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Abstract: Soil water holding capacities (SWHCs) are among the most important factors for under-
standing the water cycle in forested catchments because they control available plant water that
supports evapotranspiration. The direct determination of SWHCs, however, is time consuming and
expensive, so many pedotransfer functions (PTFs) and digital soil mapping (DSM) models have been
developed for predicting SWHCs. Thus, it is important to select the correct soil properties, topogra-
phies, and environmental features when developing a prediction model, as well as to understand
the interrelationships among variables. In this study, we collected soil samples at 971 forest sites
and developed PTF and DSM models for predicting three kinds of SWHCs: saturated water content
(θS) and water content at pF1.8 and pF2.7 (θ1.8 and θ2.7). Important explanatory variables for SWHC
prediction were selected from two variable importance analyses. Correlation matrix and sensitivity
analysis based on the developed models showed that, as the matric suction changed, the soil physical
and chemical properties that influence the SWHCs changed, i.e., soil structure rather than soil particle
distribution at θS, coarse soil particles at θ1.8, and finer soil particle at θ2.7. In addition, organic
matter had a considerable influence on all SWHCs. Among the topographic features, elevation
was the most influential, and it was closely related to the geological variability of bedrock and soil
properties. Aspect was highly related to vegetation, confirming that it was an important variable for
DSM modeling. Information about important variables and their interrelationship can be used to
strengthen PTFs and DSM models for future research.

Keywords: forest soils; pedotransfer function (PTF); digital soil mapping (DSM); machine learning
model; random forest; variable importance; sensitivity analysis

1. Introduction

The soil water holding capacity (SWHC) is the amount of water content in soil at the
particular matric suction. This is one of the most important factors for understanding and
modeling the water cycle in forest catchment [1–3]. SWHCs are usually represented through
the soil water retention curve, which is the relation curve between soil water content and
applied matric suction [4]. Since this matric suction indicates gravitational force, capillary
retention, and root pressure, identifying the water content of the soil corresponding to
the particular matric suction is essential for understanding the water cycle, especially in
relation to soil. In general, the logarithm of the absolute value of matric suction (pF) is
widely used to express particular matric suction [5,6]: pF = log10|F|, where F is the height
of the water column (cm).

Water content at a specific pF value plays a major role in representing the characteris-
tics of forest soil. Saturated water content (θS; water content at pF0) refers to the amount
of water when the soil is saturated with water and indicates porosity, as well as the total
amount of pores combined with macropores and micropores in the soil. pF1.8 indicates the
starting point of capillary water holding in soil, and pF2.7 expresses the end point of the
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gravitation drainage [6]. pF2.7 also represents the boundary condition of easily available
water for some tree species (Cryptomeria japonica and Chamaecyparis obtusa) [6]. Specifically,
pF1.8 and pF2.7 are often used in forest soils, because the difference between the water
content at pF1.8 (θ1.8) and the water content at pF2.7 (θ2.7) is directly related to the coarse
capillary pore and plant growth [7]. Cianfrani et al. [5] and Wessolek et al. [8] used θ1.8 and
θ2.7 to indicate the plant available soil water (PAW) and confirmed that these values were
closely related to plant water uptake and evapotranspiration in the catchment scale. In
addition, θ2.7 is similar to the field capacity (θ2.5; water content at pF2.5 of −33 kPa), which
is commonly used in soil research.

Despite its importance, estimating SWHCs is time consuming and expensive [4]. One
of the most famous models for predicting SWHCs is the use of pedotransfer functions
(PTFs). This is an in situ measurement-based model that predicts SWHCs based on soil
property data [9]. PTF directly predicts SWHCs using soil particle distribution, bulk density,
organic matter, etc. [10,11], or estimates the parameters of the soil water retention curve,
indicating the relationship between the matric suction and the soil water content [12,13].

The other way to predict SWHCs is digital soil mapping (DSM). First, environmental
covariates that geographically reference information corresponding to soil sampling sites
are collected [14]. Prediction models are developed through environmental covariates and
SWHCs, and they can be applied to large areas [15–17]. Topographical features, geology,
and historical soil information are generally used as environmental covariates [18,19].

