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Abstract: A spatial and temporal heterogeneity analysis of residential land prices, in general, is crucial
for maintaining high-quality economic development. Previous studies have attempted to explain the
geographical evolution rule by studying spatial-temporal heterogeneity, but they have neglected the
contextual information, such as school district, industrial zone, population density, and job density,
associated with residential land prices. Therefore, in this study, we consider contextual factors and
propose a revised local regression algorithm called the contextualized geographically and temporally
weighted regression (CGTWR), to effectively address spatiotemporal heterogeneity, and to creatively
extend the feasibility of importing the contextualization into the GTWR model. The quantitative
impact of contextual information on residential land prices was identified in Shijiazhuang (SJZ)
city from 1974 to 2021. Empirical analyses demonstrated that school district and industrial zone
factors played important roles in residential land prices. Notably, the distance from a residential
area to an industrial zone was significantly positively correlated with residential land prices. In
addition, a positive relationship between school districts and residential land prices was also observed.
Finally, the R2 value of the CGTWR model was 92%, which was superior to those of ordinary least
squares (OLS, 76%), geographically weighted regression (GWR, 85%), contextualized geographically
weighted regression (CGWR, 86%), and GTWR (90%) models. These evaluation results indicate that
the CGTWR algorithm, which incorporates contextual information and spatiotemporal variation,
could provide policy makers with evidence for understanding the nature of varying relationships
within a land price dataset in China.

Keywords: residential land prices; spatial and temporal non-stationarity; contextualized geographi-
cally and temporally weighted regression; Shijiazhuang

1. Introduction

A spatial and temporal heterogeneity analysis of residential land prices is considered
to be crucial for revealing major issues in real estate market development, understanding
effective strategies of economic macro control, and promoting high-quality development of
internal economics [1–4]. In the past decades, urbanization in China has undergone rapid
development. The urban population increased from 17.16% to 60.60% between 1974 and
2019 according to the China Statistical Yearbook. Along with the expeditious progression of
urbanization, countless internal markets have flourished. The housing market is one of the
most active markets in China and plays a crucial role in China’s economy [5–9]. The average
selling price of commercial housing has increased rapidly, especially in heavily populated
provinces. By contrast, the per capita disposable income of urban households has increased
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from 5425 to 42,358 yuan (equivalent to approximately 838.16–6544 USD). The swift growth
of residential land prices as compared with the increase in residents’ incomes indicates a
growing housing affordability problem in China [10–13]. Thus, the spatiotemporal analysis
of residential land prices has become a research priority for researchers and policy makers.

Considering the related available research, various models have been developed to
explore the spatial and temporal heterogeneity in residential land prices. Geographic infor-
mation system (GIS)-based approaches, called automated valuation methods (AVMs), are
characterized by a powerful theoretical and methodological basis in order to determinate
more objective property evaluations [14–17]. Multiple criteria are aggregated into a com-
pound criterion by the multi-attribute utility theory (MAUT) for the purpose of evaluating
the decisive property characteristics in the real estate market [18,19]. Hybrid data-driven
regression models that incorporate a multi-objective genetic algorithm have been proposed
to search expressions about maximization of data accuracy and simplification of mathemat-
ical functions [20–22]. Furthermore, the geographically weighted regression (GWR) model,
which provides distance metrics with specific parameters in the spatial dimensions, was
introduced by [23–25]. The mixed geographically weighted regression (MGWR) model
has been verified effectively with some parameters fixed globally and others adjusted
locally [26,27]. A prominent advancement in residential land price estimations resulted
from the geographically and temporally weighted regression (GTWR) approach, proposed
by Bo Huang [28]. The GTWR model provides an efficient approach for evaluating mass
price temporal non-stationarity in the field of real estate market.

These techniques have made outstanding contributions towards determining the
factors such as floor area, building age, and distance to the nearest central business district
(CBD) that affect a rapid rise in real estate prices [29–32]. In addition to building struc-
tural and locational requirements, contextual attributes, obviously, also affect changes in
residential land prices. For instance, two schools are near each other, but one has better
educational facilities and resources; the selling prices of houses near these schools would
be influenced by the neighborhood-level attribute space [33–36]. Rich Harris [30] proposed
a contextualized geographically weighted regression (CGWR) to integrate attribute correla-
tions between neighborhood-level observations and found that it was significant in a real
estate context, but temporal information was ignored. Few studies have made efforts to
simultaneously consider contextual and spatiotemporal non-stationarity, although there
is an obvious need to do so. Our study aimed to fill this gap and to provide a valuable
recommendation for the healthy development of a real estate market.

In this study, a new contextualized GTWR algorithm, named the CGTWR, is proposed
by reconstructing spatiotemporal weights. In contrast to previous approaches that only
consider spatial and temporal non-stationarity or neighborhood information, this approach
extends the GTWR and CGWR algorithms, focusing on redesigning the weight function
using neighborhood information in attribute space. Moreover, better fitting ability can
be gained through optimizing contextual and spatiotemporal factors. Applications of the
CGTWR technique could be used for evaluating residential land value to determine a more
adequate and objective property value. The CGTWR model could implement an effective
way for large-scale estimation of residential land price and supply evidence for policy
makers to understand the nature of varying relationships within a house price dataset
in China.

