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Abstract: Against the background of globalization and informatization, innovation is the primary
driving force for regional economic and social development. Urban agglomerations are the main body
of regional participation in global competition, and promoting the construction of the Guangdong–
Hong Kong–Macao Greater Bay Area is an important strategy for China’s regional economic de-
velopment. Aimed at the differences in location advantages among cities in the Guangdong–Hong
Kong–Macao Greater Bay Area, based on the theory of innovation chain, we developed a three-stage
model of “knowledge innovation-scientific research innovation-product innovation”. A three-stage
DEA model was used to measure the innovation efficiency of cities in the Greater Bay Area at differ-
ent stages, and two progressive two-dimensional matrices are constructed to locate the innovation
development of cities according to the efficiency value. The results show the following: 1© The
overall innovation efficiency of the Greater Bay Area urban agglomerations gradually decreased in
the process from knowledge innovation and scientific research innovation to product innovation,
and the innovation efficiency among cities was unbalanced. 2© Shenzhen, Guangzhou, and Hong
Kong all performed well in the whole innovation stage, while other cities in the Greater Bay Area
showed weakness in innovation at different stages. Based on this, this paper puts forward relevant
countermeasures and suggestions for promoting and optimizing collaborative innovation in the
Greater Bay Area taking into account factor flow, industrial structure, and innovation network of
urban agglomerations.

Keywords: innovation value chain; Guangdong–Hong Kong–Macao Greater Bay Area (GBA); inno-
vation efficiency; urban agglomerations

1. Introduction

China’s economy has moved from a stage of rapid growth to a new era of high-
quality development, and innovation is a significant engine for high-quality regional
development. Urban agglomerations are concentrated areas of economy, technology,
workforce, information, and a leading area of national technological innovation. In recent
years, China has attached great importance to the building of regional innovation centers,
with key cities such as Beijing, Shanghai, Guangzhou and Shenzhen as the core, forming
representative regional innovation urban agglomerations in the Beijing–Tianjin–Hebei
Region, the Yangtze River Delta, the Pearl River Delta and the Guangdong–Hong Kong–
Macao Greater Bay Area, highlighting these major cities’ function as innovative hubs and
driving the sustainable development of local economy [1]. The Guangdong–Hong Kong–
Macao Greater Bay Area (hereinafter GBA) is one of the most open and economically active
regions in China and plays an important strategic role in China’s overall development and
global economic development. The Outline Development Plan for the Guangdong–Hong
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Kong–Macao Greater Bay Area issued by China at the beginning of 2019 sets out the
strategic positioning of the GBA to become an international innovation center with global
influence. It stresses the need to deepen innovation cooperation in the GBA and build an
open regional collaborative innovation community for integrated development [2].

As the innovation center in China, the GBA is a crucial spatial carrier leading regional
innovation and high-quality development. Its innovation intensity determines the level
of regional economic high-quality development. With significant connotations, urban
innovation efficiency has become a typical index to evaluate regional innovation and
high-quality development. Thus, at this stage, has the GBA collaborative innovation
community achieved coordinated progress? How can the innovation efficiency of the GBA
be improved? Therefore, we adopted the DEA model based on the perspective of the
innovation value chain to study the innovation efficiency of cities in the GBA at the stages
of knowledge innovation, scientific research innovation, and product innovation, and we
propose paths for improving the innovation efficiency of each city to provide a reference
for decision-making to accelerate the innovation-driven strategy of the GBA and build a
world-class innovation bay area.

The structure of this paper is as follows: The first section is the introduction, which
introduces the research background. The second section is the literature review, which
summarizes the research results of previous scholars and has a systematic and compre-
hensive cognition of the issues discussed in this paper. The third section provides the
theoretical mechanism, discusses the connotation of the innovation value chain and the
two-dimensional innovation efficiency matrix. The fourth section introduces the empir-
ical model and discusses the data source, variable selection and data processing. The
fifth section introduces the result analysis. According to the efficiency value measured
by the three-stage DEA model, the positioning of each city in the two-dimensional ma-
trix of innovation efficiency is analyzed. The sixth section is the research summary and
recommendations.

2. Literature Review

As for the research on innovation efficiency, innovation efficiency is an important
index reflecting the relationship between innovation input-output and the operation level
of the regional innovation system [3,4]. In the efficiency measurement method, the existing
research adopts the Stochastic Frontier Analysis (hereinafter SFA) based on parameters
and the Data Envelopment Analysis (hereinafter DEA) based on non-parameters [5–9]. In
terms of regional innovation efficiency, earlier research mostly focused on the research of
innovation efficiency and its influencing factors at the national level [10,11]. Some scholars
take provincial samples as research units and use the SFA analysis method to measure
regional innovation efficiency [12–14], while others use the DEA method to research inter-
provincial innovation efficiency [15–17]. The influencing factors of innovation efficiency
mainly include human capital, economic development level and spillover effect [18,19], as
well as the degree of marketization [20] and openness to the outside world [21].

The mode of the innovation value chain is an incremental process of multi-subject
phased participation and continuous evolution of functional nodes. Its essence is the
generation, transfer and diffusion of knowledge [22]. The core idea of the innovation value
chain lies in the openness of innovation elements, the synergy of the whole operation and
the added value [23]. Based on this idea, the innovation value chain can reflect the linkage
process of innovation resources in an urban agglomeration to realize the added value of
innovation value through the chain’s activity structure. The interaction of different links
in the innovation value chain affects the combination, flow and diffusion of innovation
elements, and the coupling and synergistic development of each link contributes to the
improvement of the overall innovation level and international competitiveness of urban
agglomeration [24]. From the perspective of research, many scholars have also paid atten-
tion to the research on the phased efficiency of innovation, believing that the innovation
process is divided into two stages: R&D of innovation results and application of innovation
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results [25,26], and analysis of the efficiency of the two stages, respectively. Based on
the perspective of the innovation value chain, the innovation efficiency of knowledge
innovation, R&D innovation and product innovation in China has been analyzed by using
the three-stage DEA model and selecting the appropriate promotion path according to the
advantages and disadvantages of the innovation efficiency in different regions at different
stages [27].