In order to effectively develop the PTFs and DSM models, it is important to accumulate
an efficient dataset. Due to recent developments in computing technology, machine learning
techniques have become popular. A supervised machine learning model is a data-driven
method, and a primary way to increase model performance is to secure many training data
related to the model. Thus, when various soil surveys are conducted, effective prediction
model development becomes possible.

In South Korea, a nationwide forest soil investigation has been conducted by the
National Institute of Forest Science (NIFoS), and SWHC prediction PTFs and DSM models
were developed based on this database. Additionally, the Korea Forest Service is planning
to conduct an additional nationwide soil survey to strengthen PTF and DSM models to
accurately predict SWHCs in forest soil. For efficient additional data accumulation, soil
surveys should be conducted considering factors that are highly influential in SWHCs.
For example, if one variable (e.g., elevation or aspect, etc.) acts as an important variable
in model prediction, there may be several methods that can be used. We could make
that variable’s distribution of sampling sites uniform or similar to the distribution of that
variable of a target area. Therefore, it is essential to select the important variables and
comprehensively understand the interrelationships between soil properties, topography,
environmental features, and SWHCs before conducting an additional soil survey [15].
However, there are only a few studies concerning the important variables for predicting θS,
θ1.8, and θ2.7 and their interrelationships in temperate forest regions.

In this context, our objectives are as follows: (1) to suggest the highly effective soil
physical and chemical properties, topographies, and environmental features for the devel-
opment of PTFs and DSM models and (2) to identify the interrelationships and non-linear
effects on SWHC changes through selected variables.

2. Materials and Methods
2.1. Study Sites

This study was conducted in South Korea, which is the southern half of the Korean
Peninsula located in East Asia. The north side of South Korea is bordered by North Korea,
and the other three sides are surrounded by the sea. It has a temperate climate and four
seasons. The annual average temperature is about 12.8 degrees Celsius, and the annual
average precipitation is about 1343 mm. After the Korean War ended in 1953, parts of the
country were destroyed, and many trees were planted as a government policy. Now, almost
two-thirds of South Korea, 62.8%, is covered by forests, in a context of complex topography.



Land 2021, 10, 1290 3 of 15

2.2. Forest Stand and Soil Properties

We used 11,544 soil samples collected at depths of 10 and 30 cm in a forested area
of South Korea. These forest soil samples were collected by the National Institute of
Forest Science to develop the SWHCs prediction models; soil samples were collected from
971 sample sites that were randomly selected (Figure 1). Nine hundred and seventy-one
sample sites contain twelve soil texture classes, three forest types, and three kinds of
bedrock (Figures S2 and S3). Six soil samples were collected in a sample site at the same
point as replicates and collected at the equivalent soil depth (10 or 30 cm), though separated
by a few centimeters. The soil texture distribution of the collected soil samples is shown in
Figure 2.
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Twelve soil textures (<2 mm fraction) were determined according to USDA Textural Soil Classification.

All soil samples were collected below the organic O horizon. Since the average soil
depth of A horizons in South Korean forests is about 17 to 20 cm, soil samples 10 cm deep
represent mineral A horizons, while soil samples 30 cm deep represent B or C horizons.

In this study, three kinds of SWHCs are used: saturated water contents (θS), water
content at pF1.8 (θ1.8), and water content at pF2.7 (θ2.7). A pressure plate method was used
to measure SWHCs. The collected soil samples were analyzed by means of laboratory
methods to determine six physical and chemical properties, including bulk density and
organic matter. Bulk density is related to soil compaction and structure. It was measured
by the ratio of the dry weight of soil and the volume of the soil. Soil organic carbon
was measured by the Walkley-Black method [20], and organic matter was recalculated by
multiplying by 1.724, the van Bemmelen factor. Hydraulic conductivity was measured by
the falling head method, which uses a constantly changing pressure head. Soil particle
fractions were measured with the hydrometer method, and three particle-size classes were
classified: sand (0.05 to 2 mm), silt (0.002 to 0.05 mm), and clay (<0.002 mm). In situ
measurements were also investigated to develop PTFs for analysis of the environmental
impact on soil. Dominant tree height, dominant tree DBH, average DBH, and tree density
were measured by forestry professionals when soil samples were collected.

