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Abstract: Land use–land cover (LULC) alteration is primarily associated with land degradation,
especially in recent decades, and has resulted in various harmful changes in the landscape. The
normalized difference vegetation index (NDVI) has the prospective capacity to classify the vegetative
characteristics of many ecological areas and has proven itself useful as a remote sensing (RS) tool in
recording vegetative phenological aspects. Likewise, the normalized difference built-up index (NDBI)
is used for quoting built-up areas. The current research objectives include identification of LULC,
NDVI, and NDBI changes in Jhelum District, Punjab, Pakistan, during the last 30 years (1990–2020).
This study targeted five major LULC classes: water channels, built-up area, barren land, forest,
and cultivated land. Satellite imagery classification tools were used to identify LULC changes in
Jhelum District, northern Punjab, Pakistan. The perception data about the environmental variations
as conveyed by the 500 participants (mainly farmers) were also recorded and analyzed. The results
depict that the majority of farmers (54%) believe in the appearance of more drastic changes such
as less rainfall, drought, and decreased water availability for irrigation during 2020 compared to
30 years prior. Overall accuracy assessment of imagery classification was 83.2% and 88.8% for 1990,
88.1% and 85.7% for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for 2020. The NDVI for
Jhelum District was the highest in 1990 at +0.86 and the lowest in 2020 at +0.32; similarly, NDBI
values were the highest in 2020 at +0.72 and the lowest in 1990 at −0.36. LULC change showed a clear
association with temperature, NDBI, and NDVI in the study area. At the same time, variations in the
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land area of barren soil, vegetation, and built-up from 1990 to 2020 were quite prominent, possibly
resulting in temperature increases, reduction in water for irrigation, and changing rainfall patterns.
Farmers were found to be quite responsive to such climatic variations, diverting to framing possible
mitigation approaches, but they need government assistance. The findings of this study, especially
the causes and impacts of rapid LULC variations in the study area, need immediate attention from
related government departments and policy makers.

Keywords: farmers’ perception; NDVI; climate change; remote sensing; GIS; NDBI

1. Introduction

According to the Fourth Assessment Report of the IPCC, with the end of the current
century, the average phase temperature will increase up to 1.1–6.4 ◦C worldwide [1]. Climate
is the main factor for food production, crop growth, and the rural livelihoods of billions of
rural communities from different regions of the world [2–5]. In recent decades, global climate
change has greatly affected vegetation [6,7]. Pakistan is an agrarian country, and its economy
depends on agriculture; it is susceptible to climate fluctuations [8,9]. Land cover degradation
is a decrease in the capacity of the land to yield profits in land use (LU) related to quantified
control of the land area [10]. Land cover (LC) describes the general characteristics of the land
surface, including forest, barren land, water, mountain summits, hill slopes, cropping, and the
urban setup [11]. Land cover has the most delicate relation with land use [12,13]. Mapping
land use–land cover (LULC) has been completed efficiently with satellite images at many
spatial, spectral, and temporal resolutions [1,14,15], while in arid and semi-arid ecology, the
application of multi-temporal satellite images has been reduced to develop and assess LULC
fluctuations [16,17]. Alterations in LULC could be examined because they affect land ecology
permanently, particularly in built-up areas of micro-climate heating [18]. The normalized
difference vegetation index (NDVI) estimates the green vegetation density [19] and, in recent
decades, has broadly been used for explaining the spatio-temporal features of LULC, with
quantitative vegetation cover [20,21].

There are different activities that can alter LULC, which have been extensively studied
due to it being the most important part of these types of studies. Various researchers have
established an overview of the effects on LULC in different parts of the world, associated
with agricultural expansion [22,23], urban expansion [24], and engineering projects such as
access and energy [25,26].

