
water

Article

Estimation of Instantaneous Peak Flow Using
Machine-Learning Models and Empirical Formula
in Peninsular Spain

Patricia Jimeno-Sáez 1, Javier Senent-Aparicio 1,*, Julio Pérez-Sánchez 1,
David Pulido-Velazquez 1,2 and José María Cecilia 3

1 Department of Civil Engineering, Catholic University of San Antonio, Campus de los Jerónimos s/n,
Guadalupe, 30107 Murcia, Spain; pjimeno@ucam.edu (P.J.-S.); jperez058@ucam.edu (J.P.-S.);
d.pulido@igme.com (D.P.-V.)

2 Geological Survey of Spain (IGME), Granada Unit, Urb. Alcázar del Genil, 4, Edificio Zulema,
18006 Granada, Spain

3 Department of Computer Engineering, Catholic University of San Antonio, Campus de los Jerónimos s/n,
Guadalupe, 30107 Murcia, Spain; jmcecilia@ucam.edu

* Correspondence: jsenent@ucam.edu; Tel.: +34-968-278-818

Academic Editor: Yunqing Xuan
Received: 1 April 2017; Accepted: 11 May 2017; Published: 15 May 2017

Abstract: The design of hydraulic structures and flood risk management is often based on
instantaneous peak flow (IPF). However, available flow time series with high temporal resolution are
scarce and of limited length. A correct estimation of the IPF is crucial to reducing the consequences
derived from flash floods, especially in Mediterranean countries. In this study, empirical methods to
estimate the IPF based on maximum mean daily flow (MMDF), artificial neural networks (ANN),
and adaptive neuro-fuzzy inference system (ANFIS) have been compared. These methods have been
applied in 14 different streamflow gauge stations covering the diversity of flashiness conditions found
in Peninsular Spain. Root-mean-square error (RMSE), and coefficient of determination (R2) have
been used as evaluation criteria. The results show that: (1) the Fuller equation and its regionalization
is more accurate and has lower error compared with other empirical methods; and (2) ANFIS has
demonstrated a superior ability to estimate IPF compared to any empirical formula.

Keywords: artificial neural network; ANFIS; Peninsular Spain; instantaneous peak flow;
hydraulic design

1. Introduction

Flash floods are one of the most significant natural hazards in Europe, especially in the
Mediterranean countries [1]. In recent years, flash floods have caused many economic losses and
loss of life throughout Peninsular Spain. As can be seen in Barredo (2007) [2], Spain is the country in
Europe that has been the most affected by flash floods from 1950 to 2005. Estimation of the frequency
and magnitude of the instantaneous peak flow (IPF) is crucial for the design of hydraulic structures
and floodplain management [3]. As happens in many countries, Spanish basin management agencies
record data relating to mean daily flow (MDF) while the availability of IPF time series is less frequent.
The application of techniques that reduce uncertainties associated with IPF estimations is needed
because of the damage that flash floods cause.

Several methods for estimating IPF based on MDF have been developed. From an empirical point
of view, there are two types of approaches to estimating IPF based on MDF. The first type of approach
establishes a relationship between IPF and MDF using the physiographic characteristics of the basin
and the second type of approach calculates IPF using the sequence of mean daily flow. In the first
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group, the method by Fuller (1914) [4] is included; he conducted one of the first studies related to
obtaining the IPF from the maximum MDF (MMDF) using drainage area. Other studies, such as those
by Silva (1997) [5] and Silva and Tucci (1998) [6], also used the physiographic characteristics to estimate
the IPF. Taguas et al. (2008) [7] proposed an equation to estimate IPF from MMDF, drainage area and
mean annual rainfall in Southeastern Spain. Among the methods that use the second approach, there
are two pioneering methods [8,9] described by Linsley et al. (1949) [10] and the Sangal (1983) [11].
Many studies adjusted Fuller’s formula for use in their regions. Fill and Steiner (2013) [12] summarized
many of these regional formulas in their research. In Spain, the Spanish Centre for Public Works Studies
and Experimentation CEDEX [13] adjusted the Fuller formula to obtain thirteen regional equations,
which cover Peninsular Spain. In this research, four of these empirical methods were evaluated.
Two of them, Fuller’s (1914) [4] and the regionalized formula obtained by CEDEX, are included in
the first approach group and Sangal (1983) [11] and the Fill and Steiner (2013) [12] methodologies are
included in the second group.