Soil type was not used as an explanatory variable in this study, because of its generality
and diversity issues. The soil classification system for forest soil in South Korea is totally
different from other classification systems such as World Reference Base for Soil Resources
(WRB) or USDA soil taxonomy. In addition, because of the relatively small territory and
the similar climatic zone throughout the whole country, over 86% of the forest soils are
grouped in an order, Brown Forest Soils, which is similar to Inceptisols from USDA soil
taxonomy. For example, about 87.4% of forest soils used in this study are Brown Forest
Soils. Because of these reasons, soil type cannot be a useful variable for predicting SWHCs
in South Korea, and we did not include the soil type as an input variable.

In Table 1, soil physical and chemical properties and forest stand characteristics are
shown. Some soil samples at 10 cm depth from 18 sample sites were lost. Therefore, the
number of analyzed soil sampling sites is different (n = 953 for 10 cm soil depth, n = 971 for
30 cm soil depth), and the averaged values of in situ measurements at 10 and 30 cm soil
depth are different (Table 1).
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Table 1. Measured forest stand and soil physical and chemical properties.

Forest Stand and Soil
Physical and

Chemical Properties
Abb. Unit At 10 cm Soil

Depth (n = 953)
At 30 cm Soil

Depth (n = 971)

Saturated SWC θS % 60.4 ± 7.9 57.7 ± 7.5
SWC at pF1.8 θ1.8 % 32.2 ± 6.8 33.0 ± 7.2
SWC at pF2.7 θ2.7 % 26.3 ± 5.8 27.4 ± 6.5
Bulk density ρb g cm−3 0.95 ± 0.2 1.05 ± 0.2

Organic matter OM % 4.07 ± 1.88 2.98 ± 1.52
Hydraulic conductivity KS cm s−1 0.015 ± 0.013 0.011 ± 0.010

Sand fraction Sand % 39.5 ± 16.3 38.4 ± 17.2
Silt fraction Silt % 37.6 ± 15.7 36.2 ± 16.7

Clay fraction Clay % 22.8 ± 10.3 25.4 ± 11.8
Dominant tree height DTH m 14.7 ± 3.5 14.6 ± 3.4
Dominant tree DBH DTD cm 30.6 ± 10.2 30.4 ± 9.9

Average DBH AD cm 24.0 ± 7.5 23.7 ± 7.4
Tree density TD trees ha−1 578 ± 285 580 ± 283

Note: Average ± standard deviation. DBH is diameter at breast height.

2.3. Environmental Covariates

We extracted an environmental covariates dataset at corresponding soil sample sites
from four geographical maps: digital elevation map (DEM; 10 m resolution), geologic
map (GM; 1:50,000), forest type map (FTM; 1:25,000), and forest site and soil map (FSSM;
1:25,000). Eight topographic variables from the DEM, one bedrock variable from the GM,
four forest stand characteristics from the FTM, and eight forest site and soil properties from
the FSSM were selected to develop the DSM models (Table S1). We chose these 4 maps
because they are open source and easily available at the National Geographic Information
Institute. While all the variables in the PTF dataset were continuous, the environmental
covariates dataset included 11 discrete variables (Table S1).

2.4. Random Forest Model

Random forest is one of the most popular machine learning methods. Unlike other
machine learning models, the random forest model is appropriate for model development,
as it has discrete input variables and is based on a decision tree algorithm. There are
11 discrete variables for developing DSM models, and this is the main reason why we
used a random forest model to predict SWHCs in this study. The random forest model
was established using Python (v. 3.7.4) and the RandomForestRegressor module from
scikit-learn (v. 0.23.2).

