrapolation of US-Ha1 flux tower data (~10 ha) to landscape scales
(e.g., 40,468 ha) is based solely on simple numerical projection to illustrate potential
project revenue with increasing land area, not an interpretation of ecological net ecosystem
exchange for the region. It is widely acknowledged that one of the primary limitations of
eddy covariance based NEE is the uncertainty of upscaling limited footprints for individual
EC towers to surrounding ecosystems [57]. The financial scope of NEE revenue illustrated
by projection is the counterpart to scientific data bridging the gap between science and
commerce and is justifiable for this purpose. Eddy covariance up-scaling including the use
of EC networks in the context of a direct measurement forest carbon protocol have been
described previously [5,58]. Up-scaling of the US-Ha1 NEE results from the tower footprint
to surrounding areas would require additional EC platforms to cover gaps, ecological
analysis, remotely sensed data and the use of scale-aware models that are beyond the scope
of this study [59–66]. This study is also subject to limitations and uncertainties of the NEE
methodology itself including accounting for periods of advective and low-frequency flows
of CO2 that are difficult to capture leading potentially to underestimation of fluxes; the
results used in this study have been corrected for these conditions as described (Methods,
2.1 Data) [6]. Lack of EC replication and a persistent inability to close the surface energy
budget have been noted [67]. While these limitations have been addressed to the extent
possible for the US-Ha1 data [6], details of standardization of QA/QC thresholds [35,68],
and upscaling using remote sensing data [57,61,69,70] are outside of the scope of this
study. Due to the short-term EC results for two additional towers reported for the US-Ha1
research area, the Hemlock tower (11 years) and clear-cut tower (6 years) [6], these results
were omitted in the 28-year long term analysis presented.

3. Results
3.1. The Full Harvard Forest NEE Record

The full US-Ha1 NEE records are shown in Figure 1A for NEE, Reco, and GPP hourly
values after filtering and gap-filling the full US-Ha1 record; biomass removal was neg-
ligible for the intervals analyzed. Figure 1B aggregates these variables as yearly sums
identifying three main intervals with different NEE behavior. Up to 2003, the sequestration
was approximately constant, with a yearly NEE mean (x) of −703 gCO2 m−2 year−1 and
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an associated standard deviation (SD) of ± 239 gCO2 m−2 year−1. The next six years
(2004–2009) exhibited higher net sequestration with a peak in 2008, when the NEE x and SD
increased to −1658 ± 414 gCO2 m−2 year−1, respectively. For the period
1992–2008, the x, SD were: −1007 and 563 gCO2 m−2year−1, respectively, with a trend
of −86.8 gCO2 m−2year−1, R2: 0.61. There was an abrupt decline in NEE in 2009–2011
to a value of −4.21 gCO2 m−2 year−1. Between 2012 and 2019, NEE became more unsta-
ble (x = −1093 gCO2 m−2 year−1 ± 472 gCO2 m−2 year−1) than in previous periods but
remained a net carbon sink. Over the whole term (1992–2019), the yearly mean carbon
sequestration was −978 gCO2 ± 553 gCO2 m−2 year−1 [6]. NEE reached its minimum
in 2010 (−4.21 gCO2 m−2 year−1) and its maximum in 2008 (−2199 gCO2 m−2 year−1).
Carbon uptake was distributed unevenly during the year, with sequestration during the
forest growing season and emissions in the remaining weeks. NEE weekly sums for winter
and summer accumulates carbon annually resulting in 27,101 gCO2 m−2 for the 1991 to
2019 period. Figure 1C shows soil respiration (Rs) divided by Ecosystem Respiration (Re)
yearly values (Brown) and total soil carbon measured in the top 15 cm of the mineral soil of
the hardwood- (purple) and conifer- (grey) dominated plots in 1992 and 2013 from [6] to il-
lustrate the coupling between diverse biological and financial indices for the US-Ha1 record.
In Figure 1D we extrapolate the US-Ha1 data to a larger area (40,468 ha or 100,000 acres),
based solely on numerical projection to illustrate potential project revenue with increasing
land area, to pricing at the initial floor price for CARB of $10 and above the suggested social
price of carbon of $25. The period 2009–2012 is highlighted with a grey bar to emphasize
the change in ecosystem function across the indicators, for example, increased Reco and
decrease in Rs/Re shown in Figure 1B,C, respectively, and propagation of carbon loss to
financial loss shown in Figure 1D.
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Referring to Figure 1D, pre-tax, gross income from the Harvard Forest for the total
period of data would be over $109 million, or over $329 million for a price of $30 tCO2.
Additional data for the daily and seasonal NEE, GPP and Reco behavior can be found in
Appendix A (Figure A1, hourly and yearly NEE; Figure A2, Annual and weekly histograms
for NEE, Reco and GPP; Figure A3, annual and monthly Reco versus GPP, and Table A1 for
yearly statistics) and online: https://pemcarbon.com/ecaas/.