According to recent studies [14], new methods have increased the accuracy associated with
estimating IPF through the application of data-driven techniques, such as adaptive neuro-fuzzy
inference systems (ANFIS) and artificial neural networks (ANN). Therefore, in this work, we have also
employed the ANN and ANFIS, which are machine-learning methods used widely in order to compare
the results obtained by applying the empirical formula. ANNs reproduce the learning process of the
human brain [15]. An ANN is a powerful and efficient mathematical model for linear and nonlinear
approximations and is often known as a universal approximator [16]. Mustafa et al. (2012) [17]
examined the effectiveness of ANNs in solving different hydrologic problems and concluded that
appropriate ANN modelling is advantageous compared with conventional modelling techniques.
Generalizability and forecast accuracy are some advantages of ANNs [18]. These properties make
ANNs suitable for solving problems of estimation and prediction in hydrology [19]. ANNs have
the capability of obtaining the relationship between the predictor variables (in this case, MMDF)
and the estimated variables (here, IPF) of a process [16,19]. We have also used the ANFIS model to
estimate IPF from MMDF. ANFIS is another powerful technique for modeling a nonlinear system and
it integrates fuzzy logic into neural networks. Therefore, ANFIS has the ANN learning ability [20].
The ANFIS model is a fusion of ANN and a Fuzzy Inference System (FIS) and possesses the advantages
of both systems. The benefit of ANNs is that it learns independently and adapts itself to changing
environments and the advantage of FIS is that it systematically generates unknown fuzzy rules from
given information (inputs/outputs) [21]. Therefore, this combination allows a FIS to learn from
the data to create models. This is an efficient model for determining the behaviour of imprecisely
defined complex dynamical systems [22]. This model has also been accepted as an efficient alternative
technique for modeling and prediction in hydrology [23]. Some researchers who have applied ANFIS
in hydrological modelling are Dastorani et al. (2010) [24] and Seckin (2011) [25].

Although ANN and ANFIS have great advantages, there are also certain disadvantages [26,27],
such as: (1) Neural networks are a black box and do not clarify the functional relationship between the
input and output values; (2) a neural network has to be trained for each problem to obtain the adequate
architecture, and this requires greater computational resources; and (3) ANFIS is more complicated
than FIS and is not available for all FIS options.

Many hydrological studies have shown that ANFIS was more efficient than other models as
recurrent neural networks or fuzzy logic [28,29]. Shabani et al. (2012) [30] and Dastorani et al.
(2013) [31] applied ANFIS and ANNs to estimate IPF from MMDF and compared their results with the
methods of Fuller [4], Sangal [11], and Fill-Steiner [12]. They found that ANFIS increased the accuracy
of the estimation of the IPF. The aim of this study is to identify a method to estimate IPF with greater
accuracy in fourteen watersheds covering the diversity of flashiness conditions found in Peninsular
Spain. In those basins, longer MDF data series exist, but the IPF data series are shorter. Nevertheless,
at least 30 years of IPF data are available in the selected basins in order to compare the performance
between estimated and measured IPF.
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2. Materials and Methods