2.5. Variable Importance Measurements

In this study, we selected two methods for calculating variable importance: feature
importance and permutation importance. Feature importance is one of the most widely
used methods for variable importance measurement in the random forest model. It is cal-
culated based on mean decrease impurity. It is related to the random forest model structure
and its developing process, where the decision tree is extended by impurity [21]. In other
words, the greater the decrease in impurity, the higher the importance of the variable. We
calculated the feature importance using scikit-learn version 0.23.2. Permutation importance
is determined by the performance differences between a basic model and a modified model.
The modified version uses an input variable in which one variable is randomly permutated
and the others are fixed. If a critical variable is employed to develop the modified model,
the performance of the new model will decrease more than that of a less important variable.
In this paper, we used the coefficient of determination to measure the performance, with
500 times random analysis on each variable.
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2.6. Linear Relationship

Pearson’s correlation coefficient is used to confirm the linear relationship between
explanatory variables and SWHCs. It is a method used primarily in descriptive statistics,
and it has a range from −1 to 1. As the absolute value of the correlation coefficient becomes
larger, the linear relationship between the two variables becomes greater. A negative value
means anti-correlation and a positive value means a positive relationship between two
variables. The equation for Pearson’s correlation coefficient in this study is as follows:

rXY =
∑N

i=1
(
Xi − X

)(
Yi −Y

)√
∑N

i=1
(
Xi − X

)2·
√

∑N
i=1
(
Yi −Y

)2
(1)

where N is the sample size of variables X and Y.

2.7. Developed Models

A total of 12 random forest models were developed with different explanatory vari-
ables, soil sample layers, and matric suctions of response variables (Table 2). Explanatory
variables are divided into two types: forest stand and soil physical and chemical properties
for the PTF model and environmental covariates (Table S1) for the DSM model. We also
classified soil sample layers at depths of 10 and 30 cm and soil water contents at saturated,
pF1.8, and pF2.7 as the response variables.

Table 2. Developed models.

Model ID Explanatory Variables Soil Sample Layer Matric Suction of
Response Variable

PTF-10-pF0

Forest stand and soil
physical and

chemical properties

10 cm depth
pF0 (saturated)

PTF-10-pF1.8 pF1.8
PTF-10-pF2.7 pF2.7

PTF-30-pF0
30 cm depth

pF0 (saturated)
PTF-30-pF1.8 pF1.8
PTF-30-pF2.7 pF2.7

DSM-10-pF0

Environmental
covariates

10 cm depth
pF0 (saturated)

DSM-10-pF1.8 pF1.8
DSM-10-pF2.7 pF2.7

DSM-30-pF0
30 cm depth

pF0 (saturated)
DSM-30-pF1.8 pF1.8
DSM-30-pF2.7 pF2.7

2.8. Sensitivity Analysis

Sensitivity analysis can determine how much response variables are affected by
explanatory variable changes. In this study, we conducted a sensitivity analysis using
the developed random forest models. First, a soil sample was randomly chosen from the
dataset. The explanatory variable became the input variable by changing equal intervals,
while the others were kept constant. We used the modified variable as an input variable to
test the sensitivity of the explanatory variable on the corresponding response variable. In
this study, the analysis of each variable was repeated 150 times.

While scatter plotting and correlation coefficient analysis allow for an acknowledge-
ment of the relationships between the explanatory variable and response variable, these
analyses contain all the effects of variables that might affect response variable. On the other
hand, sensitivity analysis enables the rejection of impacts of other variables on various
models. Therefore, we can analyze the effects of one explanatory variable in greater detail.
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3. Results
3.1. Variable Importance for Predicting SWHCs

Two methods were used for measuring variable importance. We standardized the
variable importance of each model to have the total sum of 1. Feature importance and
permutation importance were calculated by means of 12 models. Variable importance of
forest stand, soil physical and chemical properties, and environmental covariates is shown
in Tables S2–S4. To rank the importance of each variable, we averaged standardized feature
importance and permutation importance (Figure 3). We also selected four critical variables
for each model (Table 3).
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Table 3. Four primary important variables of the twelve developed models.