3.2. Box Plots of Project Time Interval and Area Extrapolations

Time and area comparisons for NEE are provided in Figure 2 shown as box plots for
the full record of no exit, 5 and 20 year exits, and for the CO2 isotopocules for ISONEE
t13C16O2 and ISONEE t12C18O16O isofluxes. Figure 2A shows that the no exit 28-year project
was more volatile considering values for first and third quartiles and outliers, than for
a 20-year exit (median values: $79.5 and $21.5 ha−1 year−1 respectively, in a $10 tCO2e
pricing scenario), and that carbon isotopocule isoflux products would command higher
per-ton price levels than non-isotopic counterparts, in line with enhanced partition values
for Reco and Ra. Figure 2B.
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Figure 2. Yearly financial CO2 and 13CO2 (or 12C18O16O) box plots with median (black line), first and third quartiles
(box), 5 and 95 percentiles (whiskers) and outliers (circles) per ha (A), extrapolated to Prospect Hill area (300 ha; (B)) and
extrapolated to 40,468 ha (100,000 acres; (C)), based solely on numerical projection to illustrate potential project revenue
with increasing land area, in logarithmic scale. The red points are accumulated values over the whole period; blue points
are mean accumulated values at the end of exited projects (5 or 20 years, respectively). Left and right y-axis show different
pricing scenarios (left: a ton of CO2 is worth $10 and a ton of 13CO2 (or 12C18O16O) $50; right: a ton of CO2 is worth $30 and
a ton of 13CO2 (or 12C18O16O) $150).
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Figure 2C shows the potential magnitude of pre-tax gross revenue for 300 and
40,468 ha, based solely on numerical projection to illustrate potential project revenue
with increasing land area, $813 thousand and ~$109 million, respectively, priced at $10
tCO2. The financial values presented in Figure 2A–C and Figure 1D assumes that carbon
storage is permanent, an assumption that does not apply to forests.

3.3. Ton-Year Accounting Applied to the Harvard Forest Record

Referring to Figure 3A, application of this approach to five-year US-Ha1 projects would
have earned around $30 or $90 ha−1 with a $10 or $30 tCO2 price scenario, respectively,
while longer projects (e.g., 10, 15, 20 years) would have returned multiples of the five-year
earnings because they sequestered more carbon in that period. Note that the CARB exit
represents a zero return for reforestation (Refo) and avoided emissions (AvCon) projects
and a negative return for improved forest management (IFM) CARB projects. Figure 2B
shows that yearly mean returns (i.e., the total return divided by the length of the project)
would have also been higher for longer projects, in this case, because they stored carbon
for more time, which is better compensated in ton-year accounting methods. The CARB
protocol would have resulted in 100% payback of the project offset value by landowners to
CARB and or penalty to the landowners and investors if the project ended before 100 years
according to project type as in Figure 3A.
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(red) years, using the Moura-Costa approach, and CARB protocol returns for reforestation and avoided conversion projects
(Refo/AvCon; black), for improved forests management (IFM) in 5 (purple), 10 (brown), 15 (pink), and 20 (grey) years.
(B) Same as (A) but showing yearly mean returns. (C) Returns per ha using the same carbon pricing scenarios as (A) for
projects that started in 1992 and finished in one exit year, discounted at 0% (blue), 1% (orange), 3% (green), 5% (red), 10%
(purple), and 15% (brown) calculated with the Moura-Costa approach and with both CARB protocols without discounting
(black and grey). In this case, there are 28 projects for each discount rate with different lengths.
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3.4. CO2 Isotopocules as Tradable Forest Carbon Products