The remainder of this paper is organized as follows: In Section 2, we briefly describe
the study area, data source, and methods, using the CGTWR approach; in Section 3, we
present the case study results with residential land price data using the CGTWR model,
and compare the performance of the CGTWR model with global and local models; finally,
we present the discussion and conclusions in Sections 4 and 5, respectively.
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2. Materials and Methods
2.1. Study Area

The study area included the Chang’an, Qiaoxi, Xinhua, and Yuhua Administrative
Districts, located in SJZ city, Hebei Province, covering approximately 408.76 km2 (from
37◦58′2.58′′ to 38◦10′1.25′′ N and from 114◦22′4.99′′ to 114◦42′6.40′′ E) and encompassing a
population of 2.74 million people (Figure 1). As a central city in the southern part of the
Beijing–Tianjin–Hebei Economic Rim, ongoing rapid economic and urbanization devel-
opment have been taking place in SJZ city. The GDP (gross domestic product) of this city
accounted for 16.54% of the province as reported by the Hebei Economic Yearbook in 2019.
At the same time, the urbanization rate of the permanent population was 65.05%, making
it one of the high-growth zones in China according to the Shijiazhuang Statistical Yearbook.
Moreover, the area of urban construction land increased from 425 square kilometers in
2013 to 2194 square kilometers in 2019, and the average selling price of commercialized
buildings increased from 4931 yuan (≈763.32 USD) to 10,452 yuan (≈1617.97 USD) per
square meter at this stage. Against the background of rapid economic and urbanization
development, the question of whether the real estate market in SJZ city can develop orderly
and favorably has become a matter of deep anxiety and concern. Meanwhile, this region,
over recent decades, has become one of the most seriously environmentally contaminated
cities in China. This area had the highest annual average particulate matter (PM2.5) value
among major cities of China in 2020 [37–41]. Improving the utilization rate of land and
promoting sustainable economic advancement in SJZ city is a critical issue for achieving
high-quality development in this region. Therefore, considering the contradictions between
human and environmental relationships, we investigated SJZ city to explore the spatiotem-
poral heterogeneity in the real estate economy with urban development and calculated the
characteristic indexes to describe the residential land price factors.
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2.2. Data Source

According to the hedonic theory [42] and data availability, the dataset consisted of
913 housing data collected from the Anjuke.com website (https://sjz.anjuke.com/, ac-
cessed on 25 January 2021). We selected residential land price data with precise geographi-
cal locations, including plot ratio (PlOT), number of bathrooms (BATH), floor area (AREA),
and age of building (YEAR), as the research objects. The natural logarithm of explanatory
variables was used [28,43,44]. The houses in school districts and the population density
information were up-to-date and authoritative, and obtained from the Shijiazhuang Ed-
ucation Bureau and China State Statistical Bureau, respectively. The detailed statistical
information of the variables in SJZ city is shown in Table 1.

Table 1. The definitions of the dependent and independent variables.

Variables Abbreviation Min Max Mean Std. VIF

Dependent variables

Residential land prices (CNY) PRICE 250,000 7,150,000 1,456,421 718,386 —

Structural explanatory variables

Plot ratio (%) PlOT 0.400 5.840 2.299 0.880 1.121

Total number of bathrooms BATH 0.000 3.000 1.200 0.437 2.243

Total floor area (m2; except basement) AREA 29.000 282.000 93.223 32.569 3.341

Age of building at time of sale (year, 1974–2021) YEAR 1.000 48.000 34.434 9.730 1.813

Locational explanatory variables

Take the logarithm of distance to the nearest transport
facility including bus, subway and train station (km) LogDsubway 2.732 6.946 5.113 0.603 1.065

Take the logarithm of distance to the nearest central
business district (km) LogDcbd 0.657 8.047 5.429 0.885 1.223

Take the logarithm of distance to the nearest central
shopping plaza (km) LogDshopping 3.206 8.631 6.423 0.737 1.152

Take the logarithm of distance to the nearest park (km) LogDpark 3.046 8.470 6.630 0.644 1.105

Take the logarithm of distance to the nearest river (km) LogDriver 3.854 9.000 7.540 0.603 1.101

Neighborhood explanatory variables

School district housing (Yes: 1, No: 0) SCHOOL 0 1 0.049 0.216 1.050

Take the logarithm of distance to the nearest factory (km) LogDfactory 3.696 7.858 6.365 0.639 1.072

Take the logarithm of population density (people/km2) LogDpop 2.284 815.783 115.119 106.048 1.194

Take the logarithm of job density (job/km2) LogDjob 0.73 7346.440 135.541 452.350 1.012

Notes: Min, minimum; Max, maximum; Std., standard error; VIF, variance inflation factor.

We applied the non-Euclidean distance (non-ED) metric to locational explanatory
variables in order to overcome the inaccurate coefficient estimation of Euclidean distance
(ED) measurement and the misinterpreted spatial pattern estimation due to linear measure-
ment [45–47]. Multicollinearity, which can generate misleading regression coefficients and
standard errors, refers to the high correlation or mutual correlation between the indepen-
dent variables in the regression model [48,49]. Thus, to examine the statistical significance
and collinearity of variables in the study area (Section 3.2), the variance inflation factor
(VIF) was used, the values of which were all less than 4 (much less than 10, which is
the typical threshold for concern). The analytical framework of modeling the real estate
estimation is shown in Figure 2.

https://sjz.anjuke.com/


Land 2021, 10, 1148 5 of 20

Land 2021, 10, x FOR PEER REVIEW 5 of 21 
 

(ED) measurement and the misinterpreted spatial pattern estimation due to linear meas-
urement [45–47]. Multicollinearity, which can generate misleading regression coefficients 
and standard errors, refers to the high correlation or mutual correlation between the in-
dependent variables in the regression model [48,49]. Thus, to examine the statistical sig-
nificance and collinearity of variables in the study area (Section 3.2), the variance inflation 
factor (VIF) was used, the values of which were all less than 4 (much less than 10, which 
is the typical threshold for concern). The analytical framework of modeling the real estate 
estimation is shown in Figure 2. 