2.1. Study Area and Data

Spain shows a wide range of climatic characteristics due to its position between the European
temperature zone and the subtropical zone. It also includes some of the rainiest areas in Europe in the
northeast as well as the driest ones in the southeast, with a marked long drought period in summer.
A set of 14 flow gauging stations distributed over peninsular Spain was selected to serve as a case
study. The basins were selected based on several criteria. It was intended to have (1) a wide diversity
of various flow regimes representative of the diversity of the conditions across Peninsular Spain;
(2) a sufficiently long time series (more than 30 years) from gauging stations located in near-natural
basins; (3) basin areas not exceeding 1000 km2. As shown in Figure 1, the basins used in this study
are well distributed over Peninsular Spain, covering the three main climatic zones distinguished in
Peninsular Spain: the Mediterranean climate, which is characterised by dry and warm summers and
cool to mild, wet winters; the oceanic climate, which is located in the northern part of the country; and
the semiarid climate, which is present in the centre and southeastern parts of the country, where in
contrast to the Mediterranean climate, the dry season continues beyond the end of summer.
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Figure 1. Location of the selected basins.

Table 1 lists the set of 14 basins, showing basin areas ranging from 29 to 837 km2 with an average
area of 307 km2, altitudes vary from 16 to 1278 m and streamflow data covering a period ranging from
38 to 70 years. According to the Koppen climate classification system [32], among the fourteen studied
basins, six of them are considered warm-summer Mediterranean climates (Csb), four of them are
considered oceanic climates (Cfb), three of them are considered hot-summer Mediterranean climates
(Csa), and there is only one basin representing semi-arid climate (Bsk). There is no south-western basin
in this study due to the lack of data in this area, which has been studied for less than ten years in most
gauging stations. Besides, according to Senent-Aparicio et al. (2016) [33], Southern Spain is one of the
most water-stressed regions of Europe, and this is why it is very difficult to find near-natural basins
in this part of Spain. In order to evaluate the flashiness of the basins selected, the Richards-Baker
Flashiness Index (R-B Index) [34] has been obtained. This index reflects the velocity and frequency
of short term changes in streamflow in response to storm events and can be calculated as shown in
Equation (1).
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R− BIndex =
∑n

i=1|qi−1 − qi|
∑n

i=1 qi
(1)

where, i is the time step, n is the total number of time step and q is the daily flow.
As shown in Table 1, the R-B Index in the basins selected range from 0.08 to 0.47, covering the

diversity of flashiness conditions found in Peninsular Spain. Higher values for this index indicate
higher flashiness (flashy streams), whereas lower values indicate stable streams. Climates, topography,
geology, percentages of forest cover, catchment area and shape, land use and other catchment attributes
influence the streamflow regime and, hence, the flashiness index [34]. Depending on the case study,
different correlations between flashiness index and catchment attributes can be found. We have found
a negative correlation with the mean catchment elevation, and this is similar to results obtained by
Holko et al. (2011) [35]. The daily flow data and streamflow gauging stations were collected from the
CEDEX [36].

Table 1. Summary of the main characteristics of the selected basins.

Name Code Area (km2) Altitude (m) R-B Index Köppen
Classification

Flow Availability
(Years)

Trevias TRE 411 35 0.24 Cfb 43
Begonte BEG 843 395 0.24 Csb 43
Coterillo COT 485 16 0.47 Cfb 40
Andoain AND 765 38 0.39 Cfb 43

Priego PRI 345 818 0.12 Csb 46
Bolulla BOL 30 120 0.17 Bsk 38

Gargüera GAR 97 380 0.29 Csa 40
Cuernacabras CUE 120 305 0.31 Csa 40

Jubera JUB 196 892 0.10 Csb 62
Tramacastilla TRA 95 1278 0.10 Csb 48
Belmontejo BEL 187 830 0.08 Csa 42

Peralejo de las Truchas PER 410 1143 0.16 Csb 68
Riaza RIA 36 1139 0.16 Csb 70

Pitarque PIT 279 990 0.09 Cfb 45

2.2. Empirical Formulas

The only way to obtain instantaneous flows accurately is to measure them. If these have not been
measured, any attempt to obtain the instantaneous flow afterwards will result in an approximate value.
Although the relationship between MDF and IPF is logically variable from one flood to another, in most
watersheds, this relationship is usually more or less constant or, at least, it fluctuates within a relatively
narrow range of values [13]. This has led to the application of empirical formulas to calculate the
unknown values of IPF from the known values of MDF. The following are the different empirical
methods used in this study.