For the research on the innovation efficiency of urban agglomerations, Zhao (2018)
adopted the DEA method to study the innovation efficiency of cities in the GBA and
compared the scale efficiency and technical efficiency [28]. Sheng et al. (2019) used the SFA
method and spatial econometric model to study innovation efficiency and spatial spillover
effect of urban agglomerations in Beijing–Tianjin–Hebei, the Yangtze River Delta and the
Pearl River Delta in China [29]. Ye and Xu et al. (2021) conducted a comparative study on
the innovation efficiency and influencing factors of the three major urban agglomerations
in eastern China through the construction of an input-output index system [30,31]. The
Bay Area economy, represented by the GBA, is an advanced form of regional economic
development [32]. The collaborative innovation of urban agglomerations and their innova-
tion efficiency play a driving role in developing a regional economy. Because of the spatial
characteristics, collaborative innovation linkages and influencing factors of innovation effi-
ciency within the GBA urban agglomeration, some Chinese scholars adopted a fixed-effect
stochastic frontier model, the DEA–Malmquist index, the grey correlation analysis method,
social network analysis and negative binomial regression model to conduct research and
discussion [33–35]. Some scholars also studied the characteristics and influencing factors
of innovation efficiency in the GBA from static and dynamic perspectives [36].

In the existing studies, many scholars have conducted in-depth analyses on the inno-
vation efficiency of urban agglomerations from different perspectives and using different
methods, which can provide important theoretical support for the development of this
paper. At the same time, however, the current research findings still have the following
shortcomings. Firstly, most of the literature uses provincial data to measure innovation
efficiency, focusing on examining the mechanisms for improving innovation efficiency at
the national level for the region as a whole. However, there is less literature that examines
the optimization of innovation efficiency across cities in urban agglomerations. Secondly,
the existing literature is relatively limited in its study of the innovation process in urban
agglomerations and its efficiency at different stages. In fact, collaborative innovation be-
tween urban agglomerations occurs not only between different cities at the same stage
of the value chain, but also at different innovation stages in the same city. Finally, most
existing literature discusses the efficiency of scientific and technological innovation, while
scientific and technological innovation is only a part of innovation activities, and the two
cannot be generalized.

In the background of the new era, the study of innovation efficiency of urban agglom-
eration and its promotion path need to be further studied. The main marginal contribution
and innovation of this paper mainly include the following aspects. First of all, from the
perspective of the innovation value chain, a three-stage analysis framework of “knowledge
innovation–scientific research innovation–product innovation” is constructed to clarify
the main components and relations of each stage of innovation value chain. Secondly, the
innovation efficiency of different stages of the GBA is measured by the broad innovation
input–output index, and the improvement path of the innovation efficiency of each city is
proposed, which provides decision-making reference for accelerating the innovation-driven
strategy of the GBA and developing the world-class innovation Bay Area. Eventually, the
research results of this paper will also provide development ideas and countermeasures
for promoting the innovative development and sustainable development of urban agglom-
eration around the world.
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3. Innovation Value Chain Theory and Innovation Path Setting
3.1. Innovation Process and Innovation Value Chain Theory

Previous research regards the innovation process as a “black box”. Innovation is an
output process that is input by multiple factors and through multiple innovation activities.
Scholars at home and abroad have carried out much work on the research of the innovation
process, and they believe that innovation is a whole that is interlinked by several innovation
activities. At the same time, innovation activities are composed of interrelated multi-links
such as design, research and development, production, and sales.

The concept of the innovation value chain was proposed by Hansen and Birkinshaw
(2007), who explained that the generation, transformation and dissemination of ideas in
innovation are multistage and interrelated [37]. Roperd et al. believe that it is the process
of knowledge acquisition, transformation and utilization [38]. From the perspective of
globalization, Kramer (2011) determined the contents of the innovation value chain from
value sharing [39]. Lee, J. (2012) extended the perspective of the innovation value chain to
developing countries, and further analyzed and supplemented its application value [40].
According to the relevant literature, the innovation chain is market-oriented and based on
the innovation needs of enterprises, and takes innovation theory as the core element [41].
The innovation value chain is a new theoretical edge concept that combines technology
innovation theory with value chain theory [42].

Based on the decomposition of technological innovation links from the perspective
of production, the innovation value chain is recognized as a typical three-stage structure,
which is a chain structure pattern formed by multiple innovation subjects based on ordinary
interests around the whole process of knowledge generation, research and development,
large-scale production and commercialization. Technological innovation is a multi–stage
and multi–factor value chain transfer process from the input of innovative elements to
the output of innovative products, including three stages from the input of innovation
to the condensation of innovative knowledge and then to the realization of innovative
results. This concept has a similar meaning to the three stages of basic research, applied
research and experimental development in the process of innovation in China’s statistics,
which can match the research on regional economic reality and innovation efficiency well.
The innovation process should include three closely linked stages: knowledge innovation,
scientific research innovation and product innovation [27], which promote and link each
other. The purpose of knowledge innovation and scientific research innovation is for
product innovation, and knowledge innovation is the theoretical basis of scientific research
innovation and product innovation. At the same time, they are independent of each other;
each is a new stage of innovation, and the whole process is cyclic. Following this research
idea and drawing on the model ideas of Yu et al. [27], we constructed the innovation
value chain mechanism as shown in Figure 1. This paper analyzes and discusses the
innovation efficiency of the Guangdong–Hong Kong–Macao Greater Bay Area from the
three stages of knowledge innovation, scientific research innovation and product innovation
in the innovation process, so as to further explore the status quo of the innovation and
development of the GBA in detail.



Land 2021, 10, 1164 5 of 19

Figure 1. The three-stage operation mechanism of the innovation value chain in urban agglomerations.

3.2. The Theoretical Model of Innovation Path Setting

Cities in urban agglomerations show differences between the stages of efficiency of
innovation and the three-phase contact operation mechanism of urban agglomeration of the
innovation value chain. We constructed a two–dimensional innovation efficiency matrix
of “knowledge–scientific research” innovation efficiency and “scientific research–product”
innovation efficiency of the regional innovation urban agglomerations (as shown in the
diagrams (a) and (b) in Figure 2) [27]. The average efficiency of cities at different stages can
be divided into four efficiency combinations according to the value of the two efficiency di-
mensions. Different combination modes represent different efficiency states, thus providing
a basic idea for the improvement of innovation efficiency in urban agglomeration. These
four types of efficiency combination regions are, respectively, the combination of “one high
and one low” represented by B and D, the combination of “double low” represented by C
and the combination of “double high” represented by A. This division is convenient for
cities in different quadrants when searching for appropriate theoretical reference paths to
improve innovation efficiency according to their development conditions.