Model ID
First

Important
Variable

Second
Important
Variable

Third
Important
Variable

Fourth
Important
Variable

PTF-10-pF0 ρb OM Sand KS
PTF-10-pF1.8 Sand OM KS DTH
PTF-10-pF2.7 Sand OM KS Clay
PTF-30-pF0 ρb OM Sand Clay

PTF-30-pF1.8 Sand KS OM DTH
PTF-30-pF2.7 Sand KS OM Clay
DSM-10-pF0 Elevation Aspect STC TSD

DSM-10-pF1.8 STC Elevation TPI Bedrock
DSM-10-pF2.7 STC Elevation TPI Aspect
DSM-30-pF0 Elevation STC Aspect TPI

DSM-30-pF1.8 STC Elevation TPI Bedrock
DSM-30-pF2.7 STC Elevation Bedrock TPI

As illustrated in Figure 3, variable importance to predict θS, θ1.8, and θ2.7, respectively,
has different characteristics. In the PTFs models that used forest stand and soil physical and
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chemical properties, bulk density greatly impacted on θS prediction at both 10 and 30 cm.
In predictions for θ1.8 and θ2.7, however, the sand fraction was the most significant. Organic
matter was critical for all cases, and hydraulic conductivity (KS) was also important. In the
PTF-10-pF2.7 and PTF-30-pF2.7 models, the influence of clay increased, and the ranking of
dominant tree height (DTH) on PTF-10-pF1.8 and PTF-30-pF2.7 went up, while the variable
importance value remained low (below 6%).

In the DSM models that used environmental covariates as input variables, elevation
was the primary important variable in θS prediction at soil depths of 10 and 30 cm. To
predict θ1.8 and θ2.7, the soil texture class was the most significant. The next important
variables were TPI and bedrock. In the DSM-10-pF0 model, aspect showed a high variable
importance.

From the variable importance analysis, the importance difference by soil depth layer
(10 and 30 cm) was not significant; however, the difference shown by different matric
suctions was larger. The order of important variables between θS and θ1.8 showed a large
difference, and the order of important difference between θ1.8 and θ2.7 was small, showing
similar important variables (Table 3). The forest stand dataset influenced less than 11.6%
in the PTF models (average 7.6%); therefore, soil physical and chemical properties were
dominant in these models. In the DSM models, the digital elevation model (DEM) and
forest site and soil maps (FSSM) showed more than 80% importance.

3.2. Correlation between Highly Effective Variables and SWHCs

From the variable importance analysis, we selected eight highly effective explanatory
variables: four forest stand and soil physical and chemical properties (ρb, KS, sand, and
OM) and four environmental covariates (elevation, STC, TPI, and bedrock). To identify the
linear interrelationship between highly effective input variables and SWHCs, we plotted
correlation matrix plots (Figure 4).
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Figure 4. Correlation matrix of 8 highly important variables and SWHCs.

First, three kinds of SWHC were closely interrelated. The correlation coefficients
of each relationship among the SWHCs were all positive, especially θ1.8 and θ2.7. In soil
physical and chemical properties, bulk density (ρb) and sand fraction (sand) had a negative
influence on SWHCs. Bulk density and organic matter showed a negative correlation
with a high coefficient, and organic matter was positively related with SWHCs. All other
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variables except KS presented the same tendency to the three kinds of SWHCs. KS showed
a positive correlation with θS, but a negative correlation with θ1.8 and θ2.7.

Regarding environmental covariate, elevation and TPI presented a positive relation-
ship with SWHCs, and soil texture class and bedrock, which have a high correlation
coefficient value to sand, showed a negative relationship with SWHCs. Elevation showed
a high correlation with three soil properties. It had a negative relationship with bulk
density and sand fraction and a positive relationship with organic matter. The differences
in interrelationships between selected variables and SWHCs at soil depths of 10 cm and
those at soil depths of 30 cm were not significant.

3.3. Sensitivity Analysis for Identifying Non-Linear Relationship

To identify the non-linear effect of input variables on SWHCs, a sensitivity analysis
was conducted. We selected four variables that were primary and secondary important
variables in PTF and DSM, respectively, and analyzed sensitivity on θS and θ2.7 (Figure 4).
Since θ1.8 and θ2.7 are closely related (see in Figure 4) and have a similar trend, we excluded
θ1.8 from Figure 5.
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Figure 5. Non-linear changes in modelled soil water content by sensitivity analysis. Modelled soil water content changes of
(a–d) θS at 10 cm depth soil, (e–h) θS at 30 cm depth soil, (i–l) θ2.7 at 10 cm depth soil, (m–p) θ2.7 at 30 cm depth soil were
represented with four variables: bulk density, sand fraction, elevation, and soil texture class.