The results for ISONEE13C16O2, and ISONEE 18O12C16O are presented as new carbon
trading products that are monetized in a manner similar to that for 12CO2 NEE flux. We
used the relationships shown in Figure 4A–C, to partition and calculate NEE isoflux as
t13C16O2 and t18O12C16O (see also Figure 2A–C) boxplots and data summary of Table A1).
Figure 4A establishes the linear and correlated relationship between the isotopic composi-
tion of 13CO2 flux, of opposite sign, and 12CO2 flux expected from coupled fractionations
shared by leaf and ecosystem CO2 dynamics, as cited in Methods, 2.4. Figure 4B shows
13C16O2 data aggregated and plotted against NEE from the “US-Ha1 28-years” dataset, to
establish the basis for the coupled annual record and calculations. Likewise, Figure 4C
illustrates the relationship between the non-gap filled 18O12C16O data plotted against NEE
12C16O2 non-gap filled data to establish the basis for the annual record and calculations;
the data sets available did not provide gap-filled data for this isotopic series. The results
identify carbon and oxygen isotopic species as singular or mixed isotopic masses that are
quantified and financialized according to isotopic mass across the project temporal and
spatial domains. The results (Figure 2A–C) suggest market value for ISONEE as multiples
of pricing for non-isotopic counterparts.
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4. Discussion

A universal scientifically accepted methodology based on direct measurement of
CO2 flux (EC) and net carbon sequestration (NEE), applied to the US-Ha1 28-year record,
establishes the foundation for verifiable commercial carbon products. Relying upon the
NEE methodology, forest carbon protocols that exclude CO2 data for Reco would result
in a project error (1992 to 2019) of ~466% given that Reco represents ~45% of NEE and
cannot be excluded from a full net forest carbon accounting for financial products and
trading [4]. As a result, forest carbon model based determinations of sequestered carbon
are likely more uncertain as proxy data cannot be validated without independent direct
measurement [5]. The level of uncertainty for model based commercial products results
in discount pricing observed, for example, in 2019, by forest voluntary carbon offsets
priced typically < $1.67 USD for the highest volume of offsets under the Verified Carbon
Standard [9]. Direct measurement of NEE CO2, as described in this study, provides a
harmonized and equivalent pricing basis for voluntary and compliance pricing [5].

The lessons learned from the long-term retrospective US-Ha1 carbon sequestration
record include: (1) financialization of scientific NEE data is readily achievable using ex-
isting instrumentation, reporting and transaction mechanisms linking landowners with
buyers of forest carbon offsets and expanding carbon markets, (2) considerable flexibility
across spatial domains and temporal intervals, discount rates and feasible exit terms can
be assessed by buyers and sellers of forest carbon offsets to inform decision making, (3) the
permanence of net sequestered forest carbon while shown to be viable for ~100+ years, as
for the US-Ha1, is biologically labile to increases in Reco relative to GPP (e.g., 2009–2011),
and to external factors including changes in rainfall, surface temperature, extreme events
(e.g., El Nino, La Nina) [71], and length of growing season [6] and must be monitored
to verify and adjust monetization strategies, (4) Reco lays the foundation for integrated
dynamic soil carbon sequestration commercial products (gCO2 m−2year−1), in contrast
to reliance on bulk soil carbon pool (gC m−2) approaches, and, (5) isotopic flux of CO2
as ISONEE t13C16O2, and t18O12C16O, further partitions NEE as innovative and derivative
forest soil and forest carbon commercial products. Taken together, the use of EC NEE
and ISONEE harmonizes carbon sequestration applications across diverse projects (e.g.,
reforestation, agriculture, grazing, afforestation), and policy platforms (e.g., Paris Agree-
ment [72]; Reducing Emissions from Deforestation and Forest Degradation, or UN-REDD
Program catalyzing carbon markets and nature based climate change solutions [73] across
contemporary and long-term project time scales.