Figure 2. (a) Matrix of “knowledge–research” efficiency values; (b) matrix of “scientific research–
product” efficiency values.

According to the diagrams (a) and (b) in Figure 2, this paper proposes the following
three ways to improve the innovation efficiency: first, the breakthrough improvement path
of unilateral supplement from B to A or D to A, which takes the link with low efficiency in
one stage as the breakthrough point to improve the overall innovation efficiency on the
premise of ensuring the high efficiency in the other stage. Second, C reaches the progressive
path of improving the excellent and compensating the poor in region A through B or D;
that is, the “double low” region can make up for the disadvantages while maintaining its
own advantages step by step according to its situation, to achieve the double high goal.
Thirdly, the breakthrough leapfrog promotion path from C to A, that is, the leapfrog of
innovation efficiency, can be directly realized by simultaneously promoting the two stages.
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4. Model Method and Variable Selection
4.1. Three-Stage DEA Model

In the measurement of innovation efficiency, most scholars focus on Data Envelopment
Analysis (DEA) based on non-parametric techniques, which was proposed by Charnes,
Coopor and Rhodes in 1978 [43]. The principle of this method is to determine the relatively
effective production frontier by means of mathematical planning and statistical data by
keeping the input or unchanged of Decision-Making Units (DMU), and projecting each
DMU onto the production frontier of DEA. The relative effectiveness of DMU is evaluated
by comparing its deviation from DEA frontier. The DEA method is an evaluation method
based on the concept of relative efficiency using convex analysis and linear programming as
tools, and using a data programming model to calculate the optimal input–output scheme
of the comparison decision-making unit itself. The advantage of this model is that there is
no need to consider the corresponding relationship between input and output, which can
solve the linear corresponding relationship between input and output well, and there is no
need to assign hypothetical weights to parameters and estimation indexes, which avoids
the subjectivity of the research subject, and the measurement of relative efficiency value
is more objective, real and reliable. Compared with the traditional efficiency evaluation
model, DEA can better reflect the information and characteristics of the evaluation object
when dealing with the efficiency evaluation of composite input and multi-type output
system.

The classic DEA method has been optimized in the treatment of environmental factors,
such as using the DEA-Tobit method. In the first stage, the method uses the classical
DEA method to calculate the efficiency value of DMU, and then in the second stage,
the efficiency value is taken as the dependent variable and environmental factors as
the independent variable to establish a Tobit regression model to investigate the impact
of environmental factors. This method can use regression technology to determine the
intensity and direction of the impact of environmental factors on efficiency, but its effect
is not to strip out environmental factors in the calculation of efficiency, so it does not
change the efficiency value measured by the classical method. Due to random noise
and environmental factors also having a certain degree of influence on the efficiency
evaluation of decision-making units, Frided et al. (2002) [44] proposed a three-stage DEA
method based on the classical DEA model that can separate environmental factors to make
the calculated efficiency value more accurate. Among the cities in the GBA, there are
differences in the level of economic development, the stage of industrial development
and the development degree of science, technology and education, and the innovation
environment facing each city is highly differentiated and unbalanced. Environmental
factors should be taken into account in the innovation efficiency of different stages of
innovation activities in different cities. Combined with the above characteristics, We
adopted the three-stage DEA model to measure the efficiency of the GBA at each stage in
the process of innovation value chain, and its theoretical model is as follows.

4.1.1. In the First Stage, the Initial Efficiency Is Evaluated by Using the Original
Input–Output Data

The DEA model can choose different orientations according to the difference of anal-
ysis purpose and demand. The traditional DEA model has two forms: the CCR model
and the BCC model. Among them, the CCR model assumes that DMU is in a fixed scale
return situation, which is used to measure the total efficiency. The BCC model is used
to measure pure technology and scale efficiency, assuming DMU is in a variable return
to scale situation. In the applications discussed in existing literature, generally speaking,
most three-stage DEA models will choose the input—oriented BCC (variable return to
scale) model so as to analyze comprehensive technical efficiency from two aspects of pure



Land 2021, 10, 1164 7 of 19

technical efficiency and scale efficiency. For any decision unit, the dual-form BCC model
under input guidance can be expressed as:

minθ − ε(êTS− + eTS+)

s.t.



n
∑

j=1
Xjλj + S− = θX0

n
∑

j=1
Yjλj − S+ = Y0

λj ≥ 0, S−, S+ ≥ 0

(1)

The formula j = 1, 2, · · · , n represents the decision unit, and X, Y are input and output
vectors. The DEA model is essentially a linear programming problem.

If θ = 1, S+= S−= 0, then the decision-making unit DEA is valid;
If θ = 1, S+ 6= 0, or S− 6= 0 , then the weak DEA of the decision-making unit is valid;
If θ < 1, then the decision-making unit is not valid by DEA.
The efficiency value calculated by the BCC model is the comprehensive technical

efficiency (TE), which can be divided into scale efficiency (SE) and pure technical efficiency
(PTE), that is, TE = SE × PTE. In the first stage, two values should be calculated: 1© the
initial DEA efficiency value without filtering environmental factors is used for comparison
and analysis in subsequent links; 2© the relaxation variable of input is the dependent
variable of the second stage.

4.1.2. In the Second Stage, Environmental Factors and Statistical Noise Were Eliminated by
SFA-Like Regression

The relaxation variable calculated in the first stage was taken as the opportunity cost
of the decision unit, and the influence of environmental factors and random errors was
considered. The relaxation variable [x− Xλ] can reflect the initial inefficiency, composed
of environmental factors, management inefficiency, and statistical noise. The SFA model
was used to decompose the slack variables in the first stage into the above three effects.
Then the input and output were corrected and readjusted, or only the input or output
was adjusted. The following regression function similar to SFA is constructed based on
input orientation.

