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Abstract: This paper shows the results of the numerical modelling of the transition from supercritical
to subcritical flow at an abrupt drop, which can be characterised by the occurrence of oscillatory flow
conditions between two different jump types. Weakly-Compressible Smoothed Particle (WCSPH)
model was employed and both an algebraic mixing-length model and a two-equation model were
used to represent turbulent stresses. The purpose of this paper is to obtain through the SPH model a
deeper understanding of the physical features of a flow, which is, in general, difficult to be reproduced
numerically, owing to its unstable character. In particular, the experience already gained in SPH
simulations of vorticity-dominated flows allows one to assess the fluctuations of hydrodynamic
characteristics of the flow field, (e.g., free surface profile downstream of the jump, velocity,
pressure and vorticity). Numerical results showed satisfactory agreement with measurements and
most of the peculiar features of the flow were qualitatively and quantitatively reproduced.
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1. Introduction

A hydraulic jump occurs whenever an upstream supercritical flow is forced to become subcritical.
This transition involves a strong energy dissipation, which derives from the increase in turbulence
intensity due to the sudden flow deceleration, often resulting in an intense turbulent roller ([1,2]).

A stilling basin is often designed to dissipate the kinetic energy of the flow in a hydraulic jump.
Sometimes an abrupt drop is introduced to prevent tailwater effects and to stabilise the jump location.
The transition from supercritical to subcritical flow at an abrupt drop affects the design and construction
of the stilling basins (e.g., [3–6]).

At an abrupt drop, the transition from supercritical to subcritical flow is characterised by several
flow patterns depending upon the inflow and tailwater flow conditions. Figure 1 summarises well
acknowledged flow patterns: (1) the A-jump; (2) the wave jump or W-jump; (3) the wave train; (4) the
B-jump (or maximum plunging condition) characterised by a plunging jet mechanisms; and (5) the
minimum B-jump (or limited jump) with a limited hydraulic jump (e.g., [5]).
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Figure 1. Flow conditions (from Ohtsu and Yasuda, 1991): (a) A-jump; (b) wave jump; (c) wave 

train; (d) B-jump (maximum plunging condition); and (e) minimum B-jump (limited jump). 

Some researchers pointed out the existence of oscillating phenomena, and particularly of a cyclic 

variation of jump types over long-lasting experiments, under specific flow conditions (e.g., [5,7–14]). 

The oscillating characteristics are usually referred to as a macroscopically visible feature of a 

hydraulic jump ([12]). These oscillating characteristics can be: (i) change from one type of hydraulic 

jump to another; (ii) horizontal movement of the jump toe ([15]); (iii) cyclic variation of velocity 

components and pressure in the region close to the jump roller; and (iv) formation, development and 

coalescence of the large-scale flow structures. The literature is unclear on the conditions leading to 

oscillating jumps and cyclic behaviours. Experiments by [16] presented diagrams on the flow patterns 

as a function of Froude number and dimensionless downstream depth, highlighting some doubts 

about the existence of the wave- and B-jumps, and these graphs did not mention oscillating 

characteristics. 

The experiments by [17] took into account the previous studies to assess critically the basic flow 

patterns for the transition from super- to subcritical flows at an abrupt drop and to propose new 

compelling conclusions regarding the changes of the different types of hydraulic jumps and the 

variation from one type to another: in particular, it was noted that specific flow conditions can lead 

to cyclic oscillations between jump types, resulting in the cyclic formation and evolution of jump 

vortices. 

Numerical modelling of a hydraulic jump can be challenging for purely Eulerian or mixed 

Eulerian–Lagrangian techniques (see, for instance: [18–23]), because of the onset of oscillations, 

leading to the propagation of short breaking waves which can reduce the accuracy of free-surface 

capturing schemes [12]. On the other hand, meshless Lagrangian techniques appear in general to be 

more suitable to capture the complex and highly-unsteady free-surface patterns which characterize 

a hydraulic jump. 

Smoothed Particle Hydrodynamics (SPH) is actually effective in solving fluid-dynamic 

problems with highly non-linear deformation such as wave breaking and impact ([24–29]); multi-

phase flows for coastal and other hydraulic applications with air-water mixtures and sediment 

scouring ([30–36]); long waves, e.g., floods, tsunamis and landslide submersions ([37,38]); flow 

around ships and ditching ([39–41]); and oscillating jets inducing breaking waves [42]. 