The NEE commercial forest carbon offsets may also play a role in catalyzing efforts
to reverse deforestation against persistent forest loss worldwide of ~4.7 million ha per
year over the last decade [15]. Reversing deforestation and protecting conserved forests
will be a massive undertaking. For example, in 2019 the value of the voluntary market for
forestry and land use projects was ~$159.1 million USD representing 36.7 million tCO2 [9]
compared to the compliance market of ~$175 billion USD and ~6777 million tCO2 [8]. The
potential for forest restoration and conservation projects (e.g., 10 k to 50 k ha project areas)
covering 0.92 billion ha could yield an estimated $345 billion in revenue with verified NEE
of 2.76 billion tCO2 for long-term projects. Moreover, short term projects exiting at 5, 10,
and 15 years, according to ton-year accounting, yield a value of $60 billion. The number of
projects and areas required (e.g., 10,000–50,000 ha) to achieve the NEE (tCO2e 2.76 billion)
in this hypothetical scenario is 55,200 compared to ~67 CDM forest projects recorded since
2006 [74] (see Appendix A, Table A2 for additional details); in contrast there are ~1.5 million
farms in the US alone [75]. The forgoing comparison is a stark reminder of the scale of
action needed to reverse deforestation. Impediments to expansion of reforestation projects
result, in part, from the high cost and invalidation risk to landowners (e.g., exclusion of CO2
measurement) typical of existing forest carbon protocols [76]. A comparison of features and
functions of existing protocols and eddy covariance NEE methods has been reported [5]
emphasizing the need for scientific protocol criteria that uncouples pricing constraints from
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regulatory and legislative mandates across offset types, equalizing forest carbon project
opportunities and earning potential [5] for all landowners including Indigenous People.

We emphasize that existing forest carbon protocols require that each tCO2 captured
remains fixed in the trees or soil for at least 100 years fulfilling the arbitrary permanence
requirement of non-CO2 based protocols such as the CARB and Climate Action Reserve
(CAR) [4,77,78]. According to CARB-CAR protocols, landowners who exit the project
prior to 100 years must repay the value of all issued offsets in the cases of reforestation
and avoided emissions, and pay an additional penalty in the case of improved forest
management [7], making exits punitive and infeasible. In contrast, we show here that
accounting methods can accommodate realistic temporary carbon capture and storage
without arbitrary exit terms [7], delaying total deforestation and the effects of climate
change and providing time intervals to take other actions, for example, reforesting ~0.9
billion ha of degraded land [79]. The Moura-Costa ton-year accounting method [56]
combined with the revised Bern Model for decay of atmospheric CO2 concentration over
time [54] provides viable exit options for shorter projects, an approach endorsed by the
IPCC [80]. Furthermore, variance in the no exit case for US-Ha1 is higher than in exited
projects (Figure 2 and Table A1 from the Supplemental) emphasizing the variable nature
of annual carbon sequestration even over long intervals [81] and the need for direct
measurement to validate claims of annual net CO2 emission reduction for carbon markets
by ecosystems, and Reco as represented by isofluxes. This approach incentivizes many of
the potential short projects that are outside any existing net forest carbon protocol because
the 100-year required project term is a high barrier to entry for landowners reflected in
CARB-CAR projects representing less than ~0.2% of available US land [4,77]. Moreover,
the implementation of AB398 imposes new changes in offset pricing including an arbitrary
price ceiling of $65 per allowance, and requires at least 50% of projects to directly benefit
the State of California implying a carve-out for projects that must originate in the state [82].
The consequences of AB398 are not known but suggests a retraction of the CARB-CAR
forest carbon protocol from areas outside of California. Clearly, an alternative protocol that
catalyzes forest conservation and restoration that is uncoupled from regulatory legislation
is needed, such as that presented in this study.