Sni = f (Zi; βn) + νni + µni; i = 1, 2, · · · , I; n = 1, 2, · · · , N (2)

In the formula, Sni is the relaxation value of the input of item n of the decision unit i,
Zi is the environment variable; βn is the coefficient of the environment variable; νni + µni is
the mixed error term; νni represents random interference, and µni represents inefficiency
of management. In the formula, ν ∼ N(0, σv

2) is the random error term, representing
the influence of random disturbance factors on input relaxation variables; µ refers to
management inefficiency and represents the influence of management factors on input
slack variables. It is assumed that it follows a normal distribution truncated at zero points,
µ ∼ N+(0, σµ

2).

4.1.3. The Third Stage: DEA Efficiency Analysis of the Adjusted Input-Output Variables

The adjusted input-output variables are used to calculate the efficiency of each decision
unit again. At this point, the efficiency has removed the influence of environmental factors
and random factors, which is relatively authentic and accurate.

4.2. Indicator Selection and Data Source

From the perspective of the innovation value chain, input–output variables are not
the same in different stages according to the different focuses of research in the three
stages of innovation activities. In the knowledge innovation stage, since higher education
personnel are the main contributors to the output of scientific and technical papers, this
paper identifies the number of higher education personnel and the cost of higher education
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expenditure as input indicators. In terms of output indicators, referring to the practice of
Yu (2014), this paper chooses the number of published scientific papers and the number of
scientific monographs [27]. In the stage of scientific research innovation, the number of
R&D personnel and R&D investment are firstly considered based on the previous research
ideas of scholars [45]. Among them, it is the essence of regional innovation that R&D
personnel carry out scientific and technological research, which reflects the regional ability
to attract talents. The total amount and intensity of R&D expenditure represent the overall
scientific and technological R&D capability of the region as well as the degree of investment
in innovation activities. In addition to the two input indicators mentioned above, we argue
that the input indicators at the research and innovation stage should also include the
outputs at the knowledge innovation stage, the number of scientific and technical papers,
and scientific and technical monographs. The output index of scientific research innovation
stage is the number of patent applications and the number of patent grants [45]. Similarly,
when determining the input indicators for the product innovation stage in this paper, in
addition to considering the number of patents granted in the previous stage, the indicator
of new product development expenditure should also be included. With reference to the
relevant literature [27], the output indicators for this phase were selected as two of the
industrial enterprises’ new product output and export value.

Combined with existing studies, the environmental variables selected in this pa-
per include higher education investment level [46], government support level, economic
development level, informatization level, fixed asset investment [47], scientific research
foundation, industrial structure [48] and regional openness [49]. The level of investment
in higher education is expressed by the proportion of higher education funding to GDP,
the level of government support is expressed by the proportion of government funding in
science and technology funding, and the level of economic development is expressed by
the per capita GDP of the region. Informatization level refers to innovative information
resources, mainly including the number of mobile phone users at the end of the year
and the number of broadband Internet users, which can reflect the development level of
regional information resources. Investment in fixed assets is a significant component of
innovation material resources and the material basis for regional innovation activities. It
reflects the degree of enrichment of innovation resources. The scientific research base is
expressed as the number of enterprises with R&D activities in the region. The industrial
structure is expressed by the ratio of the tertiary industry to the GDP of the region, and
the proportion of the total import and export of the region to GDP is used to express the
openness of the region. The specific input-output indicators and environmental variables
of the three stages of innovation are shown in Table 1:

The index data are from China City Statistical Yearbook 2010–2020, Guangdong Statis-
tical Yearbook and Guangdong Science and Technology Yearbook. For Hong Kong, the data
are from Hong Kong Statistical Yearbook 2020, Statistics on Innovation Activities in Hong
Kong 2019 and Statistics of Hong Kong Trade Development Council 2019, respectively, of
the Census and Statistics Department of the Hong Kong Special Administrative Region.
The data for Macau are derived from the Macao Statistical Yearbook 2020, Macao Economic
Development Report for the fourth quarter of 2019, and the time-series database of The
Macao Statistical Survey Bureau. The amount of Hong Kong dollars and Macau patacas in
each indicator is converted into people’s value by the exchange rate of Hong Kong dollars
and Macau patacas against RMB in the current year.
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Table 1. Three-stage input-output index system of innovation.

Stage Input Variables Output Variable Environment Variable
(Non-Dimensional)

Knowledge innovation

Number of higher education
personnel (per year)

Number of scientific papers
published (Piece)

Level of investment in higher
education

Higher Education Expenditure
(100 million yuan)

Number of scientific and
technological monographs

(pieces)
Level of government support

Scientific research innovation

Number of R&D personnel (per
year) Number of Patent Applications

(Piece)

Level of economic development

R&D Expenditure (100 million
yuan) Level of informatization

Number of scientific papers
published (Piece)

Number of Patents Granted
(Piece)

Investment in fixed assets

Number of scientific and
technological monographs

(pieces)
Scientific research base

Product innovation

Number of Patents Granted
(Piece)

The output value of new products
of industrial enterprises (100

million yuan)
The industrial structure

New product development
expenses (100 million yuan)

Export of new industrial products
(100 million yuan) Regional openness

5. Empirical Results and Analysis
5.1. Efficiency Measurement Analysis of Innovation Chain Three-Stage DEA Model

According to the three stages of knowledge innovation, scientific research innovation
and product innovation in the innovation value chain, the indicators are different. Ac-
cording to the analysis and research of Bruce [50] (1993), innovation output results have a
certain lag. We assumed that innovation activities have a lag period of one year from input
to output, that is, when the input index of year T is selected, the corresponding output
index data should be selected in year T + 1. Therefore, when measuring the innovation
efficiency of the GBA in this paper, the index data of the innovation input were selected
from 2010 to 2018, and the variable data of innovation output were selected from 2011 to
2019. We followed the three-stage DEA analysis steps. In the first stage, DEAP2.1 software
was used to make a preliminary efficiency calculation for input-output indicators. The
results are shown in Table 2.

Table 2. Traditional DEA innovation efficiency value of GBA (average value of 2010 to 2018).