2.2.1. Fuller

Fuller [4] studied flood data of 24 watersheds in The United States with basin areas between 3.06
and 151,592 km2 and suggested an equation where IPF is calculated from MMDF as a function of the
drainage area. Fuller formula (Equation (2)) is the most important and widely accepted due to its
simplicity [11].

IPF = MMDF× (1 + 2.66×A−0.3)) (2)

where IPF is the estimated instantaneous peak flow (m3/s), MMDF is the maximum observed mean
daily flow (m3/s), and A is the drainage area (km2). The coefficients present in Equation (2) are
regression coefficients that were obtained in Fuller’s study [4].

2.2.2. CEDEX Regionalization of Fuller´s Formula

In 2011, CEDEX [13] published a technical report about methodologies used in maximum
streamflow mapping of the different river basin districts of Spain. CEDEX proposed twelve regional
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formulas to transform MMDF data into the corresponding IPF based on Fuller’s method. Each formula
corresponds to a river basin district; these are shown in Table 2. In these regional formulas, IPF is the
estimated instantaneous peak flow (m3/s), MMDF is the maximum observed mean daily flow (m3/s),
A is the drainage area (km2) and the coefficients have been obtained by regression for each region.

2.2.3. Sangal

In his study, Sangal [11] realised several calculations based on a triangular hydrograph and
proposed the following formula (Equation (3)) where the variables are the mean daily flow of three
consecutive days.

IPF =
4×MMDF−Q1−Q3

2
(3)

where IPF is the estimated instantaneous peak flow (m3/s), MMDF is the maximum observed mean
daily flow (m3/s), Q1 is the mean daily flow on the preceding day (m3/s), and Q3 is the mean daily
flow on the following day.

Sangal tested his method using data from 387 gauging stations in Ontario (Canada) for basin areas
measuring less than 1 km2 to more than 100,000 km2. He obtained good estimations in the majority of
basins, although in small basins the peak flow could be underestimated.

Table 2. Regional formulas of CEDEX [13].

River Basin District Formula

Miño-Sil and Galicia Costa IPF = MMDF × (1 + 1.81 × A−0.23)
Cantábrico and País Vasco IPF = MMDF × (1 + 3.1 × A−0.26)

Duero IPF = MMDF × (1 + 1.78 × A−0.29)
Tajo IPF = MMDF × (1 + 5.01 × A−0.38)

Guadiana and Guadalquivir (Zone 1) IPF = MMDF × (1 + 35.89 × A−0.72)
Guadiana and Guadalquivir (Zone 2) IPF = MMDF × (1 + 112.82 × A−0.7)
Guadiana and Guadalquivir (Zone 3) IPF = MMDF × (1 + 11.56 × A−0.42)

Jucar IPF = MMDF × (1 + 20.87 × A−0.51)
Segura IPF = MMDF × (1 + 145.85 × A−0.75)

Ebro (Zone 1) IPF = MMDF × (1 + 2.49 × A−0.36)
Ebro (Zone 2) IPF = MMDF × (1 + 3.39 × A−0.29)
Ebro (Zone 3) IPF = MMDF × (1 + 37.73 × A−0.55)

2.2.4. Fill and Steiner

Fill and Steiner [12] created a study based on Sangal’s formula and obtained values of estimated
IPF that were higher than the observed values in basin areas greater than 1000 km2. This problem of
overestimating instantaneous peak flow led Fill and Steiner to propose an improvement to Sangal’s
method. They used data from 14 stations of basins with drainage areas between 84 and 687 km2 in
Brazil and developed a simple formula (Equation (4)), suitable for drainage areas from 50 to 700 km2,
similar to Sangal’s (Equation (3)) to obtain the IPF from the mean daily flow of three consecutive days.