The US-Ha1 analysis suggests that short- and long-term forest conservation (e.g., min-
imal timber removal) is viable and accretive to the forest regeneration process. From a
commercial perspective, selection of the optimal project length (Figure 3C) depends on
the discount rate that the investor uses to account for the time value of money. While low
discount rates (below 5%) incentivize longer projects, making their returns rise exponen-
tially as shown in Figure 3C, a rate above 10% would make these decay after a few years.
For example, a project that started in 1992 and finished in 2020 (28-years) would have
returned less money than one that finished in 2002 (10 years), when discounted at 15%. In
practice this means that landowners and investors who value the present more than the
future would select shorter projects (below 10 years) compared to a retirement fund with
an investment outlook of decades. Referring to Figure 2A–C, 5- and 20-year project exits
would have exhibited less yearly physical and financial carbon variance (and SD) than no
exit investments. Exits at 5 and 20 years (Figure 2C) (40,468 ha, $10 tCO2) are characterized
by x of ~$256,000 and $891,000, and SD of ± $93,000 and ± $98,000, respectively, compared
to the no exit 28-year project with x of ~$3.9 million and SD of ± $2.2 million. Thus,
extending a project time frame does not necessarily diminish its financial volatility, because
the accounting method would have assigned more credits to longer projects that stored
carbon for more years, increasing its return and variance, as shown in Figure 2, whereas the
yearly variance would have been higher for a 20-year project than for a five-year project.
Investors and project landowners may also consider that if the mean CO2 NEE value was
a good estimation of a project expected income, then to earn one dollar at the end of the
project an investor would buy 0.16 ha or 0.05 ha (5- or 20-years projects respectively; $10
tCO2). For these project parcels (e.g., 0.16 or 0.05 ha) they would expect to earn $[0.65;1.35]
for five-year projects and $[0.89;1.11] for 20-year projects (66% confidence), respectively.
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The retrospective US-Ha1 NEE data implies that high annual variance, while unpredictable,
can be managed by investment objectives such as time horizon, desired return on invest-
ment and reliance on standardized direct measurement methods. Although we have only
analyzed the US-Ha1 EMS flux tower results in this study, a portfolio of diverse forest
projects (e.g., location, ecosystem type, management objective, and vulnerability to climate
change) could buffer volatility reducing the impact of the US-Ha1 NEE decline experienced
in 2010 [5], an established benefit of portfolio diversification [83]. Likewise, additional
US-Ha1 flux tower experiments documenting decline of NEE for a stand of hemlock forest
(HEM) due to insect damage (e.g., hemlock woolly adelgid) and for a clear-cut experiment
(CC) demonstrate that networks of EC platforms and NEE measurements can capture and
integrate multiple changing NEE forest landscapes [6]. The HEM site transitioned from a
net sink (~450 gC m−2year−1) to source over the period studied (2005–2012). The CC exper-
imental site initial timber harvest (2009) [84] was a large net carbon source but transitioned
to an annual net carbon sink after the fifth year of disturbance regaining ~66% of the carbon
lost since harvest [6]. The detection of forest project carbon source(sink) transitions is
considered a key capability for a forest carbon trading protocol, a well-documented feature
of EC NEE, but an insuperable omission for estimation-based protocols and analysis of
bulk soil carbon pools.

In the context of establishing an approach relying on GPP and Reco with emphasis
on commercial products, multiple measurement methods and innovative approaches, are
required to both understand carbon dynamics and transact reliable global forest carbon
and soil carbon sequestration markets. Monetary calculations for the US-Ha1 28-year
NEE record analyzed and described in this study did not include results for soil carbon
flux measurement, summarized in Figure 1C. However, the US-Ha1 coupled EC and
soil respiration dynamics record establish an unprecedented experimental biosphere for
soil model development and validation. Over 100,000 individual measurements of soil
respiration across 23 experimental studies, five different forest types and spanning more
than 25¸ years were conducted with cross-cutting footprints for the US-Ha1 EMS tower data
analyzed herein. For example, the relationship between soil CO2 efflux (Rs) determined
by individual chamber measurements, and total ecosystem respiration, Re, for the US-Ha1
NEE EC record analyzed in this study, covering shared tower footprints, shows that Rs/Re
varied from 0.49 to 0.88 (Figure 1C). The large variation emphasizes the complexity of the
biospheric system and seasonal carbon dynamics that challenge model development and
monitoring applications. Figure 1C shows that soil chamber measurements (Rs) and EC
measurements (Re) capture the perturbation of the 2010 US-Ha1 environment resulting in
a severe loss of forest carbon asset value with an uneven recovery spanning the period
up to 2019. In forest carbon trading practice, a landowner employing EC may also choose
to rely upon repeat soil chamber measurements as feasible and cost-effective to improve
understanding of the project soil carbon and financial dynamics.

In addition to soil respiration chambers, soil organic carbon measurements were made
across the US-Ha1 site footprint [6,40] to characterize soil carbon pools. Results for soil car-
bon pools revealed negligible change in net accrual of soil organic carbon for measurements
of % soil carbon and soil bulk density over the period 1992–2013 [6,40]. The US-Ha1 total
soil carbon in the top 15 cm of the mineral soil was 6072 (±1509), and, 6021 (±1238) gC m−2