The NDVI standards range from “−1.0 to 1.0”; minimum NDVI values are used for
whole surface resources, and maximum NDVI standards are used for green flora [27].
Negative NDVI values represent areas with very low or null vegetation cover, such as
water bodies and urban areas, whereas positive values concern pixels with vegetation
from very low to high cover [28]. When near to “0”, NDVI standards are represented
by bare soil [29]. The NDVI is extensively applied in remote sensing (RS) investigations
because it provides suitable evidence for adding and exploring flora [27,28,30]. The NDVI
is applied to determine the combined performance of climatic variation and the vegetation
distribution at vast spatial and temporal scales [31] as the biomass of plant diversity is
interrelated with precipitation, temperature, and evapotranspiration [32–34]. Geographic
information systems (GISs) and remote sensing (RS) are essential tools [35] applied for
the investigation of urban dimensions and density with LULC mapping and ecological
impacts of urban programming within certain periods [36]. Remote sensing provides
on-time availability of LULC and vegetation cover data at specific periods in an economical
manner [37–39]. GISs manage and analyze spatial data accurately and are an important
and basic need of this area of study [40].

RS data are a helpful tool in the mapping of LULC [41,42]. For LULC mapping,
the temporal Landsat sensor data of the Landsat-7 Enhanced Thematic Mapper (ETM),
Landsat-5 Thematic Mapper (TM) with ETM+ [43], and Landsat-8 Operational Land



Land 2021, 10, 1026 3 of 17

Imager (OLI) have been extensively used to discover the variation in the NDVI, NDBI, and
LULC [33]. Assessing variation evaluates the earlier and present situation visually as well as
quantitatively and thus supports indenting the fluctuations linked to LULC characteristics
depicting different satellite datasets [44]. Proper classifications require previous data from
particular regions for collecting recorded data from working areas. Field-recorded data
have been used to explain applications for selected classification algorithms [45].

Several such types of attempts to assess and manage LULC changes and degra-
dation using RS data were explored by various researchers from countries around the
world [46], such as northwest Ethiopia [4], West Africa [7], Ethiopia [11], Malaysia [12],
Zimbabwe [17], Bangladesh [21], Southern Africa [30], Iran [37], Nepal [39], China [40],
northern Ethiopia [42], Brazil [47], Iraq [48], and Turkey [49]. Pakistan is regarded as one of
the agricultural countries in the world which are directly influenced by climatic fluctuations,
which ultimately affect the economy of lowland farmers. From Pakistan, various studies
in southern Punjab [1], Islamabad [2], Faisalabad and Multan [27], Vehari [28], Sindh [35],
Azad Jammu and Kashmir [50], Multan [51], Lodhran [52], and Khyber Pakhtunkhwa [53]
have been conducted for the assessment and management of LULC changes using RS
data. In the conducted research, over a longer time period, LULC change assessment was
recorded in Jhelum District using RS and GIS tools. Following are the main objectives of
the current study:

• To identify temporal LULC changes during the last 30 years and farmers’ perception
regarding climate change and LULC variations;

• To analyze and map NDVI, NDBI, and LULC changes by using satellite data;
• To compare the various characteristics of LULC, NDBI, and NDVI during the past 30 years.

2. Materials and Methods
2.1. Study Area

Jhelum District is located to the north of the Jhelum River and bounded by Rawalpindi
District in the north, Sargodha and Gujrat Districts in the south, Azad Kashmir in the east,
and Chakwal District in the west [54] (Figure 1). The total human population of the district is
1.223 million [54]. The climate is a semi-arid, warm subtropical type and recognized as having
warm summer and severe winter seasons. Jhelum is a semi-mountainous region; the mean
annual rainfall is 880 mm, while the average annual temperature is 23.6 ◦C [55]. The Jhelum
River flows through 247,102 acres of lengthy plain area and 41,207 acres of mountainous
zones. The district has the world’s second largest salt mine (Khewra salt mine), which covers
an area of 2.268 million acres [54]. People of the area have diverse modes of lifestyles, beliefs,
and traditions [56]. Some typical landscapes are shown in Figure 2.

2.2. Methods and Materials
2.2.1. Satellite Data

For LULC, NDVI, and NDBI variation assessment in the study area over a temporal
gradient of 30 years (1990, 2000, 2010, 2020), Landsat 8 (OLI), Landsat 7 (ETM+), and
Landsat 4, 5 (TM) satellite remote sensing imagery data were used and downloaded
from the website (http/www.earthexplorer.usgs.gov (accessed on 6 August 2020)) of the
United States Geological Survey (USGS). The details of the downloaded satellite images
are presented in Table 1.

http/www.earthexplorer.usgs.gov
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Figure 2. View of different land cover types in Jhelum District showing diverse LULC: (a) road in the mountains representing
a new built-up area in 2020; (b) barren land (sandy dune cutting), another important LULC category in the area; (c) vegetation
cover; (d) anthropogenic activities affecting LULC variations; (e) deforestation affecting vegetation cover; (f) natural
disturbance causing LULC variations.
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Table 1. Arrangement of Landsat satellite imagery.