 
Figure 2. Analytical framework of the modeling methods used. Figure 2. Analytical framework of the modeling methods used.

2.3. Methods
2.3.1. Geographically and Temporally Weighted Regression

The GTWR approach is a spatially and temporally varying local regression model that
is extensively used in statistical economic research [28]. It is especially useful for correlation
analysis in healthcare, environmental protection, and real estate markets [45,50,51]. The
GTWR model is given as follows:

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)Xik + εi, i = 1, 2, · · · , n. (1)
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The local coefficients are derived by the GTWR to manifest spatiotemporal hetero-
geneity synchronously by importing temporal effects into the GWR [28]. Here, (ui, vi, ti)
represents the prescribed coordinate of point i in location (ui, vi) at time ti, β0(ui, vi, ti)
represents the intercept value, and βk(ui, vi, ti) expresses a group of values for the figure
p of coefficients at sample i. The error obeying a standard normal distribution at ran-
dom is defined by εi, εi ∼ N

(
0, σ2). Random errors at different points are irrelevant, i.e.,

Cov
(
εi, ε j

)
= 0(i 6= j).

The β̂i (regression coefficient) at sample point i can be computed by the least-squares
algorithm as:

β̂i(ui, vi, ti) =
(
X′W(ui, vi, ti)X

)−1X′W(ui, vi, ti)yi. (2)

The fitted value ŷ is:

ŷ =


ŷ1
ŷ2
· · ·
ŷn

 =


X1(X′W(u1, v1, t1)X)−1X′W(u1, v1, t1)

X2(X′W(u2, v2, t2)X)−1X′W(u2, v2, t2)
· · ·

Xn(X′W(un, vn, tn)X)−1X′W(un, vn, tn)

y. (3)

Here, the weighting matrix W(ui, vi, ti) is found to calculate the weight function
using distances between the regression point i and the sample points as the variable. In
GTWR models, two kernel functions are widely used to determine the weights, namely,
fixed and adaptive types [28]. A self-adapting kernel function is applied to achieve an
optimal spatial kernel bandwidth for the study area. We use the Gaussian function as the
weighting function:

Wij = exp

(
−

d2
ij

h2

)
(4)

where h is a non-negative constant called a bandwidth, which decreases as the distance
increases between locations i and j.

2.3.2. Extension to GTWR with Neighborhood-Level Similarity

Considering spatial and temporal non-stationarity, spatiotemporal distance, dST , can
be described as follows:

dST = dS ⊗ dT (5)

where ⊗ represents different operators, and dS and dT stand for the spatial and temporal
distance, respectively. Harris [30] proposed a contextualized spatial distance dCS as follows:

dCS = dC ⊗ dS (6)

Therefore, the neighborhood information is used in the contextual GTWR approach
inspired by Huang [28] and Harris, and a modified contextual and spatiotemporal distance
dCST can be given as:

dCST = dC ⊗ dST = dC ⊗ dS ⊗ dT (7)

According to Huang, operator + was adopted, which means that contextual spatiotem-
poral distance dCST is the linear combination of contextual distance dC, spatial distance dS,
and temporal distance dT as follows:

(dCST)
2
= ϕC(dC)

2
+ ϕS(dS)

2
+ ϕT(dT)

2
(8)

The contextual and spatiotemporal distance dCST
ij between regression points (uI , I, Ii)

and
(
uj, vj, tj

)
is described as follows:

(dCST
ij )

2
= ϕC(dC

ij)
2
+ ϕS(dS

ij)
2
+ ϕT(dT

ij)
2

(9)
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where ϕC, ϕS, and ϕT are scale factors used to counterbalance the contextual, spatial, and
temporal effects among dC

ij , dS
ij, and dT

ij .

The contextual distance dC
ij , spatial distance dS

ij and temporal distance dT
ij between

regression points (ui, vi, ti) and
(
uj, vj, tj

)
can be found as follows:

(dC
ij)

2
=
[

f
(
zi − zj

)]2
(dS

ij)
2
=
(
ui − uj

)2
+
(
vi − vj

)2

(dT
ij)

2
=
(
ti − tj

)2
. (10)

where index score function f
(
zi − zj

)
is given to estimate the contextual distance in the

neighborhood level. The contextual spatiotemporal distance can be described as:

(dCST
ij )

2
= ϕC(dC

ij)
2
+ ϕS(dS

ij)
2
+ ϕT(dT

ij)
2

= ϕC[ f
(
zi − zj

)]2
+ ϕS

[(
ui − uj

)2
+
(
vi − vj

)2
]
+ ϕT(ti − tj

)2 (11)

The contextualized and spatiotemporal kernel function WCST
ij can be formulated as:

WCST
ij = exp

{
−

(dCST
ij )

2

(bCST)
2

}

= exp

{
−

ϕC(dC
ij )

2
+ϕS(dS

ij)
2
+ϕT(dT

ij)
2

(bCST)
2

}

= exp

{
−

ϕC(dC
ij )

2

(bCST)
2

}
× exp

{
−

ϕS(dS
ij)

2
+ϕT(dT

ij)
2

(bCST)
2

}

= exp
{
−ς×

[
f
(
zi − zj

)]2}× exp

{
−
(

(dS
ij)

2

b2
S

+
(dT

ij)
2

b2
T

)}

= exp
{
−ς×

[
f
(
zi − zj

)]2}× exp

{
−

(dS
ij)

2

h2
S

}
× exp

{
−

(dT
ij)

2

h2
T

}
= WC

ij ×WS
ij ×WT

ij

(12)

where WC
ij , WS

ij , and WT
ij are contextual, spatial, and temporal kernel functions.