In Figure 5a–h, θS was highly sensitive to bulk density and elevation changes. As
shown in Figure 4, bulk density has a negative relationship with θS, and a positive relation-
ship with elevation. Notably, θS steeply increased at the elevation between 500 and 1000 m.
On the other hand, sand fraction and soil texture classes showed a modest contribution
when predicting θS and presented a low sensitivity.
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However, θ2.7 showed the opposite tendency. Bulk density and elevation, which had
high sensitivity in θS, showed low sensitivity in θ2.7, and sand fraction and STC showed
high sensitivity.

Figures S3–S6 depict sensitivity analysis results of the four selected variables from
twelve developed models. From the sensitivity analysis, we confirmed the non-linear effects
on SWHCs, not merely the linear relationship between two variables. For example, organic
matter was significant only when it was below 5%. Hydraulic conductivity also showed
a significant relationship only when KS < 0.02 cm s−1. Moreover, the impact of aspect on
saturated soil water content was limited at a depth of 10 cm. The southern aspect (90◦ to
270◦) had a lower θS than the northern aspect (0◦ to 90◦ and 270◦ to 360◦), the tendency of
which was hardly detected by a linear relationship such as Pearson’s correlation.

4. Discussion
4.1. Influential Soil Physical and Chemical Properties on SWHCs Prediction

The primary important soil property to predict θS was bulk density, while sand
fraction was the most valuable in predicting θ1.8 and θ2.7 (Figure 3). Sensitivity analysis
also demonstrated that the impact of bulk density and sand fraction on soil was different,
along with different matric suction (Figures S3 and S4). Since bulk density is the mass
of soil per unit volume, it represents soil structure and soil compaction [22]. The result
of sensitivity analysis showed that an increase in the bulk density led to a decrease in θS.
Thus, compacted soil has fewer macropores and a lower water holding capacity.

On the other hand, sand fraction was the first important variable for predicting
θ1.8 and θ2.7, not silt or clay, which both showed a negative relationship. Since θ2.7 is
the amount of soil moisture after being pressured from pF1.8 and pF2.7 (−6.2 kPa and
−49.1 kPa, respectively), soil water in macropore is eliminated at θ2.7 [23]. Therefore, the
trivial influence of bulk density on θ1.8 and θ2.7 prediction (below 4%) is explainable by
soil texture, which is related to capillary force and micropore rather than macropore and
soil structure.

The PTF-10-pF2.7 and PTF-30-pF2.7 models denoted that importance of the sand
fraction became greater than that in predicting θ1.8, and it was also shown in sensitivity
analysis results. Clay was significant in θ2.7 prediction. Water holding capacity is closely
related to capillary force [23]. As the particle of soil becomes finer, its surface area becomes
broader; therefore, the capillary is enhanced. Soil needs a wider surface area and finer soil
particles such as silt and clay to have more moisture at high matric suctions. In this regard,
the enhanced role of the sand fraction in predicting θ2.7 is indirect. The sand fraction is
equal to the summation of the silt fraction and the clay fraction in hydrological modeling,
since the sum of sand, silt, and clay is 100%. Small particles such as silt and clay become
powerful in θ1.8 and θ2.7 predictions. Moreover, a higher rank of variable importance with
a weight of 5~7% emphasizes the influence of clay in θ2.7, whereas the variable importance
of the clay fraction for predicting θS and θ1.8 is minute (Figures S3 and S4).