IPF =
0.8×MMDF + 0.25× (Q1 + Q3)

0.9123× (Q1 + Q3)/2 + 0.362
(4)

where IPF is the estimated instantaneous peak flow (m3/s), MMDF is the maximum observed mean
daily flow (m3/s), Q1 is the mean daily flow on preceding day (m3/s) and Q3 is the mean daily flow
on posterior day. Further details about Equation (4) are available in Fill and Steiner (2003) [12].

2.3. Artificial Neural Network (ANN)

To estimate IPF data, we used the feedforward multilayer perceptron network (MLP), the most
popular ANN in hydrology [37]. The MLP network includes an input layer, an output layer, and one
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or more hidden layers. The first layer receives the input data, the hidden layers process data, and
the last layer obtains the output data [38]. Each layer contains one or more neurons connected with
all neurons of the next immediate layer through vertically aligned interconnections. The output y of
a neuron j is obtained by computing the following Equation (5) [39]:

yj = f
(
X×Wj − bj

)
(5)

where, f is an activation function, X is a vector of inputs, Wj is a vector of connection weights from
neurons in the preceding layer to neuron j, and bj is a bias associated with neuron j.

During the training process with a backpropagation algorithm, the output errors are repeatedly
fed back into the network to adjust connection weights and biases until optimal values are obtained [40].
The number of hidden neurons and the number of hidden layers is often determined by trial and
error [41,42]. In this study, one or two hidden layers with a number of neurons between two and twenty
are considered. The optimal network configuration has been determined using an iterative process,
evaluating the performance for different network structures. In this process, the data sets are randomly
divided into three subsets: training set (70%), validation set (15%), and test set (15%). The number
of maximum training iterations (epochs) was 1000 and the Levenberg-Marquardt backpropagation
algorithm [43,44] is applied to adjust the appropriate weights and minimize error.

The ANN structure used in this work is shown in Figure 2, where the input data is the
maximum mean daily flow and the output data is the instantaneous peak flow. The tangent
sigmoid transfer function in the hidden layers and linear transfer function in the output layer were
used. We implemented and built the ANNs using MATLAB® software (version 8.2.0.701 (R2013b),
The Mathworks, MA, USA).
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2.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS models nonlinear functions and makes a nonlinear map from input space to output space
using fuzzy if-then rules, with each rule describing the local behaviour of the mapping. The parameters
of these rules determine the efficiency of the FIS [45] and describe the shape of the Membership
Functions (MF).

In this study, the Sugeno-type FIS [46,47] was used. In this learning process, a hybrid learning
algorithm—a combination of the least-squares method and the backpropagation gradient descent
method—is used to emulate a given training data set and estimate the parameters of the FIS. The ANFIS
architecture is based on the work of Jang (1993) [48] and it is composed of five layers. In the first
layer, every node is an adaptive node and acts as an MF. Different MFs were used in this study and
the models with the generalized bell and sigmoidal membership function obtained the more accurate
results in the testing phase. MMDF was used as input data.
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2.5. Evaluation Criteria

In this work, the performance of the different methods was evaluated using three evaluation tools.
Firstly, coefficient of determination (R2) (Equation (6)) was used to describe the degree of collinearity
between estimated and observed data and the proportion of variance in observed data explained by
the model [49].

R2 =
[∑n

i=1 (Oi −O)(Ei − E)]2

[(n− 1)·SO·SE]
2 (6)

where Oi is the ith observed data, O is the mean of the observed data, Ei is the ith estimated data,
E is the mean of the estimated data, n is the total number of observations, SO is the variance of the
observed data and SE is the variance of the estimated data.

Secondly, root mean square error (RMSE) (Equation (7)) was used. RMSE is an error index
commonly used for quantifying the estimation error and is useful in assessing the errors in the units of
the data [49].

RMSE =

√
∑n

i=1(Oi − Ei)
2

n
(7)

Finally, an analysis of observed-estimated plot with the identity line (1:1 line) was used.