In other papers, Smoothed Particle Hydrodynamics (SPH) method has been utilized for 

modelling of hydraulic jumps with good results. López et al.,[43], investigated the capability of the 

SPH method to reproduce mobile hydraulic jumps with different inflow Fr. Jonsson et al. [44] 

Figure 1. Flow conditions (from Ohtsu and Yasuda, 1991): (a) A-jump; (b) wave jump; (c) wave train;
(d) B-jump (maximum plunging condition); and (e) minimum B-jump (limited jump).

Some researchers pointed out the existence of oscillating phenomena, and particularly of a cyclic
variation of jump types over long-lasting experiments, under specific flow conditions (e.g., [5,7–14]).

The oscillating characteristics are usually referred to as a macroscopically visible feature of a
hydraulic jump ([12]). These oscillating characteristics can be: (i) change from one type of hydraulic
jump to another; (ii) horizontal movement of the jump toe ([15]); (iii) cyclic variation of velocity
components and pressure in the region close to the jump roller; and (iv) formation, development and
coalescence of the large-scale flow structures. The literature is unclear on the conditions leading to
oscillating jumps and cyclic behaviours. Experiments by [3] presented diagrams on the flow patterns as
a function of Froude number and dimensionless downstream depth, highlighting some doubts about
the existence of the wave- and B-jumps, and these graphs did not mention oscillating characteristics.

The experiments by [16] took into account the previous studies to assess critically the basic
flow patterns for the transition from super- to subcritical flows at an abrupt drop and to propose
new compelling conclusions regarding the changes of the different types of hydraulic jumps and the
variation from one type to another: in particular, it was noted that specific flow conditions can lead to
cyclic oscillations between jump types, resulting in the cyclic formation and evolution of jump vortices.

Numerical modelling of a hydraulic jump can be challenging for purely Eulerian or mixed
Eulerian–Lagrangian techniques (see, for instance: [17–22]), because of the onset of oscillations,
leading to the propagation of short breaking waves which can reduce the accuracy of free-surface
capturing schemes [12]. On the other hand, meshless Lagrangian techniques appear in general to be
more suitable to capture the complex and highly-unsteady free-surface patterns which characterize a
hydraulic jump.

Smoothed Particle Hydrodynamics (SPH) is actually effective in solving fluid-dynamic problems with
highly non-linear deformation such as wave breaking and impact ([23–28]); multi-phase flows for coastal
and other hydraulic applications with air-water mixtures and sediment scouring ([29–35]); long waves,
e.g., floods, tsunamis and landslide submersions ([36,37]); flow around ships and ditching ([38–40]);
and oscillating jets inducing breaking waves [41].

In other papers, Smoothed Particle Hydrodynamics (SPH) method has been utilized for modelling
of hydraulic jumps with good results. López et al., [42], investigated the capability of the SPH method
to reproduce mobile hydraulic jumps with different inflow Fr. Jonsson et al. [43] investigated the
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effects of the spatial resolution of the SPH particles and its impact on hydraulic jump behaviour
and the conjugate depth. Federico et al. [44] developed a 2D SPH model to enforce inlet and outlet
boundary conditions and demonstrated the ability of the SPH method to simulate a hydraulic jump.
Chern and Syamsuri [45] displayed the possibility to investigate the effects of a corrugated bed on
the hydraulic jump characteristics using SPH. De Padova et al. [46] demonstrated the applicability of
the SPH technique to the analysis of three-dimensional (3D) hydraulic jumps in a very large channel,
where more complex flow patterns appear. Numerical results showed satisfactory agreement with the
laboratory experiments by ([47–49]).

The purpose of this paper is to use a Weakly-Compressible SPH (WCSPH) scheme, together with
a suitable turbulence model, to study the oscillating characteristics and cyclic mechanisms in different
hydraulic jump types, comparing the results with the laboratory experiments by [16] in order to obtain
a deeper understanding of the physical features of the flow.

2. Experimental Set Up

Experimental investigations were carried out in the laboratory of the Department of Civil,
Environmental, Land, Building Engineering and Chemistry (hereafter referred to as SIA) of Bari
Polytechnic University in a 0.40 m wide, 24.4 m long channel (with sidewalls 0.5 m tall). The walls
and bottoms of both channels were made of Plexiglas (Figure 2). The channel hosted in recent years
widespread experimental activity on hydraulic jump characterization (see, for instance, [11,12,16,50–52]).
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Figure 2. Channel at the Hydraulics laboratory of the Department of Civil, Environmental, Land, 

Building Engineering and Chemistry of the Polytechnic University of Bari: (a) sketch; and (b) 

picture of the channel. 

In the SIA channel, the abrupt drop was made of Plexiglas and located 0.8 m downstream of the 

gate. The tested elevation drop s was equal to 3.20 or 6.52 cm. 