In this vein, in order to estimate water holding capacity at a higher matric suction,
such as θ4.2 (water content at pF4.2; permanent wilting point), the importance of the clay
fraction increases. Qiao et al. [24] employed a stepwise method to select proper variables for
predicting θ2.5 (field capacity) and θ4.2 (permanent wilting point). While the sand fraction
was used as the main factor in the θ2.5 prediction, they selected clay as a main factor in the
θ4.2 prediction. Adhikary et al. [25] also used the clay fraction for θ4.2 prediction, whereas
the sand and silt fractions were used for θ2.5. As the capillary force is closely related to
the soil texture (bulk density < sand < silt < clay), corresponding soil particle distribution
mainly affects the SWHCs (θS < θ1.8 < θ2.7 < θ4.2). In other words, soil structure is the main
factor in θS rather than soil texture, sand and silt are the major factors in θ1.8, and silt and
clay are the most influential variables in θ2.7.

The relationship between the KS and SWHCs can be explained by the relation men-
tioned above. In Figure 4, KS has a positive correlation with θS, but a negative correlation
with θ1.8 and θ2.7. KS and bulk density are negatively correlated, and compacted soil has
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smaller KS, since it has fewer macropores. On the other hand, the bulk density effect is
negligible and soil texture is dominant in θ1.8 and θ2.7. Therefore, a higher value of KS
can be explainable through a high sand fraction content or a small clay fraction content,
which are both closely related to the smaller value of θ1.8 and θ2.7. The scatter plot in
Figure 4 shows a weak correlation between KS and sand fraction; this is because KS is
mainly affected by disturbances in the soil structure, indirectly caused by factors that affect
bulk density and organic matter [22].

Organic matter was another powerful factor in the prediction of SWHCs. In
Figures S3 and S4, SWHCs rise as organic matter contents become greater. The influ-
ence of organic matter on θS is linked to bulk density. Organic matter enriches porosity
and lessens soil compaction [26–29]. In particular, the negative relationship between
organic matter and bulk density has been suggested as a linear equation in previous stud-
ies [30]. We also confirmed the linear relationship between bulk density and organic matter
(BD = 1.26–0.073 OM; Figure 4). In other words, an increase in organic matter results in a
reduction in bulk density and expansion of macropore; therefore, θS rises.

Organic matter also affects water holding capacities. Many studies have confirmed
that organic matter can increase θ2.5 [3,31–33], which is closely related to θ1.8 and θ2.7 [5].
Leu et al. [32] confirmed that organic matter even increases in θ4.2. SWHCs are also highly
related to the plant available water (PAW; generally represented as θ2.5-θ4.2 or θ1.8-θ2.7).
Lal [34] demonstrated that the influence of organic matter on capillary force was more
noticeable at field capacity (θ2.5) than at permanent wilting point (θ4.2), raising PAW. In
this study, we also found similar results in our sensitivity analysis. In Figures S3 and S4,
sensitivity on organic matter is higher at θ1.8 than θ2.7. Thus, we identified that organic
matter was effective in lower matric suction. We also confirmed that, when organic matter
content is more than 5%, sensitivity dropped drastically. It is thought that organic matter
with a large particle size is too large to affect capillary force. Consequently, soil organic
matter shrinks bulk density and raises θS and capillary force, as well as θ1.8 and θ2.7. In
this regard, we found that organic matter influenced SWHCs and PAW significantly. Its
sensitivity was active below 5%, and it decreased sharply above 5%.

4.2. Interrelationship between Topography, Soil Properties, and Vegetation

Topography was also an influential factor in SWHCs. In previous studies, elevation,
which was included in DEM, was the most dominant factor in predicting SWHCs [15,35,36].
In Figure 4, we confirm the interrelationships between elevation and soil physical and
chemical properties. Elevation was closely related to bulk density, sand fraction, and
organic matter of the soil. The sand fractions decreased and organic matter contents
increased as the elevation became high. Most of Baekdudaegan, which is a mountain
spine stretching from north to south in South Korea [37], is a nationally protected area.
In this region, development is strictly limited, and natural vegetation is widely spread.
It is considered that soil in high elevation has low bulk density and high organic matter
contents because of these reasons. In addition, the effects of elevation on SWHCs can
be found by the spatial distribution of bedrock. Since soil particles were made from
bedrock, soil texture was highly related to its bedrock. Plaster et al. [38] showed the
differences in soil textures from different bedrocks and sedimentary and metamorphic
rocks. Metamorphic rock tends to create sand fraction, while sedimentary bedrock tends
to create finer fractions. Soil samples in this study showed that the average elevation of
sample sites with metamorphic rock was 286.7 m, and the average elevation of sample
sites with sedimentary rock was 538.9 m. The average elevation of two types of bedrock
is different and statistically significant (p < 0.01). This shows that finer fractions are more
distributed in higher elevations due to the large distribution of sedimentary bedrock at
high elevations.