City Knowledge Innovation Scientific Research Innovation Product Innovation
TE PTE SE TE PET SE TE PST SE

Guangzhou 0.824 1 0.824 drs 0.525 0.543 0.968 irs 0.325 0.343 0.948 drs
Shenzhen 0.698 0.7 0.997 irs 0.941 1 0.941 drs 0.825 1 0.825 drs

Zhuhai 0.744 0.792 0.939 irs 0.637 0.781 0.815 irs 0.578 0.73 0.792 irs
Foshan 0.757 0.838 0.903 drs 0.858 0.889 0.965 irs 0.482 0.492 0.979 irs

Huizhou 0.741 0.772 0.96 irs 0.712 0.775 0.919 irs 0.677 0.747 0.907 irs
Dongguan 0.718 0.729 0.985 irs 0.916 0.964 0.95 irs 0.675 0.836 0.808 irs
Zhongshan 0.741 0.78 0.951 irs 1 1 1 - 0.331 0.635 0.52 irs
Jiangmen 0.816 0.839 0.973 irs 0.55 0.921 0.598 irs 0.298 0.841 0.354 irs
Zhaoqing 0.755 0.756 0.998 drs 0.367 0.859 0.427 irs 0.431 0.851 0.507 irs

Hong Kong 0.668 0.675 0.991 irs 0.999 1 0.999 drs 1 1 1 -
Macao 0.861 0.919 0.937 irs 0.728 0.925 0.788 irs 0.782 0.919 0.851 irs
Mean 0.757 0.8 0.951 - 0.748 0.878 0.852 - 0.582 0.763 0.772 -

In the second stage, Frontier4.0 software was used to establish the SFA regression
model with the input relaxation variables calculated in the first stage as the dependent
variables and the environmental variables in each stage as the explanatory variables.
The results are shown in Table 3. In the knowledge innovation stage, higher education
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investment level and the number of higher education personnel were positively correlated.
However, there was a negative correlation with higher education expenses and description
of higher education, and there is a certain redundancy of financial investment; similarly,
the government support and knowledge innovation phase 2 class negatively correlated
to the inputs, which is also due to the government and the phenomenon of the lack of
output conversion on spending too much. Among the four kinds of input resources
in the stage of scientific research innovation, the number of scientific papers published
has no apparent correlation with other influencing factors except the level of economic
development. Economic development was positively correlated with the publication of
scientific papers and monographs but negatively correlated with R&D personnel and
R&D expenditure. The informatization level and fixed asset investment was beneficial
to the number of R&D personnel but hurt R&D expenditure. The research basis had a
positive effect on the other three input factors except for the number of scientific papers
published. In the stage of product innovation, industrial structure and regional openness
had a negative correlation with the number of patents granted. In contrast, new product
development funds had a positive correlation with industrial structure and a negative
correlation with regional openness.

Table 3. Results of stage 2 estimation based on SFA.

Number of
Higher

Education
Personnel

Expenses for
Higher

Education

Number of
R&D

Personnel

R&D
Expenditure

Number of
Scientific

Papers
Published

Number of
Scientific

and Techno-
logical
Mono-
graphs

Number of
Patents
Granted

New
Product De-
velopment

Funds

Constant
term

−9.61 *
(0.67)

−5.32
(1.22)

10.17 **
(0.95)

−0.63
(1.04)

−7.95 *
(1.28)

−2.27
(0.33)

3.12 *
(0.26)

0.92 *
(0.77)

Level of
investment
in higher
education

6.97 *
(2.19)

−0.73 **
(1.01) - - - - - -

Level of
government

support

−3.78 *
(4.25)

−0.42 *
(2.57) - - - - - -

Level of
economic de-
velopment

- - −1.21 *
(1.27)

−5.69 **
(3.25)

4.52 **
(6.78)

8.47 *
(0.17) - -

Level of
informatiza-

tion
- - 1.33 ***

(5.62)
−0.83 *
(1.26)

−3.96
(0.86)

4.72 *
(0.22) - -

Investment
in fixed
assets

- - 5.22 **
(0.67)

−0.39 *
(1.26)

−6.21
(5.94)

−0.87 *
(7.41) - -

Scientific
research base - - 7.25 *

(0.19)
3.16 **
(4.66)

−5.44
(0.21)

1.99 *
(2.64) - -

The
industrial
structure

- - - - - - −8.21 *
(0.96)

10.21 *
(0.77)

Regional
openness - - - - - - −2.85

(1.36)
−0.63 **

(5.64)
sigma-

squared 0.00012 0.000027 0.00009 0.00014 0.000081 0.00011 0.000075 0.00018

gamma 0.751 0.699 0.801 0.774 0.725 0.623 0.822 0.739
log

likelihood 20.31 100.3 5.62 42.36 56.23 7.86 10.91 26.77

The data in the table are the correlation coefficient, and the data in brackets are the standard deviation. ***, **, and * mean significant at the
level of 1%, 5%, and 10%, respectively.

In the third stage, DEAP2.1 software was used to adjust the input variables according
to the SFA regression results, and the adjusted data were substituted into the BCC model
again for efficiency evaluation. The specific innovation efficiency measured by the adjusted
three-stage DEA model is shown in Table 4.
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Table 4. Three-stage DEA innovation efficiency of GBA after adjustment (average value from 2010 to 2018).

City Knowledge Innovation Scientific Research Innovation Product Innovation
TE PTE SE TE PET SE TE PST SE

Guangzhou 0.916 1 0.916 drs 0.96 1 0.96 drs 0.639 0.641 0.996 drs
Shenzhen 0.983 0.989 0.994 drs 1 1 1 irs 0.715 0.896 0.798 drs

Zhuhai 0.882 0.902 0.978 irs 0.899 1 0.899 irs 0.43 0.669 0.643 irs
Foshan 0.888 0.891 0.997 drs 0.858 0.889 0.965 drs 0.497 0.499 0.996 drs

Huizhou 0.819 0.828 0.989 irs 0.778 0.781 0.996 irs 0.587 0.625 0.939 irs
Dongguan 0.887 0.924 0.96 irs 0.761 0.855 0.89 irs 0.675 0.836 0.808 irs
Zhongshan 0.869 0.958 0.907 irs 0.767 1 0.767 irs 0.342 0.543 0.63 irs
Jiangmen 0.703 0.835 0.842 irs 0.558 0.815 0.684 irs 0.32 0.561 0.57 ins
Zhaoqing 0.684 0.718 0.952 irs 0.484 0.853 0.568 irs 0.232 0.594 0.391 ins