3. Results and Discussion

As shown in Table 3, to compare the results of the empirical formulas, R2 and RMSE values were
calculated for the fourteen gauge stations studied. The best results for each basin are highlighted
in black in Table 3. The estimation with a higher R2 value and a lower RMSE value is the best.
According to the results obtained, in most of the stations, Fuller or the regionalization of Fuller’s
equation (CEDEX) have the higher coefficient of determination and the lowest amount of error. It can
also be concluded that the regionalization of the Fuller equation improves the estimation of the IPF,
especially in basins with a high flashiness index, as demonstrated in the results obtained in AND,
COT, TRE, GAR, and CUE. Besides, the Fill and Steiner formula obtained more accurate results in
PER and PIT, basins characterized by a low flashiness index. The Sangal formula exhibits very regular
behaviour in general, with more accurate results compared with Fill and Steiner but worse results
compared with the Fuller equation or its regionalization. With regard to climate zones, a clear pattern
is not observed indicating a preference of one method over another.

Table 3. Evaluation of the results of empirical formulas based on R2 and root mean square error
(RMSE) criteria.

Basin Code
R2 RMSE (m3/s)

Fuller CEDEX Sangal Fill Steiner Fuller CEDEX Sangal Fill Steiner

TRE 0.85 0.85 0.82 0.80 93.68 76.09 82.16 99.27
BEG 0.89 0.89 0.87 0.88 56.35 59.53 78.09 58.63
COT 0.70 0.70 0.68 0.68 159.65 126.11 137.51 167.11
AND 0.54 0.54 0.61 0.62 184.61 174.11 158.67 177.70
PRI 0.90 0.90 0.89 0.89 9.94 11.04 10.39 11.67
BOL 0.92 0.92 0.94 0.94 6.92 16.28 8.17 9.26
GAR 0.71 0.71 0.69 0.70 12.10 11.20 14.11 15.70
CUE 0.65 0.65 0.66 0.65 30.93 28.23 33.50 35.97
JUB 0.30 0.30 0.29 0.28 14.15 13.97 14.14 14.50
TRA 0.81 0.81 0.84 0.83 3.34 6.38 3.96 4.77
BEL 0.44 0.44 0.43 0.41 7.63 6.79 7.53 7.80
PER 0.92 0.92 0.90 0.91 17.44 20.13 19.49 16.80
RIA 0.72 0.72 0.72 0.71 4.41 3.39 3.27 3.33
PIT 0.87 0.87 0.82 0.85 4.48 16.57 2.80 2.27

Note: The best results for each basin are bold in black.
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Results obtained by ANN, ANFIS, and the best empirical formula in each basin are shown in
Table 4. The best results for each basin are highlighted in black. In order to construct the ANN and its
accurate training, data was entered into the MATLAB software in the form of 80% training data and
20% test data. An ANN structure with two hidden layers and two hidden neurons in each layer was
the optimal structure for most basins, while the second most used structure had one hidden layer with
two hidden neurons. ANN, ANFIS, and empirical formulas were applied to the same gauge stations
under similar conditions and compared using R2 and RMSE as evaluation criteria. From the data in
Table 4, it is evident that the highest R2 and the lowest RMSE between simulated and observed results
in most of the stations were obtained using the ANFIS method. These results support outcomes of
Dastorani et al. (2013) [31] and Fathzadeh et al. (2016) [14]. With respect to the ANN method, the
accuracy of ANN outputs is, in general, higher than the outputs obtained using empirical formulas,
but lower compared to ANFIS results. As shown in the RIA basin data, estimations obtained using
ANN are more accurate when the flow data series used as input data is longer. In general, the results
obtained by machine-learning techniques (ANN and ANFIS) are clearly more accurate than those
obtained by empirical formulas. Only in AND and BEG basins do the empirical formulas improve the
results obtained by these techniques.

Table 4. Statistics of artificial neural networks (ANN), adaptive neuro-fuzzy inference (ANFIS) versus
the best empirical formula.