In order to determine the optimal contextualized and spatiotemporal factor τ, ς, the
performance of CGTWR should be measured using criterion:

CV(τ, ς) = ∑
i

[
yi − ŷ 6=i(τ, ς)

]2 (13)

The pseudo-code of CGTWR is presented in Algorithm 1.
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Algorithm 1. Pseudo-code describing the CGTWR model.

Algorithm: CGTWR

INPUT: explanatory variables X
spatiotemporal coordinates (u, v, t)
dependent variable Y
PROCESS:

Find the optimal spatial bandwidth bs, golden section search G1:
for i ∈ {1, 2, · · · , n} do

construct the spatial kernel weight WS
ij between (ui, vi, ti) and

(
uj, vj, tj

)
calculate the CV value

end for
Achieve the optimal spatial bandwidth bs

Find the optimal spatiotemporal factor τ, implement golden section search G2
Find the optimal contextual factor ς, implement golden section search G3

for i ∈ {1, 2, · · · , n} do
construct the contextual spatiotemporal kernel weight WCST

ij between (ui, vi, ti) and(
uj, vj, tj

)
calculate the CV value

end for
Find the optimal contextual factor ς and spatiotemporal factor τ

Calculate RSS, MSE, AIC, R2, R2
adj

2.3.3. Model Evaluation of Performance

Statistical indicators were adopted in this study to evaluate the performance of differ-
ent models on estimating the coefficients. The residual sum of squares (RSS) between the
estimated and actual value at each point in the dataset could be normalized by the total
variation as follows:

RSS =
n

∑
i=1

εi
2 =

n

∑
i=1

(yi − ŷi)
2 (14)

where yi and ŷi denote the estimated and actual values, respectively, in the experimental
dataset, and n is the number of observations. Mean square error (MSE) is a standardized
variance estimation based on actual and estimated value. The overall estimated coefficient
can be measured as follows:

MSE =
∑n

i=1(yi− ŷi)
2

n
(15)

where n, yi, and ŷi are defined as in (1). In addition, R2 can estimate the goodness of fit for
different models as follows:

R2 = 1− ∑n
i=1(yi− ŷi)

2

∑n
i=1 (yi− y)2 (16)

when the number of independent variables in the regression model is large, the complex
determination coefficient increases gradually, and the degree of interpretation of variables
decreases. In order to overcome this shortcoming of the sample determination coefficient,
we appropriately adjust R2 to improve the goodness of fit of the regression equation. The
R2

adj value is given as follows:

R2
adj = 1− [

n− 1
n− tr(s)− 1

(
1− R2

)
] (17)

where R2 can be computed from Equation (4) and tr(s) is the effective number of parameters.
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3. Experimental Results and Comparisons
3.1. Results of the Global Model

Before exploring possible spatiotemporal and contextual variations of residential
land price determinants in SJZ city, the global model represents the average relationships
between the residential land prices and explanatory factors. Global models generate only
one parameter estimate for the residential land price data at all locations, assuming the
linkages between this covariate and the dependent variable is stationary over space. In
order to acquire a comprehensive understanding of the influences of various factors on
residential land price, we list the parameter estimates associated with each covariate in the
ordinary least square (OLS) model. The parameter estimates generated by OLS are listed
in Table 2, with and without the contextual variables. Those statistically significant values
at the 5% level are marked with an asterisk ‘*’.

Table 2. Parameter estimates for the regression of residential land prices generated by OLS.

Model 1 Model 2

Parameter Coefficient Std. Error p-Value Coefficient Std. Error p-Value

Intercept 41.803 22.706 0.066 * 9.275 26.108 0.723 *
PlOT −1.230 1.409 0.383 * −0.354 1.395 0.800 *
BATH 13.709 4.051 0.001 14.477 3.983 0.000
AREA 1.565 0.066 0.000 1.561 0.066 0.000
LogDsubway −2.242 2.019 0.267 * −1.609 1.987 0.418 *
LogDcbd −3.866 1.436 0.007 −2.160 1.463 0.140 *
LogDshop −7.400 1.678 0.000 −5.002 1.694 0.003
LogDpark −2.097 1.926 0.277 * −1.943 1.911 0.310 *
LogDriver −0.647 2.064 0.754 * −2.090 2.040 0.306 *
YEAR 1.257 0.162 0.000 1.301 0.160 0.000
SCHOOL 0.886 5.486 0.872 *
LogDfactory 0.271 1.880 0.886 *
LogDPOP 0.074 0.012 0.000
LogDJOB 0.002 0.003 0.610 *
Diagnostic information
R2 0.761 0.771
Adjusted R2 0.759 0.768
AICc 15,629.000 15,569.000
MSE 1246.452 1200.863

Notes: R2, R squares; Adjusted R2, adjusted R squares; AIC, Akaike information criterion; MSE, mean
squared error.

As shown in Table 2, the results, in accordance with reducing the mean square error,
show that the performance of the OLS model that incorporates the contextual variables
(Model 2) is better than that of the OLS model without the contextual variables (Model 1).
Notably, there are slight differences between the models. Regarding the linkages between
plot ratio and land price, there is a weak association observed in Model 1, and a significantly
negative correlation observed in Model 2 (when the contextual variables are included),
which is the same as that of LogDriver. Evaluated as the mean land price and under the
two models, residential land price increases significantly with the number of bathrooms.