Sr. # Acquirement Date Data Type Resolution Sensors Path/Rows

1. 17/3/1990 Landsat imagery 30 m TM 150/037
150/038

2. 25/3/2000 Landsat imagery 30 m TM 150/037
150/038

3. 12/3/2010 Landsat imagery 30 m ETM+ 150/037
150/038

4. 9/3/2020 Landsat imagery 30 m OLI 150/037
150/038

2.2.2. Survey Data

In this study, responses of 500 farmers in Jhelum District were recorded by using the
snowball sampling method to document perceptions linked to LULC and climate changes.
A total of 25 union councils in the study area were targeted, encompassing five villages
per union council. The data linked to different climatic variables were recorded during
August 2020 to July 2021. Study contributors were selected concentrating on middle-aged
and elderly people (range: 30–80 years old), particularly farmers from 75 considered
villages of Jhelum District. The investigated variables were composed of climate change
records (including rainfall duration, rainfall intensity, and temperature variations) and
LULC variations during the past 30 years.

GPS was used to record the sample locations for the considered LULC categories.
A mobile-associated tool (Open Data Kit) was used for gathering the digital and geo-
referenced field records.

2.2.3. Climatic Data

Climate data (precipitation and temperature) of Jhelum District for the last 30 years
(1990 to 2020) were acquired from the Pakistan Metrological Department (PMD). The
analysis of variance (ANOVA) test was applied in SPSS version 17 to seek the significant
differences among the group means of collected climatic data. Furthermore, the collected
climatic data of the study locations were geo-referenced, interpolated, and mapped by
using ArcGIS software.

2.3. Image Classification

The Landsat images are composed of several bands, where there are 11 bands in the
Landsat 8 images. These bands were composited to obtain single-color imagery and to subset
the research area, and extraction by the mask tool was conducted in ArcGIS 10.1 software [57].
Digital LULC grouping through the supervised classification technique was used, and field
data were employed as ground truth data. LULC maps for the mentioned temporal intervals
were developed using supervised classification by centering the research area of focus in
the field assessment together with the exercise and authentication portions. Finally, LULC
imagery was re-classified in ArcGIS 10.1 to quantify the variations over the indicated study
years. ERDAS imagine 15 and ArcGIS 10.1 proved practical tools for assessing the LULC
using satellite images. The detailed research framework is presented in Figure 3.



Land 2021, 10, 1026 6 of 17

Land 2021, 10, x FOR PEER REVIEW 6 of 18 
 

temporal intervals were developed using supervised classification by centering the re-
search area of focus in the field assessment together with the exercise and authentication 
portions. Finally, LULC imagery was re-classified in ArcGIS 10.1 to quantify the variations 
over the indicated study years. ERDAS imagine 15 and ArcGIS 10.1 proved practical tools 
for assessing the LULC using satellite images. The detailed research framework is pre-
sented in Figure 3. 

 
Figure 3. Flow chart for the methodology. 

2.4. Assessment of NDVI and NDBI 
The variations in the land cover encompassing vegetation for the considered study 

years (1990, 2000, 2010, 2020) were assessed by calculating and analyzing the NDVI. This 
remote sensing index to seek vegetation health is calculated as follows [58]: NDVI ൌ  NIR െ RED NIR ൅ RED   (1)

where NIR represents near-infrared radiation band (TM band 4; OLI and ETM band 5), 
and RED represents the red radiation band (TM band 3; OLI and ETM band 4). 

Likewise, the NDBI was used for built-up determination in the study area. The NDBI 
was obtained by using Arc GIS 10.1 software, and the following formula, as communi-
cated by [59]: 

Figure 3. Flow chart for the methodology.