In Figures S5 and S6, aspect was the most important topographical feature in the
DSM-10-pF0 and DSM-30-pF0 models. Sensitivity analysis showed that the θS of north-
facing slopes was greater than the θS of south-facing slopes. Solar energy in south-facing
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slopes, which is larger than that of north-facing slopes, raises soil and air temperatures
of the mountainside. This could create water stress in plants and hinder the growth of
vegetation, since high temperature increases evapotranspiration [39]. However, in South
Korea, relatively high summer rainfall and annual rainfall, which is 1343 mm, generally
limit water stress, and higher solar energy in south-facing slopes helps vegetation grow
well. Vegetation and soil chemical weathering are highly related, and it can make soils in
south-facing slopes finer [40–42]. Freeze–thaw processes could be another reason. In the
winter season, the soil water freeze–thaw cycle is more frequent on south-facing slopes
because of higher solar energy during the day; this cycle also promotes physical soil
weathering [43,44], which could contribute to a greater relative abundance of finer particles
and low θS on south-facing slopes.

4.3. Limitations and Recommendations for Future Research

In this study, we collected data related to soil physical and chemical properties, envi-
ronmental covariates, and forest stand characteristics to investigate the contribution factors
of SWHCs. Forest stand characteristics data showed marginal effects on SWHC predictions
compared to other variables, such as soil properties and topographical features [35]. It
seems that the role of vegetation on soil moisture capacity is subtle; however, this is because
we only used forest stand characteristics for biological factors. Understory vegetation plays
a key role in affecting the moisture content of topsoil, organic matter content, and regional
evapotranspiration [45]. In future research, the data of understory vegetation and NDVI,
which represents overall vegetation, should be included to clarify the relationship among
the soil physical and chemical properties, vegetation, and environmental covariates.

We used bulk density and soil texture for soil physical properties, and these variables
showed great importance in predicting SWHCs. However, coarser soil particles over 2 mm
were not considered for developing the models in this study. In future research, it may be
more appropriate to include coarser soil particles to develop models and to confirm their
interrelationships, since different size particles showed markedly different properties, as
shown in Section 4.1.

5. Conclusions

The developed pedotransfer function (PTF) models based on forest stand and soil
physical and chemical properties showed that bulk density had the greatest influence
on predicting saturated water content (θS), while sand content had the greatest influence
on predicting water content at pF 1.8 and pF2.7 (θ1.8 and θ2.7). The digital soil mapping
(DSM) models developed using environmental covariates as an input dataset showed that
elevation was the most influential factor in predicting θS, and soil texture class was the
most influential factor in predicting θ1.8 and θ2.7.

Variable importance and sensitivity analysis showed that, as the matric suction
changed, the soil physical and chemical properties that mainly influence the soil wa-
ter holding capacities (SWHCs) changed to the following values: soil structure in θS; sand
and silt fraction in θ1.8; and much finer particles in θ2.7. It was confirmed that the organic
material increased θS by reducing the density and also increased θ1.8 and θ2.7 by increasing
capillary force. The sensitivity of SWHCs to organic matter was significant when it was
less than 5%. Elevation was closely related to the geological variability of bedrock and soil
physical and chemical properties, and aspect was highly related to vegetation, confirming
that it was an important variable for developing the DSM model.

This study contributes to the data collection process for the development of more
accurate PTF and DSM models by presenting important variables necessary for the estima-
tion of three kinds of SWHC. Unfortunately, we could not find a significant relationship
between forest stand characteristics and SWHCs. However, we were able to confirm the
close association with topographic features, soil physical and chemical properties, and
vegetation. More accurate SWHCs prediction models will be developed when the data
related to understory, NDVI data, and coarser soil particle are added.
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