The effects of LogDpark and LogDriver are mainly negative on residential land prices
in the study area. According to Model 2, with a reduction in distance to the river or park,
residential land price will increase. Proximity to LogDcbd and LogDshop exerts a direct
effect on residential land prices in Model 2. Reducing the distance to the nearest CBD and
shopping mall will increase the residential land price significantly.

The estimated coefficient of SCHOOL has a significant impact on residential land
prices within the study area, while the proportion of distance to the nearest factory has a
positive impact on residential land prices. Overall, either model approximately explains
eight-tenths of the variation in residential land prices, with the inclusion of contextual
variables giving a better performance. Therefore, the evaluated residential land prices
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can be modeled by the selected housing structural attributes, locational explanatory vari-
ables, and neighborhood environment variables. The presumed relationships among the
housing structural attributes, locational explanatory and neighborhood environment, and
residential land prices are supported by the results of the experiments.

3.2. Results of the Local Model

As compared with other GWR-based models, the most significant improvement of
the CGTWR model is that it allows the parameter estimates to vary over spatiotemporal
location, and produces individual optimal bandwidths for the contextual relationships
between the response variable and each predictor variable. It allows the spatial variation of
different processes to be modeled at different spatial scales. The units of position and time
measurement are actually different. In this study, non-ED metrics were cited in meters and
time in years.

The rate of regression weight attenuation near a given point (u, v, t) is determined by
the bandwidth in the CGTWR model. One critical issue is the election of spatiotemporal
and contextual bandwidth (B, t, ς) to obtain reliable estimates of coefficients [28,30,52].
The parameter ς was introduced to offset or reconcile the various spatiotemporal units.
Before constructing contextual weighting matrices, these units were unified by computing
the spatial and temporal distance. The cross-validation method has been proven to be an
effective method for finding ways to eliminate standard errors and deviations [34]. The
validation procedure was used in this study to acquire a suitable parameter value in terms
of fitting accuracy, with the optimal bandwidth found to be B = 2221, τ = 80,118, and
ς = 216,407 (Figure 3).
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The analysis of variance (ANOVA) test [18,53] was adopted to test the significance
of the sum of squares from comparisons of the OLS, GWR, CGWR, GTWR, and CGTWR
models in Table 3. The residual sum of squares for these models and the improvement
of GWR-based models are shown in the first column. The degrees of freedom for each
model are listed in the second column. The mean square results of the respective degree of
freedom are given in the third column. The F statistic and its corresponding significance
level are shown in the fourth and fifth columns, respectively.
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Table 3. ANOVA comparisons among the OLS, GWR, CGWR, GTWR and CGTWR models.

Source of Variation RSS DF MS p Value F Value

OLS residuals 3,511,506.98 8.00 438,938.37 330.59 0.00
GWR residuals 719,819.36 762.08 944.54 48.75 0.00
CGWR residuals 649,167.14 743.47 873.16 33.15 0.00
GTWR residuals 467,541.40 639.07 731.60 10.58 0.00
CGTWR residuals 399,451.12 628.03 636.04 9.05 0.00
CGWR/GWR improvement 0.10% 0.02% 0.08% - -
GTWR/GWR improvement 0.35% 0.16% 0.23% - -
CGTWR/GWR improvement 0.45% 0.18% 0.33% - -

Notes: The statistically significant values at the 5% level; RSS, residual sum of squares; DF, degrees of freedom;
MS, mean squared error.

The statistics from the ANOVA tests in Table 3 show that there is significant spatiotem-
poral non-stationarity in SJZ city. Therefore, local models are more suitable for analyzing the
dataset in this study area. As compared with the global OLS model, the GWR, CGWR, and
GTWR models reduce the residual sum of squares values from 3,511,506.98 to 719,819.36,
649,167.14, and 467,541.40, respectively, and the CGTWR model generates a considerably
lower RSS of 399,451.12. In addition, the MS of the CGTWR model (636.04) is far less than
the global model (438,938.37), GWR model (944.54), CGWR model (873.16), and GTWR
model (731.60). The CGTWR model with context information is superior to the OLS, GWR,
CGWR and GTWR models as evidenced by a lower RSS and MS.

Unlike global models, local models achieve individual parameter estimates at each
location. Summaries of local parameter estimates are generated by GWR, CGWR, GTWR,
and CGTWR. The minimum (Min), lower quartile (LQ), median (Med), upper quartile
(UQ), and maximum (Max) are presented in Tables 4–7, respectively. The R2, adjusted R2,
and AIC statistic are also listed.

Table 4. The distribution of the localized coefficient estimates for the GWR model (B = 2221).

GWR

Variables Min LQ Med UQ Max p Value F Value

Intercept −290.876 −96.802 −24.21 51.612 339.021 0.002 9.565
PlOT −9.598 −0.04 1.314 2.829 22.548 0.837 * 0.042
BATH −13.122 1.791 10.722 15.785 81.652 0.030 4.698
AREA 0.708 1.709 1.839 2.014 2.228 0.000 1853.778

LogDsubway −32.905 −1.794 0.402 4.44 10.283 0.198 * 1.654
LogDCBD −13.98 −2.302 0.592 3.367 12.842 0.000 13.615

LogDshopping −15.826 −5.851 −2.732 0.056 11.407 0.000 30.087
LogDpark −32.278 −9.683 −0.566 6.217 30.315 0.140 * 2.173
LogDriver −25.14 −5.951 0.255 4.901 34.554 0.783 * 0.076

R2 0.85
Adjusted R2 0.85

AICc 15,322.34

Table 5. The distribution of the localized coefficient estimates for the CGWR model (B = 2221 and
ς = 216,407).