for 1992 and 2013, respectively (3; Table S11). The lack of temporal resolution for soil
carbon changes in the soil column and the difficulty of sampling for detection of small
changes in a relatively large and heterogeneous soil carbon pool are unlikely to yield cost-
effective, meaningful, and verifiable data for commercial products, although this approach
is commonly employed [23,24]. For example, detection of a significant change (p < 0.05)
in soil carbon of ~20 gC m−2 is estimated to require ~164,194 samples for the US-Ha1 soil
sampling study surrounding the hemlock dominated (HEM) tower site (3; Figure S6). In
contrast, as described previously, NEE and Reco changes and trends in the flux and the
flow of CO2 and isotopocules into and out of the soil matrix establish contemporary and
historic perspectives to guide commercial development and conservative practice for soil
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carbon sequestration and monetization. NEE integrates complex diurnal and seasonal
factors affecting soil CO2 efflux from the soil column extending from the surface to ~1 m
in depth including turnover of differing carbon pools, diffusion, short- and long-term
changes in temperature, microbial metabolism, root activity and abiotic factors [6]. The
US-Ha1 research experiment and similar long-term studies are needed to create and test
mitigation and financial approaches to manage climate change with economic, social, and
planetary benefits.

The ISONEE products defined for 13C16O2 and 18O12C16O have the potential to rede-
fine carbon trading dynamics for CO2 measurement derivatives. The carbon and oxygen
isotopic species as singular or mixed isotopic masses can be quantified and, as for 12CO2, be
financialized according to mass across project temporal and spatial domains. The market
value of these isotopocules have not been priced but are reasonably expected to trade in
multiples of pricing for non-isotopic counterparts. Enhanced data for the partitioning of
NEE, not currently available in a commercial forest carbon protocol, will benefit investors
and landowners in management of projects in terms of forest operations, financial plan-
ning, and carbon isotopic flux trading. The basic approach has been described following
from established theory [45,85], methods and field campaigns [16,17,86]. Recognizing the
possibilities for ISONEE for 14CO2 and isotopocules of N2O and CH4 are likely to continue
to expand carbon trading products based on direct measurement.

We emphasize that extrapolation of areas beyond the US-Ha1 tower footprint pre-
sented in this study is not assumed to be representative of the immediate tower forest
cover. Extrapolation is employed here solely as a financial projection to illustrate revenue
potential across increasing land area for a project. While remote sensing estimates of GPP
for the Harvard Forest are similar to that of the surrounding ~16,500 ha [6,87], additional
data are required to reliably extend the EC NEE results. For US-Ha1, extension of the NEE
landscape would involve additional EC platforms to fill gaps across the selected area (e.g.,
16,500 ha), utilize select remote sensing data and employ models to integrate the data. EC
network data fused with remote sensing and diverse models are well described including,
for example, FLUXCOM [57,65], and subregional networks [88–92]. An encouraging result
has been found in the Howland Forest EC site (US-Ho1), where annual mean NEE fluxes
between co-located towers were found to be within 5% of each other [93]. Therefore, in a
homogeneous terrain, the extrapolation of the results outside the EC area might add an
uncertainty of approximately the same order of magnitude as introduced by the gap-filling
methodology [34].

5. Conclusions

We have shown that the retrospective US-Ha1 research results provide financial terms
for an EC project with a projected conservative revenue of at least ~$109 million ($10 tCO2;
40,468 ha; non-exited project), bridging the gap between science and commerce. We suggest
that land management for conservation as practiced at the US-Ha1 be expanded across the
New England region potentially increasing the CO2 sequestered by ecosystems. Creation
of networks of EC towers across the New England region could accurately value and price
the contributions of reforestation and conservation projects to mitigate climate change. The
retrospective US-Ha1 record implies a complex interplay of biotic, abiotic, and human
factors as agents of the magnitude and permanence for forest ecosystems and the carbon
they store. The scientific methods described in this study can be applied across global
policy platforms such as the Paris Agreement and the UN-REDD Program, harmonizing
pricing, and validation for voluntary and compliance markets worldwide.
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Appendix A

NEE: Reco: GPP and 13C RELATIONSHIPS AND TIME PATTERNS
Figure A1 shows NEE, Reco, and GPP from the Harvard Forest across different time