2.4. Assessment of NDVI and NDBI

The variations in the land cover encompassing vegetation for the considered study
years (1990, 2000, 2010, 2020) were assessed by calculating and analyzing the NDVI. This
remote sensing index to seek vegetation health is calculated as follows [58]:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR represents near-infrared radiation band (TM band 4; OLI and ETM band 5), and
RED represents the red radiation band (TM band 3; OLI and ETM band 4).

Likewise, the NDBI was used for built-up determination in the study area. The NDBI was
obtained by using Arc GIS 10.1 software, and the following formula, as communicated by [59]:

NDBI =
MIR − NIR
MIR + MIR

(2)

where MIR represents the central infra-red band (TM band 5; OLI and ETM band 6), and
NIR depicts the near-infrared band (ETM and TM band 4; OLI band 5). Therefore, the
NDVI was used to assess change in the vegetation cover, and the NDBI was used to find
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variations in the built-up area by using satellite imagery and show expressive standards
between −1 and 1.

2.5. Accuracy Estimation

Accuracy can be considered to determine the effectiveness of several image processing
methods in the alignment of imagery [59,60]. The error matrix is the greater grouping and
has conjoint meaning to existing accuracy outcomes [61]. Numerous statistical procedures
of accuracy assessment can find out of the error matrix including the percentage for
producers’ accuracy or workers’ accuracy as a total accuracy that reveals the error prepared
by coincidence [62].

Overall accuracy =
No. of sample classes grouped accurately

No. of reference sample classes
(3)

There should be a maximum standard of assurance for any suitable study outcome
in the conclusion of the accuracy assessment. The KHAT standards below determine
how a good RS group supports, or how far it is accurate in, the reference facts [35]. The
mathematical equation of KHAT is

K =
observed accuracy − chances of assessment

1 − chances of agreement
(4)

3. Results and Discussion
3.1. Farmers’ Perceptions about Temperature and LULC

Farmers were interviewed to obtain their perceptions about climate change, LULC,
and their impact on climatic variability, adaptation, and experience stages. Almost all of
the farmers (94.5%) stated that climactic change effects were noted and witnessed in Jhelum
District (Figure 4).
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Figure 4. Farmers’ opinion of the degree of variations in climate variables in recent years.

A total of 54% of the farmers perceived that significant variations have occurred in
the rainfall volume, beginning of the planting period, spreading of the harvesting time,
and irregular drought circumstances which occasionally happen in the growth phase. The
same decreases in rainfall and increasing drought conditions have been reported in other
areas of Pakistan [63,64]. About 25% of the farmers supposed that their livings face many
fluctuations due to the rise in the temperature in the study area. Only 5.5% perceived
no change in climate in the last 30 years. Concerning the temperature variation, 94.5%
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of the farmers stated that they had practiced different crop varieties in recent years, and
only 5.5% carried out something different (see Table 2). However, most of the respondents
understood that rainfall has been decreasing in terms of volume and the number of rainy
days, while the intensity of rainfall has been increasing, which has brought devastation in
the form of floods with the passage of time.

Table 2. Farmers’ feedback about climatic and LULC variations.

Sr. # Climatic Variables Feedback Percentage

1 LULC variations
Yes 82

No 18

2 Temperature
Increase 94.5

Reduction 5.5

No change 0

3 Irrigation water
Increase 25.3

Reduction 63.5

No change 12.2

About 63.5% of the farmers observed that water availability has reduced in recent
years, while only 32% of the cropped area is irrigated, and 68% is rain-fed land. However,
72% of the irrigation area would boost fertilizer utilization: 28% of the irrigation types
recognized the purpose of changing cropping patterns without using fertilizers. Regarding
applications to detect climatic pressures perceived by agriculture (irrigation and rainfall),
different investigations led on the agriculture type (rainfall duration, number of occurrences
of rainfall and its intensity) for the farmers’ actual and scheduled practices found that 36.5%
of the informants only observed increases in rainfall, whereas 63.5% observed reductions
in rainfall (Table 3). Agricultural practices were documented between two groups of
informers, including their association with temperature and rainfall, the ratio of fertilizer
usage, and scheduled capitalization on detected occasions.

Table 3. Farmers’ observations about rainfall.