CGWR

Variables Min LQ Med UQ Max p Value F Value

Intercept −312.335 −99.96 −22.323 55.574 494 0.001 10.617
PlOT −9.873 0.201 1.601 3.256 23.549 0.828 * 0.047
BATH −23.376 0.714 10.495 15.823 84.373 0.022 5.215
AREA 0.861 1.683 1.803 1.967 2.344 0.000 2057.813

LogDsubway −35.519 −1.845 0.568 4.734 10.219 0.175 * 1.837
LogDCBD −10.572 −2.538 0.697 3.527 13.229 0.000 15.114

LogDshopping −15.877 −5.428 −2.492 0.425 11.962 0.000 33.399
LogDpark −40.692 −9.599 −1.199 5.704 28.474 0.120 * 2.412
LogDriver −29.566 −6.019 0.542 5.254 37.039 0.772 * 0.084

R2 0.86
Adjusted R2 0.86

AICc 15,259.77
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Table 6. The distribution of the localized coefficient estimates for the GTWR model (B = 2221 and
τ = 80,118).

GTWR

Variables Min LQ Med UQ Max p Value F Value

Intercept −318.933 −65.66 2.642 58.118 425.358 0.000 14.726
PlOT −29.568 −1.91 0.656 3.453 16.852 0.799 * 0.065
BATH −46.788 −2.679 13.601 25.134 130.518 0.007 7.233
AREA 0.097 1.281 1.536 1.795 2.942 0.000 2854.048

LogDsubway −37.534 −3.034 0.256 4.219 37.555 0.110 * 2.547
LogDCBD −21.974 −2.255 0.487 3.009 17.697 0.000 20.962

LogDshopping −26.48 −7.494 −2.819 1.75 17.629 0.000 46.322
LogDpark −40.117 −7.183 −0.943 5.64 40.797 0.067 * 3.345
LogDriver −36.415 −6.041 0.166 5.166 80.012 0.733 * 0.116

R2 0.90
Adjusted R2 0.90

AICc 15,225.56

Table 7. The distribution of the localized coefficient estimates for the CGTWR model (B = 2221,
τ = 80,118, and ς = 216,407).

CGTWR

Variables Min LQ Med UQ Max p Value F Value

Intercept −455.092 −68.178 2.916 55.817 381.896 0.000 17.255
PlOT −28.392 −1.726 0.867 3.814 17.659 0.782 * 0.076
BATH −47.745 −2.163 14.292 26.304 135.756 0.004 8.476
AREA 0.005 1.272 1.508 1.763 2.914 0.000 3344.251

LogDsubway −37.153 −2.961 0.367 4.271 34.581 0.084 * 2.985
LogDCBD −20.187 −2.329 0.683 3.361 19.615 0.000 24.562

LogDshopping −25.717 −7.126 −2.644 1.77 15.428 0.000 54.278
LogDpark −44.432 −7.276 −1.445 5.509 57.899 0.052 * 3.920
LogDriver −37.176 −6.12 0.396 5.129 82.746 0.712 * 0.136

R2 0.92
Adjusted R2 0.91

AICc 15,179.84

Tables 4–7 provide the detailed statistical comparisons. The AIC value of the models
decreased from 15,322.34 in the GWR model, to 15,259.77 in the CGWR model, 15,225.56 in
the GTWR model, and 15,179.84 in the CGTWR model. By comparing the R2 values, the
CGWR model significantly improved the R2 value to 0.86, indicating that adding contextual
variables to the analysis by adjusting the geographical weights matrix outperformed the
GWR model. Moreover, the CGTWR model, which considered contextual information,
yielded a 92% improvement over the GTWR model. Thus, it should be noted that the
CGTWR model, using the sample data, could effectively address spatiotemporal hetero-
geneity, and could creatively extend the feasibility of importing the contextualization into
the GTWR model.

The abundant information generated by local models presents a challenge for dis-
playing the results. Since the CGTWR model is more effective than the GTWR model
and CGTWR achieves a similar performance to CGWR, we only focused on the local
estimates of CGTWR. CGTWR generates local parameter estimates that reflect possible
spatiotemporal and contextual heterogeneity in the processes affecting residential land
price. The CGTWR model’s performance and its spatiotemporal non-stationarity were
explored visually by mapping the local coefficient estimates of the variables. Figure 4a–h
presents the spatial pattern of the CGTWR model estimated coefficients.



Land 2021, 10, 1148 13 of 20
Land 2021, 10, x FOR PEER REVIEW 14 of 21 
 

 
Figure 4. Spatial mapping for: (a) coefficients of intercept; (b) total floor area; (c) proximity of the 
nearest park; (d) proximity of the nearest transport facility; (e) proximity of the nearest central shop-
ping plaza; (f) proximity of the nearest river; (g) total number of bathrooms; (h) proximity of the 
nearest central business district, by contextualized geographically and temporally weighted regres-
sion modeling. 