Basin Code Data Set
ANN ANFIS Best Empirical Formula

R2 RMSE R2 RMSE R2 RMSE Formula

TRE
Training 0.92 55.3 0.92 54.81 0.86 78.94

CEDEXTest 0.66 52.95 0.67 47.8 0.53 62.55

BEG
Training 0.7 90.69 0.92 47.86 0.88 58.38

FullerTest 0.83 72.03 0.87 59.31 0.95 47.07

COT
Training 0.77 117.19 0.79 107.49 0.69 134.55

CEDEXTest 0.82 70.04 0.82 68.8 0.91 84.26

AND
Training 0.46 170.75 0.5 163.13 0.53 159.13 Sangal

Test 0.75 172.29 0.79 188.6 0.83 156.92

PRI
Training 0.89 9.75 0.91 9 0.88 10.26

FullerTest 0.98 5.62 0.98 4.8 0.96 8.52

BOL
Training 0.97 4.6 0.99 1.7 0.95 7.48

FullerTest 0.78 3.27 0.77 4.5 0.72 4.09

GAR
Training 0.82 8.62 0.94 5.06 0.71 11.29

CEDEXTest 0.75 10.36 0.85 8.46 0.72 10.72

CUE
Training 0.85 12.26 0.9 10.24 0.75 17.34

CEDEXTest 0.79 44.92 0.77 41.38 0.85 52.07

JUB
Training 0.39 10.31 0.41 10.12 0.32 11.1

CEDEXTest 0.5 20.27 0.59 19.51 0.48 21.38

TRA
Training 0.83 2.88 0.84 2.76 0.82 3.38

FullerTest 0.83 2.66 0.8 2.7 0.83 3.15

BEL
Training 0.49 6.44 0.6 5.61 0.47 7.12

CEDEXTest 0.84 6.23 0.77 7.21 0.8 7.99

PER
Training 0.91 16.87 0.93 14.33 0.9 17.64

Fill-SteinerTest 0.96 7. 39 0.98 5.44 0.92 9.28

RIA
Training 0.73 3.27 0.75 3.11 0.71 3.5 Sangal

Test 0.88 1.64 0.86 2.33 0.88 2.11

PIT
Training 0.8 2.29 0.86 2.13 0.79 2.25

Fill-SteinerTest 0.92 2.2 0.97 0.82 0.97 2.07

Note: The best results for each basin are bold in black.
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Moreover, according to the plots in Figure 3, where line slope and correlation coefficient between
observed and measured values of IPF obtained with ANN and ANFIS techniques are compared, ANFIS
seems to be slightly better in most of the gauge stations studied because those results concentrate closer
to the identity line (perfect line) and the correlation coefficient is closer to 1. However, the differences
between the techniques increase when the RMSE results are analysed, as shown in Table 4.
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4. Conclusions

Estimation of instantaneous peak flow is essential for flood management and the design of
hydraulic structures, especially in countries like Spain, where flash floods are a common occurrence
and can cause significant damage. In this research, empirical formulas found in the literature and some
learning-machine algorithms that have been used recently to estimate many different hydrological
variables were applied to estimate IPF from MMDF. Our results show that the use of machine-learning
models of the fuzzy type, such as ANFIS, are more accurate in general than ANN. These conclusions
suggest that ANFIS is the more accurate method for increasing the accuracy of the estimation of IPF
when a long-time series of MDF is available but the availability of IPF is shorter. The machine-learning
method is superior to empirical formulas due to the data used from the basins in the case study, and
future extensive studies with more data would be needed to obtain better estimators. On the other
hand, the nonlinear dynamics of the relationship between IPF and MDF justifies the results obtained
by the ANFIS method.

The main drawback of these machine-learning methods was the time consumed to model them.
Finding the optimal structure of a neural network, the appropriate MF, and the shape of each variable
in ANFIS is difficult and is determined through the process of trial and error. So, they require long
tests and much greater computational resources than empirical formulas.
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