Sr. # Climatic Variables Feedback Percentage

1 Rainfall period
High 37.2

Low 57.6

No variation 16.2

2 Number of events
of rainfall

High 14.3

Low 80

No variation 6.7

3 Rainfall density
High 22.5

Low 72.5

No variation 5

3.2. Climate Factors of the Research Area

Climate variation showed the most substantial influence on the adaptation of LULC
categories in numerous regions of the land [41,65,66]. Similarly, alternation in climatic impacts
on the biosphere of the land has a close link with hydrological and energy chains, explaining
the effect on the vegetation index (VI) where it increases to its highest quantity [67]. In recent
years, universal variation in weather has had many influences on vegetation [7,68].

Climate change has a disproportionate influence on the adaptations of LULC types in
different parts of the biosphere. Among different climatic aspects, rainfall and temperature
were more associated with LULC. Meanwhile, the recorded data of temperature throughout
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the field investigations along the coordinates were entered into the ArcGIS 10.1 software
and afterward interpreted applying inverse distance weighting (IDW), from which the
spatial map of temperature was achieved. These maps indicate the temperature change all
over the study area, which indicates the cooler and hotter areas in Jhelum District.

Figure 5 represents the average temperature and rainfall maps for Jhelum District. At
the same time, the thematic map (presenting the spatio-temporal variation in temperature)
and the central area were acquired. The increase in temperature was recorded up to
28.84 ◦C, and the decrease in temperature was documented as 27.25 ◦C. Furthermore, it
is assumed that the survey points nearby Jhelum District show maximum temperatures.
From these particular points, it is confirmed that the lowest temperature was recorded in
the water channels (Jhelum River) and forest parts, and, on the other hand, the average
temperature was noted in the barren area and plane part. The highest temperature was
noted in the built-up parts. The average rainfall and lowest rainfall in our study area
are presented in Figure 5. The highest rainfall increased to 212 mm, while the lowest
rainfall value documented was 68.33 mm. The rainfall map remarkably indicates that
the maximum rainfall was recorded in Tehsil Pind Dadan Khan. It can be observed that
maximum rainfall was recorded in areas such as vegetation area and forest land.
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3.3. LULC Change Detection

LULC types with the highest and lowest variations in LULC were assessed at all
levels to find out the maximum relative variation over the last 30 years in Jhelum District.
The supervised classification analysis indicated that the research district was protected
with different land topographies (forest, cultivated area, water, built-up land, and barren
land)—the classification arrangement of LULC was carried out by applying surveys with
GIS information from Jhelum. Training sites for supervised classification were selected
based on different GPS-based samples taken from the field for each land use–land cover
class. Then, those GPS locations were plotted on images, and signatures were saved to
perform supervised classification using the iso-cluster algorithm. From 1990, cultivated
area was 49.54%, followed by water (9.61%); covered area by built-up area was 1.95%;
and barren land covered about 31.79%. However, in 2020, forest and cultivated area were
3.36% and 63.39%, followed by water (4.09%); covered area by built-up area was 3.50%;
and barren land covered about 25.65%, as presented in Figure 6.
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Built-up area in the year 1990 covered 1.95% overall, while in the year 2020, built-up
area expanded up to 3.5%, compared to the year 1990. However, there was a massive
expansion of built-up areas with significant proliferation from 1990 to 2020 (Table 4). Barren
area in 1990 covered 31.79%, while in 2020, barren land reduced (25.65%) compared to
1990. It was estimated that bare land changed to housing colonies, commercial parts, and
roads. Water channels covered one of the smallest areas among all the categories for Jhelum
(9.61%, 8.51%, 6.30%, and 4.09% in 1990, 2000, 2010, and 2020, respectively).

Table 4. Summary of LULC changes from 1990 to 2020.