The results suggest that AREA is positively correlated with residential land prices, 
as shown in Table 7. In other words, the larger the living area is, the higher the residential 
land price is (Figure 4b). The effects of LogDpark changes from positive in the northwest to 
negative in the southeast. This is reasonable since the Xinhua district is located in three 
parks, i.e., Xiushui Park, Yulin Park, and Qiushi Park, which increases coefficient values 
on parks (Figure 4c). The spatial variation of LogDsubway in the CGTWR model varies from 
high in the inner zone near metro lines to low in the external zones over this study area 
(Figure 4d). This is consistent with the distribution of the Shijiazhuang Metro Lines 1, 2, 
and 3. 

4. Discussion and Policy Implications 
4.1. The Performance of the Model in Exploring Spatiotemporal Heterogeneity 

The aim of exploring spatiotemporal heterogeneity of residential land prices was to 
provide appropriate guidance to strengthen classified regulation and control of the real 
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the nearest park; (d) proximity of the nearest transport facility; (e) proximity of the nearest central
shopping plaza; (f) proximity of the nearest river; (g) total number of bathrooms; (h) proximity
of the nearest central business district, by contextualized geographically and temporally weighted
regression modeling.

The results suggest that AREA is positively correlated with residential land prices, as
shown in Table 7. In other words, the larger the living area is, the higher the residential
land price is (Figure 4b). The effects of LogDpark changes from positive in the northwest to
negative in the southeast. This is reasonable since the Xinhua district is located in three
parks, i.e., Xiushui Park, Yulin Park, and Qiushi Park, which increases coefficient values on
parks (Figure 4c). The spatial variation of LogDsubway in the CGTWR model varies from
high in the inner zone near metro lines to low in the external zones over this study area
(Figure 4d). This is consistent with the distribution of the Shijiazhuang Metro Lines 1, 2,
and 3.

4. Discussion and Policy Implications
4.1. The Performance of the Model in Exploring Spatiotemporal Heterogeneity

The aim of exploring spatiotemporal heterogeneity of residential land prices was
to provide appropriate guidance to strengthen classified regulation and control of the
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real estate market. Furthermore, we should take measures to protect the environment
from further deterioration under the rapid acceleration of urbanization. In this study,
we develop the CGTWR method, which extends the definition of proximity to include
geographical location, temporal information, and contextual attributes by incorporating
contextual attribution into the GTWR weights matrix. Furthermore, the method focuses
on the construction of a spatiotemporal and contextual weights matrix for a hierarchical
dataset as opposed to a spatiotemporal matrix. In other words, the CGTWR gives the
greatest weight to points that are both proximate and situated in the same or similar
neighborhood types by adjusting the spatiotemporal weights.

The results from Tables 3–7 justify considering the added complexity of the CGTWR
model; it still performs better than the OLS, GWR, CGWR, and GTWR models. By incor-
porating contextual information in the GTWR, there are substantial benefits. The GWR,
CGWR, GTWR, and CGTWR models reduce the residual sum of squares by 79.5%, 81.5%,
86.7% and 88.6%, respectively, as compared with a global ordinary least squares model.
More importantly, the CGWR and CGTWR significantly improve the R2 values to 0.86 and
0.92, respectively, indicating that models considering contextual information outperform
GWR and GTWR models. In addition, the R2 values between the GTWR and CGTWR
modles, taking into consideration temporal variation, yield 90% and 92% improvement,
respectively, over the GWR and CGWR models. The CGTWR model using sample data
effectively addresses spatiotemporal heterogeneity, and creatively extends the feasibility of
importing the contextualization into the GTWR model.

Some limitations still remain in our analysis and further research is needed. There
were only 913 housing data available. Inadequate information can be expected to influence
the model’s performance. Further investigation of the performance of the CGTWR model
with more effective data would be worthwhile. Furthermore, the simple weighting system
based on a linear combination of spatiotemporal and contextual distances was used. In
addition, we used a simple weighted system based on a linear combination of space
time and context distance. In order to produce better results, more effective weightings
need to be designed. Although the contextual variables are used within the weight’s
matrix, no estimate of the effect of each contextual variable upon the response variable
was determined. The contextual variables adjust the weights matrix but, aside from this,
have no explanatory or predictive role within the model. We are devoted to developing
this model into free software to assist with understanding the trends of residential land
price and the patterns of urban expansion.

4.2. The Impact Factors of Policy Driven by Residential Land Prices

The results of our analyses indicate that contextual explanatory variables including
school district, proximity to industrial zone, population density, and job density all have
an impact on residential land prices. Notably, we further distinguished linkages between
school district and industrial zone factors and residential land prices under the influence
of Chinese policy. From the perspective of educational reform, the policy of district
correspondence enrolment was first adopted in 1986 [54,55]. The purpose was to ensure
equal access to public education resources, and to improve the fairness of the admission
process. Residential areas were divided into designated school districts corresponding
to nearby public primary and junior middle schools, and it was specified that children
living in neighborhoods of school districts were required to enroll in the corresponding
schools [56–58]. However, houses in school districts have gradually become a manifestation
of capitalization for public goods, i.e., the precious popularity of school district housing in
China, where the quality of public schools is higher [59,60].