Hong Kong 0.948 0.951 0.996 irs 1 1 1 - 0.967 0.967 1 -
Macao 0.789 0.885 0.892 irs 0.598 0.81 0.738 irs 0.558 0.723 0.773 irs
Mean 0.852 0.898 0.948 - 0.788 0.909 0.861 - 0.542 0.687 0.777 -

According to the comparison between Tables 2 and 4, after eliminating environmental
factors and random interference, the average comprehensive efficiency of the GBA in the
knowledge innovation stage increased from 0.757 to 0.852, in which the pure technical
efficiency also increased while the scale efficiency decreased slightly. The mean value of
comprehensive efficiency increased from 0.748 to 0.788 in the stage of scientific research
innovation, and both the pure technical efficiency and scale efficiency increased to a certain
extent. In the product innovation stage, the average comprehensive efficiency decreased
from 0.582 to 0.542, but both the pure efficiency and scale efficiency increased slightly.

As can be seen from Table 4, compared with the latter two stages, the efficiency of the
knowledge innovation stage was higher, with an average value of 0.852. Among them, the
efficiency of knowledge innovation in Guangzhou, Shenzhen, and Hong Kong was more
than 0.9, ranking in the first echelon of innovation. The efficiency values of Zhuhai, Foshan,
Huizhou, Dongguan and Zhongshan were between 0.8 and 0.9, which belong to the second
echelon. The efficiency value of Jiangmen, Zhaoqing and Macao was below 0.8, the third
echelon. In the scientific research innovation stage, the average efficiency was 0.788, which
was lower than that in the knowledge innovation stage. Guangzhou, Shenzhen, and Hong
Kong had higher efficiency values, which were all higher than 0.9. Among them, the
efficiency values of Shenzhen and Hong Kong reached the allocation effective level of 1.
In the second tier, including Zhuhai, Foshan, Huizhou, Dongguan and Zhongshan, their
efficiency values were between 0.6 and 0.9. The efficiency value of Jiangmen, Zhaoqing,
and Macao was below 0.6, among which the efficiency value of Zhaoqing was the lowest,
only 0.484. In the product innovation stage, its average efficiency was low on the whole,
only 0.542, which is far lower than the previous two innovation stages. Among them,
Hong Kong had the highest product innovation efficiency (0.967), followed by Shenzhen,
Dongguan and Guangzhou (0.6 to 0.8). The product innovation efficiency value of Macao,
Foshan, Huizhou, and Zhuhai was between 0.4 and 0.6, which belongs to the second tier.
In the third stage of the innovation chain, the efficiency of Zhongshan, Jiangmen, and
Zhaoqing was low, with a value below 0.4. Among them, Zhaoqing was the lowest, with
only 0.232. Based on the calculated efficiency value, it can be preliminarily analyzed that
the reason why Guangzhou, Shenzhen, and Hong Kong achieved efficient innovation lies
in their strong foundation conditions and distinct advantages in innovation platforms [51].
Compared with the three leading innovation cities, the overall innovation efficiency of the
other cities was average, and there was a certain gap with the first echelon, which indicates
the imbalance of innovation capacity within the GBA.

By comparing the efficiency values of the three stages in the innovation process
(as shown in Figure 3), it is not difficult to find that with the progress of innovation, the
innovation efficiency becomes increasingly lower in the process from knowledge innovation
to scientific research innovation and finally to product innovation. The innovation efficiency
decreased from 0.852 in the knowledge innovation stage to 0.788 in the scientific research
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innovation stage and was only 0.542 in the product innovation stage. From the composition
of the main bodies of innovation activities, the main bodies of innovation in the GBA are
the government, enterprises, universities, research institutes and science and technology
intermediaries. Knowledge innovation mainly relies on universities. There are many
universities (162 in total) in the GBA [52], so the GBA has high efficiency in the stage of
knowledge innovation. Scientific research innovation mainly relies on scientific research
institutes and scientific research intermediaries, and the number of patent applications is
mainly taken into account when testing the results in this stage. The overall efficiency of
the scientific research innovation stage was lower than that of the first stage, indicating that
the innovation efficiency of the transfer from knowledge innovation to scientific research
innovation in the innovation process needs to be enhanced. The relatively low efficiency in
the stage of product innovation reflects that the transformation of innovative product results
is not ideal. The reason may be that the technical maturity of the scientific and technological
achievements of some universities is low, and they lack accurate docking with the industry
and market demand [53]. At the same time, the evaluation and pricing mechanism of
scientific research results is not perfect; the steps are tedious, time–consuming, and lengthy,
which affects the transformation time and leads to the low efficiency of overall product
innovation in the GBA. At present, there is a lack of interaction and communication among
innovation players in the GBA, and the coordination ability is weak. The synergistic
effect between enterprises and other innovation players such as universities and research
institutes has not been played. The knowledge spillover benefit and technology diffusion
effect produced by innovation activities are non-significant [54]; the synergistic value-
added effect of the value chain innovation between enterprises and the system innovation
effect between enterprises and the government did not lead to an effective value [55].

Figure 3. Comparison of innovation efficiency values in the three stages of innovation in the GBA.
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5.2. The Positioning Analysis of the Two-Dimensional Matrix of Innovation Efficiency of Each City

Based on the empirical results in Table 4 and the previous research ideas, we put the
innovation efficiency of each stage in a two-dimensional distribution map (using the mean
value of innovation efficiency of each stage as the division standard). The details are shown
in Figures 4 and 5.

Figure 4. “Knowledge-scientific research” innovation efficiency matrix.

Figure 5. “Scientific research–product” innovation efficiency matrix.