LULU
1990 2000 2010 2020 1990–2020

Ha % Ha % Ha % Ha % Ha %

Forest 25,710.89 7.11 21,313.15 5.90 16,190.64 4.48 12,182.64 3.36 −13,528.25 −3.74
Cultivated area 179,025.57 49.54 192,955.93 53.39 215,529.7 59.64 229,096.76 63.39 50,071.19 13.86

River 34,742.13 9.61 30,742.13 8.51 22,777.12 6.30 14,785.12 4.09 −19,957.01 −5.52
Barren land 114,885.09 31.79 108,358.77 29.98 96,244.73 26.63 92,692.26 25.65 −22,192.83 −6.14

Built-up area 7030.51 1.95 8024.21 2.22 10,652 2.95 12,637.41 3.50 5606.9 1.55
361,394.19 100 361,394.19 100 361,394.19 100 361,394.19 100

In the current attempt, LULC categories with the lowest and highest variations in
LULC were nominated by minimum and maximum standards to categorize the comprehen-
sive relative change during the past 30 years in Jhelum. There are several smaller colonies
that have settled along the central highway and nearby Jhelum District. The total number
of these colonies is more than 50 in Jhelum District. The estimated area of the mentioned
colonies ranges from 4 to 6 acres. The spread of housing colonies along main roads is an
indication of urban expansion in the studied district. Change discovery aims to recognize
which LULC expanded or reduced over the past 30 years, and which land uses changed
into another LULC category. The results of [69] showed that in recent years, there has
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been an increase in built-up areas, whereas the ratio of increase for the occupied area was
slightly smaller, which is estimated to directly produce a fast rise in the expansion of urban
areas in future years, resulting in a reduction in the vegetative area.

3.4. The NDVI and NDBI

The standards of the NDVI are an indication of the volume of chlorophyll content
existing in vegetation, where the highest NDVI values depict healthy and thick vegetation,
whilst the lowest NDVI values represent thin vegetation. From the study of Jhelum District,
NDVI standards in 1990 varied from maximum value of +0.86 to −0.12, whereas during
2000, the same varied from +0.75 to −0.17, and in 2010, the NDVI value showed the
minimum value, which was −0.28, while the maximum was +0.62, whilst in 2020, the
NDVI displayed the minimum value, of −0.32, and the maximum was +0.56 (Table 4). As
averages, NDVI values were detected as 0.37, 0.29, 0.17, and 0.12 for 1990, 2000, 2010, and
2020, respectively. The NDVI of Jhelum District was at its maximum in 1990 at +0.86, and
during 2020, it was −0.32, which determines the NDVI classes representing the spatial
arrangement of vegetative and green zones found on the map, which displays the creative
and best vegetative areas for cultivation as forest and vegetative land (Figure 7).

Figure 8 indicates the extracted NDBI classes demonstrating the spatial arrangement
of built-up and water land for 1990, 2000, 2010, and 2020. Average NDBI values were
observed to be 0.04, 0.15, 0.19, and 0.27 for 1990, 2000, 2010, and 2020, respectively. Likewise,
NDBI standards for Jhelum District were greater in 2020 at +0.72 and lowest in 1990 at
−0.36. In Figure 8, the maps show that the red zones were found to be the minimum
vegetative land areas, such as water channels, built-up area, and bare land. The NDBI was
linked to the temperature, where the values for the NDVI were greater in regions with
maximum temperature areas.
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Linear regression analysis was applied to create a link between the NDBI and NDVI.
First, regression analysis (R2) was conducted to determine how variations in the LU
intensity within the LULC unit differ over space and pass the intra-LU change of the NDBI.
However, a negative association between the NDVI and NDBI can be presented, with a
correlation coefficient of R2 = 0.82 for 1990, 0.79 for 2000, 0.76 for 2010, and 0.72 for 2020
shown in all imagery between the vegetation index (NDVI) and NDBI-derived built-up
portions, as shown in Figure 9. Furthermore, the regression analysis indicated that in the
given areas where the NDBI values were the highest, the NDVI values were the lowest.

The NDVI is generally applied in all vegetation indices established, and its progress is
due to random dissimilarity, as stated by [70]. However, due to specific driving factors such
as the local temperature, it is recognized that the link to the NDBI powerfully affects the
land surface temperature (LST), followed by main roads and LULC [45]. All the calculated
NDVI and NDBI values of the considered study area and duration are presented in Table 5.

Table 5. Summary of maximum and minimum values of NDVI and NDBI.