scales, after filtering and gap-filling. NEE flux is positive (emissions) during night hours
and negative (captures) in the daytime because there is no photosynthesis at night and NEE
is equal to Reco (Figure A1A). In this case, as NEE is measured and Reco is calculated with
Equation (3), these fluxes are not exactly equal at night, while GPP (calculated by difference
using Equation (1)) is positive at some intervals. Therefore, this result is biologically
incorrect, but it is consistent with the methodology used here for its calculation.
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In December, January, February, and March, monthly GPP is close to zero and NEE is
mostly Reco, producing a net emission (Figure A1B), which is coincident with the dormant
period of the vegetation when all the leaves from the trees fall and the plants diminish its
photosynthesis rate. However, around summer (from May to October approximately), the
growing season starts, the forest canopy turns full of green leaves and increases their GPP.
This produces net sequestration that compensates the emissions from the other months,
resulting in negative NEE values on every year (Figure 1B from the main text). More details
about the differences in NEE, Reco, and GPP distributions during the growing (weeks 21–40;
higher mean and variance) and dormant (weeks 41–19; mean and variance closer to zero)
seasons and how they aggregate to produce yearly histograms are illustrated in Figure A2.
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Figure A2. Yearly (left) and weekly (right) NEE (top), Reco (middle), and GPP (bottom) histograms.
The growing period starts and finishes around week 20 and 40 respectively (red), while the comple-
ment is the dormant season (purple).

The relationship between Reco and GPP sums changes each month and each year
(Figure A3). However, its correlation is positive, that is, when GPP increases Reco also
does, as happened in [94] over all the sites in the Tier 1 FluxNet 2015 dataset. This is
because many factors influence both variables in the same way (for example, more leaf
area index may result in more photosynthesis, but also more respiration) or are positively
correlated (for instance, PAR increases GPP and temperature, which raises the respiration
rate). Therefore, it is not possible to increase GPP sums indefinitely without making Reco
sums higher.
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Table A1. Harvard Forest Annual Statistics.

Physical Carbon

Financial Carbon *

Extrapolated to Prospect Hill
Area

(300 ha; 741 ac)

Extrapolated to 40,468 ha
(100,000 ac)

gCO2 m−2 tCO2 ha−1 tCO2 ac−1 $10 tCO2
/$50 t13CO2

$30 tCO2
/$150 t13CO2

$10 tCO2
/$50 t13CO2

$30 tCO2
/$150 t13CO2

No Exit Projects (28-Years)

Total −27,101 −271 −109 813,042 2,439,126 109,722,306 329,166,918

Yearly
Mean −978 −9.78 −3.96 29,358 88,074 3,961,984 11,885,953

Yearly
Std 553 5.53 2.24 17,827 53,482 2,242,524 6,727,602

Min (2010) −4.21 −0.04 −0.02 126 379 17,075 51,226

Max (2008) −2199 22 −8.91 65,997 197,990 8,906,434 26,719,302

Exit after 5 years

Yearly Mean −986 −9.86 −3.99 1901 5705 256,522 769,657

Yearly Std 325 3.25 1.32 696 2088 93,918 281,754

Exit after 20 years

Yearly Mean −1015 −10.2 −4.11 6610 19,832 891,776 2,675,328

Yearly Std 65 0.65 0.26 731 2193 98,642 295,928

CO2 Isotopocules (13CO2 or 18O12C16O)

2011 30.0 0.30 0.12 4502 13,506 607,620 1,822,861

2012 33.4 0.33 0.14 5013 15,039 676,535 2,029,605

2013 44.6 0.45 0.18 2591 7772 349,660 1,048,980

Mean 36 0.36 0.15 4035 12,105 544,605 1,633,815

Total 108 1.08 0.44 12,106 36,317 1,633,815 4,901,447

* We note that extrapolation of US-Ha1 flux tower data (~1 km2) to landscape scales (e.g., 300 and 40,468 ha) is based solely on numerical
projection to illustrate potential project revenue with increasing land area, not an interpretation of ecological net ecosystem exchange for
the region.
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Table A2. Forest sequestration project analysis summary for ~0.92 billion hectares.

% Area
(0.92

Billion
Hectares)

Project
Length
(Years)

Project
Area
(Mil-
lions

Hectares)

Average Project
Net CO2

Sequestration
(Millions) (3 tCO2

ha−1 year−1)

Annual
Revenue
(Billions)

Carbon Price
$10 tCO2
year−1

Project
Interval
Value

(Billions)

Tonne-Year
Accounting

Exit
(Billions)

Project
Size

(Hectares)
# Projects

25% 5 230 690 69 34.50 2.25 10,000 23,000
25% 10 230 690 69 69.00 8.25 10,000 23,000
25% 15 230 690 69 103.50 18.00 50,000 4,600
25% 20 230 690 69 138.00 31.50 50,000 4,600

100% - 920 27,600 27.60 345.00 60.00 - 55,200
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