According to the analysis of the “knowledge–scientific research” innovation effi-
ciency matrix (Figure 4), cities in the GBA are distributed in regions A and C, namely,
intensive and efficient knowledge–scientific research innovation and extensive and ineffi-
cient knowledge–scientific research innovation. The cities in Zone A include eight cities:
Guangzhou, Shenzhen, Hong Kong, Zhuhai, Foshan, Huizhou, Dongguan and Zhongshan.
Higher education and basic scientific and technological innovation facilities in these cities
are relatively developed, laying a talent base and material guarantee for knowledge in-
novation and scientific research innovation. The innovation-leading development cities
represented by Guangzhou, Shenzhen and Hong Kong have a high level of economic
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development and a strong “siphon effect” to attract resources from surrounding cities.
Therefore, a large number of innovative elements are gathered here and their innovation
ability is relatively prominent. In recent years, Zhuhai has been gradually developing as
an innovation growth pole [56], while Foshan and Dongguan, as extensions of the GBA’s
“Guangzhou-Shenzhen-Hong Kong-Macao” innovation corridor, have also been steadily
improving their innovation capabilities. By connecting with Shenzhen and Guangzhou,
Huizhou and Zhongshan will further cluster in the innovation corridor and develop their
innovative advantages.

Macao, Jiangmen and Zhaoqing are the two cities with low efficiency in knowledge
innovation and scientific research innovation. Although these three cities are all located in
region C, the causes of double inefficiency are different. Macao has a relatively high level
of economic development. The low efficiency in the knowledge stage may be caused by
excessive input of human and material resources in innovation and limited innovation out-
put in this link. In contrast, the low efficiency in the scientific research stage reflects the lack
of ability to integrate knowledge innovation into scientific research innovation. Jiangmen
and Zhaoqing are cities with relatively low economic strength in the GBA, so their cities
have limited innovation resources and lack the momentum of innovation development.

For the three cities with low efficiency of knowledge and scientific research innovation,
the optimization path includes the C → A skipping of the development path, and the
C→ B→ A and C→ D→ A progressive improvement path. The leap-forward develop-
ment path requires a solid economic foundation and reserves of resource elements, and
Macao is suitable for the leap-forward development path. The gradual promotion path is
to give full play to the existing advantages and make up the disadvantages on this basis,
that is, through the transition of B or D region, and finally towards A region. The low
efficiency of Jiangmen and Zhaoqing in the stage of knowledge innovation is mainly due
to the lack of input resources provided by the cities, which makes the improvement of
efficiency in the stage of knowledge innovation difficult. Therefore, when choosing the
path of improvement, the two cities should choose the C→ D→ A progressive innovation
development path that first improves the efficiency of scientific research innovation while
maintaining the level of knowledge innovation efficiency.

Let us look at the “scientific research–product” innovation efficiency matrix (Figure 5).
In the process of linking scientific research and product innovation, cities in the GBA are
distributed in regions A, B, and C, namely, intensive and efficient scientific research–product
innovation, high scientific research innovation efficiency and low product innovation
efficiency, and extensive and low-efficiency scientific research–product innovation. The
cities in the double high efficiency A region, including Hong Kong, Guangzhou, Shenzhen
and Dongguan, also performed well in the previous phase of knowledge innovation.
Because they had a higher level of economic development of the city itself, the innovation
efficiency of the transformation provided the economic foundation, which was also due to
the development of the related policy funds, talents, and supporting environment brought
by various advantages, making scientific research and product innovation efficiency higher;
these areas also reflect the scientific research and innovation of the elements of the transition
to product innovation conversion efficiency better.

The cities of high-efficiency scientific research innovation and low-efficiency product
innovation are located in region B are Huizhou, Foshan, Zhuhai and Zhongshan. The
“scientific research–product” innovation of these four cities also proves that regional sci-
entific research innovation is not able to transform into product innovation. Therefore,
cities in Region B should focus on enhancing the efficiency of product innovation while not
ignoring the efficiency of scientific research innovation. Located in the geometric center
of the GBA, Zhongshan plays a crucial role in “connecting the east with the west”. As a
start-up resource city, Huizhou can connect with Shenzhen, learn from its research results
and complete the transformation suitable for its development. Zhuhai can take advantage
of its proximity to Macao to explore new paths of innovative development. Foshan should
further upgrade its existing leading industries. At the same time, we should increase the
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investment in scientific research and cooperate with Guangzhou to complete the integration
of traditional industries and emerging industries [57], develop complementary industrial
systems, and increase cooperation with cities on the east coast. The four cities of Huizhou,
Foshan, Zhuhai and Zhongshan should strengthen the efficiency of product innovation
according to their regional development characteristics and strive to solve the problem of
low efficiency of product innovation.

Macao, Jiangmen and Zhaoqing are the two cities with low efficiency in scientific
research innovation and product innovation. The efficiency of these three cities in the stage
of knowledge innovation is relatively lower than that of other cities. The fundamental
reason is the imbalance of input and output of innovation factors, and the transformation
of innovative product results is not ideal. These three cities need to strengthen scientific
research innovation and product innovation. They can maximize their advantages with
the help of functional division of urban agglomeration, and then focus on improving their
weaknesses. At the same time, the advantage of the overall coordinated development
of the GBA urban agglomerations can be utilized to make full use of the technology
spillover effect, absorb the scientific research achievements of other regions and complete
the industrialization transformation suitable for local development, to improve the product
innovation efficiency of the region.

6. Conclusions and Recommendations for Countermeasures
6.1. Conclusions

Based on the three-stage innovation value chain model of “knowledge innovation–
scientific research innovation–product innovation”, we constructed a generalized inno-
vation input-output index system and use the three–stage DEA model that examines
environmental factors to measure the innovation efficiency in each stage of innovation
activities in the GBA from 2010 to 2018. The results show the following: 1© On the whole,
the innovation efficiency of the Greater Bay Area decreased with the advancement of
innovation activities. The average innovation efficiency of knowledge innovation, scientific
research innovation, and product innovation was 0.852, 0.788, and 0.542, respectively.
2© From the perspective of different stages in the innovation process of each city, Shenzhen,

Guangzhou, and Hong Kong all performed well in the whole stage of innovation, while
other cities in the GBA had innovation shortcomings in different stages. Based on the
above research results, we constructed the “knowledge–scientific research” innovation
efficiency matrix and the “scientific research–product” innovation efficiency matrix using
a two-dimensional matrix, and divided the innovation efficiency at each stage into four
types. From the matrix analysis, the current state of innovation development in each city
was located, and the path to improve its innovation efficiency was analyzed according to
the characteristics of each city.