Discharges were measured by a triangular sharp-crested weir. Measurements of upstream and 

downstream water depths were carried out with electric hydrometers type point gauge supplied with 

electronic integrators which yielded directly the estimate of the time-averaged flow depth. The 

hydrometers, supplied with verniers, had a measurement accuracy of ±0.1 mm. Water discharge and 

tailwater depth were regulated by two gates placed at the upstream and downstream ends of the 

channel, respectively. For some runs, pressure measurements under the jumps were obtained using 

a pressure transducer TransInstruments Ltd. type 4310 with a relative pressure difference range 

equal to 0÷7500 Pa. The pressure tap was connected to the transducer using a rigid tube with 2 

mm diameter and 0.4 m of length. An amplifier and a conditioner were used to adjust the signal 

output of the transducer for resolution and acceptable range of the A/D board. In addition, a 

video camera was used to film the jump for some runs. 

Table 1 lists the main experimental parameters of the investigated hydraulic jumps: y1 is the 

inflow water depth; yt is the water depth downstream of the jump; F1 = V1/(gy1)0.5 is the inflow 

Froude number and Re is the Reynolds number defined as Re = V1 y1/ν = Vt yt/ν where V1 and Vt are 

the flow velocities at water depths y1 and yt, respectively, and ν the kinematic water viscosity at 

the run temperature. Figure 3 shows the locations where y1 and yt were measured for each flow 

pattern i.e., the A-jump and B-jump. 
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Figure 2. Channel at the Hydraulics laboratory of the Department of Civil, Environmental, Land,
Building Engineering and Chemistry of the Polytechnic University of Bari: (a) sketch; and (b) picture
of the channel.

In the SIA channel, the abrupt drop was made of Plexiglas and located 0.8 m downstream of the
gate. The tested elevation drop s was equal to 3.20 or 6.52 cm.

Discharges were measured by a triangular sharp-crested weir. Measurements of upstream and
downstream water depths were carried out with electric hydrometers type point gauge supplied
with electronic integrators which yielded directly the estimate of the time-averaged flow depth.
The hydrometers, supplied with verniers, had a measurement accuracy of ±0.1 mm. Water discharge
and tailwater depth were regulated by two gates placed at the upstream and downstream ends of
the channel, respectively. For some runs, pressure measurements under the jumps were obtained
using a pressure transducer TransInstruments Ltd. type 4310 with a relative pressure difference range
equal to 0÷7500 Pa. The pressure tap was connected to the transducer using a rigid tube with 2 mm
diameter and 0.4 m of length. An amplifier and a conditioner were used to adjust the signal output of
the transducer for resolution and acceptable range of the A/D board. In addition, a video camera was
used to film the jump for some runs.

Table 1 lists the main experimental parameters of the investigated hydraulic jumps: y1 is the
inflow water depth; yt is the water depth downstream of the jump; F1 = V1/(gy1)0.5 is the inflow
Froude number and Re is the Reynolds number defined as Re = V1 y1/ν = Vt yt/ν where V1 and Vt are
the flow velocities at water depths y1 and yt, respectively, and ν the kinematic water viscosity at the
run temperature. Figure 3 shows the locations where y1 and yt were measured for each flow pattern
i.e., the A-jump and B-jump.

Table 1. Experimental parameters of the analysed hydraulic jumps.

TEST Run no. (Mossa 2002) y1 (cm) yt (cm) V1 (m/s) Vt (m/s) F1 y1/yt Re s
(cm) s/y1 Jump Type

T1 B32 3.5 16.63 1.93 0.41 3.3 4.75 6.10 × 104 3.2 0.9 B-wave
T2 B37 3.7 17.65 1.81 0.38 3 4.76 5.80 × 104 3.2 0.9 A-wave
T3 B38 3.48 1818 1.87 0.36 3.2 5.22 5.90 × 104 3.2 0.9 A-wave
T4 B39 3.14 17.97 2.09 0.36 3.8 5.72 5.70 × 104 3.2 0.9 A-jump
T5 B30 3.19 18.2 2.04 0.36 3.6 5.71 5.90 × 104 3.2 0.9 A-jump
T6 B28 3.78 16.1 1.79 0.42 2.8 4.26 6.10 × 104 3.2 0.9 B-jump (Max.plung.condit.)
T7 B30 3.39 16.78 2.02 0.41 3.5 4.95 6.00 × 104 3.2 0.9 B-jump (Max.plung.condit.)
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Figure 3. Flow conditions: (a) A-jump; and (b) B-jump (maximum plunging condition). 
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3. SPH Numerical Method

The SPH meshless, Lagrangian method for the numerical solution of convection–diffusion equations,
has been widely applied in the last decades to the simulation of complex, unsteady, free-surface flows.