Years NDVI NDBI

Maximum Minimum Average Maximum Mininim Average

1990 0.86 −0.12 0.37 0.45 −0.36 0.045
2000 0.75 −0.17 0.29 0.54 −0.25 0.145
2010 0.62 −0.28 0.17 0.58 −0.2 0.19
2020 0.56 −0.32 0.12 0.72 −0.18 0.27
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3.5. Accuracy Assessment

Table 6 shows the producer and consumer accuracy outcomes with KHAT (k) values
in 1990, 2000, 2010, and 2020 in Jhelum District. The maximum producer and consumer
accuracies from the cultivated area remained 88% and 92%, respectively. Additionally, the
maximum producer and user accuracies of built-up land were 89.5% and 88.8%, respectively.
The average producer and user accuracies were 83.2% and 88.8% for 1990, 88.1% and 85.7%
for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for 2020, respectively, in Jhelum
District. The overall accuracy for grouping is 0.93% for 1990, 0.87% for 2000, 0.91% for 2010,
and 0.88% for 2020 (Table 6).

Table 6. Kappa (K) and accuracy of producers and consumers.

LULC Classes

Season and Class

Overall Accuracy KProducers’ Accuracy (%) Consumers’ Accuracy (%)

1 2 3 4 Avg. 1 2 3 4 Avg.

1990 90.2 85.2 83.7 86.7 81.2 83.2 83.2 88.1 89.7 92.5 90.7 88.8 0.93 0.86
2000 88.1 88 91.3 85.1 88.1 88.1 86.7 86.2 85 88.1 82.5 85.7 0.87 0.82
2010 85.6 84.4 87.4 90.8 84.3 86.5 88.9 86.7 88 82.4 87.5 86.7 0.91 0.89
2020 83.2 80.1 86.5 88.7 89.5 85.6 92 92 85.3 80 89.1 87.3 0.88 0.85

Where: 1 = forest area; 2 = cultivated area; 3 = river; 4 = barren land; 5 = built-up area.

The KHAT (K) coefficients for 1990, 2000, 2010, and 2020 are 0.86, 0.82, 0.89, and
0.85, respectively, in the research area. The accuracy classification was stated as both the
consumers’ accuracy and producers’ accuracy [67,71]. According to [72], the producers’
accuracy is described as the quantity of land types properly categorized in the classification
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of the imagery, whereas the consumers’ accuracy is the possibility that a type in the
classification of imagery is precise when applied on the land.

4. Conclusions

The current research was conducted in Jhelum District, Punjab (Pakistan), to determine
the impact of climatic variations and LULC changes. The livelihood of the farmers in the
study area is entirely dependent on agriculture and linked with normal temperatures
and rainfall. However, fluctuations in the normal temperature resulted in a shortage of
rains, an increase in drought events, and a decrease in water availability for irrigation,
hence directly affecting the agrarian community and farming inventions. The increasing
temperature and reduced water availability for irrigation due to less rainfall are considered
as serious concerns in the study area. Growers are conscious about the climatic fluctuations
and familiarize themselves with approaches to manage the impacts but need government
support. The outcomes show that the vegetation section contributes an extra grounded
constructive link with the NDVI for all the levels, as open area and built-up land negatively
associated with LULC and the NDVI during the last 30 years. On average, NDBI and
NDVI standards were recorded between 0.37 and 0.12, and 0.04 and 0.27, from 1990 to
2020, respectively, whereas average producer and user accuracies were 83.2% and 88.8%
for 1990, 88.1% and 85.7% for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for
2020. Accordingly, the “Kappa coefficients” for 1990, 2000, 2010, and 2020 were 0.86, 0.82,
0.89, and 0.85, respectively, in the study area. “Barren land” in 1990 occupied the class with
31.79%, but in 2020, it decreased (25.65%) compared to 1990. The outcome indicates that
the bare land transformed into housing areas and roads. Water covered 9.61% in 1990, but
it remarkably reduced (5.52%) in 2020 compared to 1990 in Jhelum District.

It is concluded that LULC changes are significant for a comprehensive series of uses,
comprising temperature, soil destruction, and land planning events. There were main
variations in barren land, water channels, and vegetative areas across the studied temporal
gradient due to the increasing human influence in acquiring arable lands. The research
outcome shows the main observational base for regular inspections of variations in land
supervision and will prove helpful for policy makers to improve strategies to manage land
capitals efficiently.
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