6.2. Recommendations for Countermeasures

Innovation is an important starting point and strategic path for promoting the de-
velopment of the GBA. To promote the construction of a national innovation system and
strengthen strategic scientific and technological forces, it is necessary to construct and
perfect the new mechanism of regional collaborative innovation and improve the efficiency
of regional innovation. The GBA is an important bridge linking the internal and external
circulation of China’s economy, and will become a pioneer and demonstration area for
China to build a new development pattern. In recent years, China has issued a series of
policy documents on collaborative innovation around the construction of an international
science and technology innovation center in the GBA and carried out a series of fruitful
explorations of institutional mechanisms to promote the upgrading of cooperation models
in collaborative innovation in the GBA [58]. However, due to the lack of resource trans-
formation in the innovation process, the innovation efficiency gradually declines along
with the innovation chain, and the imbalance of innovation development among cities
in the GBA shows that there is still considerable room for improvement in collaborative
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innovation in the GBA. The mechanisms and systems of collaborative innovation in the
GBA are not yet perfect, and the scientific collaborative innovation system has not been
completely established. The existing government management system has not adapted to
the coordinated governance of metropolitan groups. As an important territory to promote
innovation in China, the GBA still needs to improve its collaborative innovation mechanism
and establish a collaborative system among innovation bodies such as cities, enterprises
and R&D institutions. In addition, the cooperation mechanism, communication mechanism
and guarantee mechanism based on collaborative innovation in the Greater Bay Area need
to be further deepened. Based on this, relevant countermeasures and suggestions for
optimizing collaborative innovation in the GBA are put forward from the aspects of factor
flow, industrial structure, innovation networks.

6.2.1. Promoting the Flow of Innovation Factors and Building a Circular and Smooth
Bay Area

At present, the GBA has problems such as uneven distribution of innovation factors
and uncoordinated ability to allocate resources. At the same time, administrative barri-
ers caused by policy and economic factors have placed very significant constraints on
the convenient and efficient flow of innovation resources within the GBA, which is not
conducive to the formation of technology diffusion effects and hinders the development
of collaborative regional innovation. The key to enhancing innovation effectiveness in
the GBA city cluster lies in the free flow of innovation factors. Therefore, the Greater
Bay Area should improve the phenomenon of excessive siphoning from the central cities,
strengthen the diffusion effect of innovation technologies, and accelerate the introduction
and market-based allocation of innovation factor resources. These improvements would
attract more high-quality elements to the GBA, optimally fill in the missing links of the
innovation chain in cities with low and medium levels of coordination, promote positive
interaction among the links and enhance the level of chain coordination. At the same time,
the mechanism channel for the flow of innovation factors will be unblocked, and the cities
in the GBA will be promoted to jointly enhance the level of coupling and coordination
of science and technology innovation, so as to achieve the construction goal of smooth
circulation of innovation factors in the GBA.

6.2.2. Improving Innovative Cooperation Mechanisms to Build a Mutually Beneficial
Bay Area

There is currently a lack of interaction and communication between innovation agents
in the Greater Bay Area, and coordination is weak. Universities and research institutes with
their enterprises and other innovation subjects are many but not strong, the interaction and
coordination between the subjects is insufficient, and the sharing platform of science and
technology innovation elements is relatively lacking. The existing mechanism does not
play a synergistic role between enterprises and other innovation bodies such as universities
and research institutes, thus resulting in problems such as low value-added effect of scien-
tific and technological innovation results and low conversion rate. Therefore, creating a
collaborative and mutually supportive partnership among multiple players and improving
the innovation cooperation mechanism are the backbone of the GBA’s innovation-driven
strategy. The GBA should further promote the interconnection of the city’s industrial, value
and innovation chains, attach importance to the investment and accumulation of talent
capital, and cultivate highly qualified talents with core competitiveness. Improving the
institutional mechanisms of Guangdong, Hong Kong, and Macao in areas such as mutual
recognition of talent qualifications, the use of science and technology funds and customs
clearance facilitation would achieve the goal of building a mutually beneficial Bay Area.

6.2.3. Optimizing the Industrial Structure and Building a Bay Area with a Full
Industrial Chain

In terms of industrial structure, the GBA has uneven development. Hong Kong and
Macao have entered the post-industrialization stage, while the Pearl River Delta is between
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the post-industrialization stage and post-industrialization stage, and the non-Pearl River
Delta region is still in the mid-industrialization stage. In the face of the lack of synergistic
added value and technology diffusion effects in the industrial chain, the Greater Bay Area
needs to optimize its industrial structure in order to strengthen innovation cooperation,
achieve complementary advantages and create an “innovation ecosystem”. It is necessary to
build the Guangzhou–Shenzhen–Hong Kong and Guangzhou-Shenzhen-Australia Science
and Technology Corridors to a high level and to co-ordinate the use of quality science
and technology innovation resources from Hong Kong and Macao to create a secure bay
area for industrial chains. The development of high–tech industries; the integration of
the existing advantageous industries of Hong Kong, Macao; and the leading innovation
cities in the Pearl River Delta (Shenzhen, Guangzhou, etc.) form a collaborative division of
labor patterns among the cities around the dual-chain integration model of innovation and
industrial chains and create an innovation economic belt suitable for the development of
the GBA. The optimization of the industrial structure of the GBA and the improvement of
the construction of the whole industrial chain are important engines for the construction of
a world-class innovation-leading Bay Area posture.

6.2.4. Establishing a Collaborative Innovation Network and Building a Synergistic
Development Bay Area

The building of collaborative innovation networks in the Bay Area city clusters is a
great boost to the overall flow of innovation resources in the region. Strengthening the
construction of collaborative innovation networks in the GBA and neighboring cities and
accelerating the construction of infrastructure networks with complementary functions
to create a network system with an adequate flow of resource elements would make the
spatial connection of the city cluster as a whole even closer. It is necessary to improve
the mechanism for sharing innovation platform resources and open services, promote a
market-based model for efficient sharing of science and technology innovation platform
resources and industrial cooperation resources within the Greater Bay Area, and establish
a unified project pool and talent pool. At the same time, the existing basic innovation
resources of the GBA will be brought into full play, and global innovation resources will be
introduced through the International Innovation Demonstration Zone to build a world-
class innovative Bay Area, enhance the overall innovation strength of the region and raise
the status of the Greater Bay Area in global innovation.
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