Under the strict enforcement policy, Chinese parents are willing to pay higher prices
for residential land so that their children can enroll in schools with higher quality teach-
ing. The average price of residential land in school districts over the study area was
1,711,954.55 yuan (≈264,325.78 USD), which was 14.64% higher than the average values of
all house types (Table 1). It is worth noting that a school may serve several communities,
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where the residential land prices decrease with increasing distance to the school. This is
likely to be caused by school quality, where higher quality schools result in significantly
higher residential land prices than other schools. The two popular schools in Figure 4
were selected to be typical cases that all had high-quality and expensive homes in their
district. Linyin Dayuan is a house in the Hezuolu Primary School District, which has a
price 34.18% higher than the residential land prices at Zhongxiu Garden just across the
road. The housing within the foreign language school district, Fuqiang Power District, is
35.42% higher than the residential land prices of Qingyuan District, while the structure
of the houses is similar, and the distance between the houses is relatively close. Figure 5
clearly shows the capitalization effect of public-school quality on residential land prices in
urban areas through the visual distribution of residential land prices.
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From the perspective of industrial reform, SJZ city was viewed as a major construction
project during China’s First Five-Year Plan in 1953 [61,62]; numerous factories including
textile, chemical, pharmaceutical, steel, and machinery factories were set up with the
support of national policies. Under the implementation of the Reform and Opening up
Policy, the city’s rate of GDP increment was approximately 71.66% from 1953 to 1984
according to the Shijiazhuang Industry and Information Bureau. The quantity of enterprise
has expanded rapidly, and the business scale has enlarged continuously with diversified
product features [38,63,64]. SJZ city has become a crucial industrial town in China over
the last several decades due to its industrial system with reasonable layout, complete
structure, and strong comprehensive strength. However, the problem of environmental
pollution in this city has become increasingly prominent, and has begun to cause negative
effects for some factories with the development of urban construction and the economy
framework [65,66]. In 2018, the municipal government issued policies to relocate and
transform polluting industrial enterprises in the main urban areas. If these enterprises fail
to complete the relocation as planned, they will be forced to close down in accordance with
the regulations and law.

Under the series of policies on industrial land allocation, many industrial factories
have gradually moved out of the four main urban areas. The remainder is mainly divided
into seven factories including chemical, steel, paint, machinery, food, electrochemical, and
pharmaceutical factories. However, some factories also cause water and air pollution from
industrial solid waste due to their inadequate management, for example, the iron and
steel plant located in the east of the Chang‘an District creates industrial dust that has a
deleterious effect on the surrounding environment and the sound of the factory operation
has seriously affected the work and lives of nearby residents (Figure 6b). The chlorine
leakage accident that occurred in the electrochemical plant, resulted in dozens of losses
in the surrounding vegetable fields acres (Figure 6g). Furthermore, the first food factory
was exposed because a nearby dweller could smell something peculiar in the well water
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due to leakage of a benzene distillate storage tank in the factory (Figure 6h). Therefore,
the distance to factories is the main factor affecting residential land prices. However,
regarding industrial zone factors, there is a positive correlation between LogDfactory and
residential land prices, since the coefficients of LogDfactory were positive. The closer the
houses are to the factory, the more sensitive the house values are to these attributes, that is
to say, the same amount of change in these attributes (ceteris paribus) will bring a larger
change in house values for houses located near the factory as compared with those located
farther away.
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5. Conclusions

In this study, the contextualized geographically and temporally weighted regression
(CGTWR) model was outlined and applied to a case study of residential land price values
in SJZ city, China. The analysis revealed that global and local regression models were
customized to explain some types of phenomena: the OLS model adapts to global uni-
form variation, the GWR model accommodates single spatial heterogeneity, the CGWR
model contributes to the effect of contextual attributes, and the GTWR model applies to
spatiotemporal non-stationarity. The CGTWR model upgraded the spatiotemporal kernel
to a context-adjustable kernel and completed the neighborhood-level information for the
GTWR model.
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The GWR-based models (GWR, CGWR, GTWR and CGTWR) all provided significant
improvements in terms of R2 and AIC measures as compared with the OLS model. The
empirical results suggest that the traditional distance weights matrix of GTWR with a mea-
sure of contextual difference in CGTWR appears to be justified since the residual sum of
squares is significantly reduced and the contextual and spatiotemporal non-stationarity are
considered. Moreover, we applied the non-ED metric to locational explanatory variables in
order to overcome the inaccurate coefficient estimation of Euclidean distance (ED) measure-
ment and the misinterpreted spatial pattern in estimation due to linear measurement. The
CGTWR model using sample data could effectively address spatiotemporal heterogeneity,
and could creatively explore the feasibility of importing the contextualization into the
GTWR model.

Meanwhile, the empirical research proves that floor area, building age, transport
facility, school district, and proximity to an industrial zone all have significant effects
on residential land prices in SJZ city. Notably, the relationships between school district
and industrial zone factors and real estate were analyzed under the influence of Chinese
policy. With the continuous development of economy and technology, Chinese parents
have attached significant importance to their children’s education and are willing to pay
higher prices for residential land so that their children can enroll in better schools. Houses
in school districts have gradually become a manifestation of capitalization for public
goods, i.e., the precious popularity of school district housing in China, where the quality
of public schools is higher. Several social problems may arise due to the high price of
housing in school districts, such as unfair educational opportunities, social stratification,
and speculative trading. The government should carry out institutional reform to ensure
adequate educational funds, equalize access to public educational resources, and enhance
fairness in the enrollment process.

Furthermore, under the rapid urbanization process, the problem of environmental
pollution in SJZ city has become increasingly prominent, and has begun to manifest as
negative effects of some factories on the contextual environment. The experimental results
show that there is a positive correlation between LogDfactory and residential land price,
that is, the closer the distance to the factory, the lower the residential land price. The
government could consider rationally adjusting the industrial structure, comprehensively
planning urban construction, and rationally arranging industrial distribution. Overall, the
CGTWR model provides a supplementary effective methodology for large-scale estimation
of residential land price and supplies evidence for policy makers to understand the nature
of varying relationships within a house price dataset in China.
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