The reader is referred to textbooks and review articles for a general description of SPH ([53–57]).
The peculiar features of the SPH method used to obtain the present results were described in

detail in ([29,46]): simulations are performed through a Weakly Compressible SPH (WCSPH) approach,
in which an artificial compressibility is introduced to solve explicitly in time the equations of motion
of an incompressible fluid. As suggested by [58], the reduced value of the speed of sound should
result in a numerical Mach number everywhere lower than 0.1 in order to bound the error associated
with the adoption of a compressible formulation for the incompressible free-surface water flow to 1%:
here, the adopted value of 30 ms−1 guarantees a numerical Mach number everywhere lower than 0.07.

The Reynolds-averaged Navier–Stokes (RANS) equations in the SPH semi-discrete form become:

〈Dρi
Dt 〉 = ∑

j
mj
(
vi − vj

)
·∇̂Wij

〈Dvi
Dt 〉 = −∑

j
mj

(
pi
ρ2

i
+

pj

ρ2
j

)
∇Wij + ∑

j
mj
(
Ti − Tj

)
·∇̂Wij + g

pi − p0 = c2
i ($i − ρ0)

Ti = µTiSi

(1)

where the square brackets indicate the SPH approximation for each particle i with mass mi.
The summations are extended to all the particles j at a distance from i smaller than 2h, i.e., lying within
the circle where the adopted C2 Wendland kernel function Wij [59] is defined.

In Eauation (1), v = (u, v) is the velocity vector, p is pressure, ρ is density, g is the gravity acceleration
vector, T is the turbulent shear stress tensor, c is the speed of sound in the weakly compressible fluid,
µT is the dynamic eddy viscosity, S is rate-of-strain tensor and the subscript 0 denotes a reference state
for pressure computation. All the variables are assumed to be Reynolds-averaged.

The notation ∇̂Wij in Equation (1) indicates the gradient of Wij, renormalized through a procedure
which enforces consistency on the first derivatives to the 1st order [60], leading to a 2nd order
accurate discretization scheme in space. The kernel renormalization is applied everywhere, apart from
the pressure gradient term, where the form originally proposed by [58] is retained to guarantee
momentum conservation.

The semi-discretized system (Equation (1)) is integrated in time by a 2nd order two-stage XSPH
explicit algorithm [58], where each particle is moved according to a velocity

vX
i = ϕv ∑

j

mj

ρj
vjŴij + (1− ϕv)vn+1

i (2)

where φv is a velocity smoothing coefficient and vi
n+1 is the value obtained by solution of the

second equation in Equation (1). The use of XSPH leads to a satisfactory regularization of particle
distribution within the computational domain: this regular particle pattern, together with the kernel
renormalization procedure described above, leads to computed pressure fields whose energy content
at the higher frequencies (i.e., the frequencies mostly connected with numerical noise) is sufficiently
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low, as shown in the following Section 4 (see, for instance, Figure 17). The alternative of making use
of particle-shifting algorithms, such as those developed for Incompressible SPH ([61] and [62]) and
recently extended to WCSPH ([63,64]) was therefore not followed, also considering the problems which
might arise at the jump toe, where physical voids arising from wave breaking and air entrainment
may be obliterated by an unsuitable particle shifting.

A pressure smoothing procedure is also applied to the difference between the local and the
hydrostatic pressure values [46] and contributes to reduce the numerical noise which affects WCSPH
owing to high frequency acoustic signals [65]. This approach proved to be effective in SPH analyses of
different free-surface flows [29] and constitutes a valid alternative to other methods, such as δ-SPH [66],
where a numerical diffusive term for density is added to the continuity equation, or filtering of the
high-frequency pressure oscillations ([67,68]).

Two alternative models were tested to estimate the eddy viscosity µT:

(1) A mixing-length model ([29,46]), in which µT = cµρl2‖S‖, where cµ = 0.09, the mixing-length for
each particle is evaluated as:

li = min

1,

∣∣∣∣∣∑j

mj

ρj
∇Wij

∣∣∣∣∣
−3
min(κy, lmax) (3)

κ = 0.41 is the Von Kármán constant, y is the distance from the wall, lmax is a cutoff maximum
value and the damping function in the first factor of the RHS avoids a non-physical growth of l near
the free-surface when the particle distribution is irregular and the SPH evaluation of the gradient of a
constant function departs sharply from zero: this function plays therefore a different role than the one
of a wake function, such as the one included in the mixing-length model by [69] to simulate turbulent,
open-channel uniform flows; the use of a wake function was not considered here because relevant
turbulence effects occur mostly close to the hydraulic jump, where the flow conditions are in any case
far from uniform;

(2) A SPH version of the standard k-ε turbulence model by [70], in which µT = cµ
k2

ε and the two
equations for the turbulent kinetic energy k and for the turbulent dissipation rate ε are:

Dki
Dt

= Pki
+

1
σk

∑
j

mj
νTi + νTj

ρi + ρj

ki + k j

r2
ij + 0.01h2

rij·∇Ŵij − εi

Dεi
Dt

= Cε1

εi
ki

Pki
+

1
σε

∑
j

mj
νTi + νTj

ρi + ρj

εi + ε j

r2
ij + 0.01h2

rij·∇Ŵij + Cε2

εi
ki

∑
j

mj

ρj
ε jŴij

(4)

where Pk is the production of turbulent kinetic energy depending on the local rate of deformation
and νT is the eddy viscosity. As in [71], the values originally proposed by [70] for the model
constants (σk = 1, σε = 1.3, Cε1 = 1.44, Ce2 = 1.92) were maintained here.

Wall boundary conditions are imposed by the ghost particle method [72], while supercritical inflow
conditions are obtained by introducing a 2h-wide layer of fluid particles with constant velocity and
head along the water depth.

The inflow condition is enforced through the introduction of a 2h-wide layer of fluid particles,
arranged on a regular grid and moving with constant velocity V1 and head y1: a new row of particles
is created upstream of the layer at each Σ/V1 time interval, Σ being the initial particle spacing. The k
and ε values at the inflow are computed by assuming a constant 10% turbulence intensity and a mixing
length equal to 0.5 y1.

An outflow velocity Vt and head yt are imposed to each particle crossing the outflow boundary,
and these values are kept frozen in the 2h-wide outflow buffer layer, so that their motion is maintained
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at constant speed: when the particles exit the buffer layer, they are removed from the computation;
k and ε values are also frozen in the buffer layer.

For velocity and head, these inflow/outflow conditions are basically analogous to the ones
described by [44].

4. Numerical Tests and Results

Seven hydraulic jumps with Froude number ranging 2.8–3.9 were investigated in a rectangular
channel. The geometrical setup was based on the experimental study by [16], who focused on the
oscillating changes of the different types of hydraulic jumps (variation from one type to another).
See Table 1 for experimental data.

For all seven tests, the numerical domain was 2 m long and 0.4 m high, shorter than the real
channel in the test facility. The shorter domain was chosen to reduce the computational cost without
influencing the quality of the numerical solution, as shown by [46] in the case of 2D undular jump
simulations. A schematic figure of the problem setup can be seen in Figure 4.
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A thorough sensitivity analysis was already performed by the authors in the application of the
same SPH numerical method to hydraulic jumps and breaking wave flows ([29,46]): according to
this analysis, the SPH simulations of the cases here studied were performed by adopting a velocity
smoothing coefficient in the XSPH scheme φv = 0.01. The ratio of the smoothing length to the initial
particle spacing Σ was maintained to a constant value of η/Σ = 1.5 [73] for all the simulations.
A convergence analysis was carried out by choosing different initial particle spacing Σ ranging
from 0.015 to 0.005 m. The related number of SPH particles NP in the computational domain ranged
from about 1000 to 9000, respectively. It can be seen that the simulation at the lowest resolution is not
able to predict the oscillating characteristics and cyclic mechanisms in hydraulic jumps (Figure 5).
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Figure 5. Instantaneous SPH vorticity field in the SPH simulation of Test T1a with an initial particle
spacing equal to 0.015: (a) t = 6 s; (b) t = 9 s; (c) t = 12 s; and (d) t = 15 s. Vorticity values in the colour
scale are expressed in s−1.

Figure 6 shows that an initial particle spacing Σ ≤ 0.010 m guarantees the independence of the
SPH result from the resolution and yield a result in accordance with the experiments.
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Figure 6. Instantaneous SPH vorticity field (t = 8 s) in the SPH simulation of Test T1 with different
particle resolutions: (a) Σ = 0.015 m; (b) Σ = 0.010 m; and (c) Σ = 0.005 m. Vorticity values in the colour
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The sensitivity analysis highlights that, with a value of an initial particle spacing Σ ≤ 0.010 m,
SPH simulations show results in accordance with the experiments. Therefore, all the SPH simulations
have been then performed with an initial particle spacing Σ = 0.010 m and η/Σ = 1.5.

Sensitivity to the turbulence model was also investigated and, similarly to the analysis shown by
De Padova et al. (2013), test T1 was repeated by adopting both a mixing length turbulence model with
lmax = 0.5 h2 and the two-equation model (10). Table 2 summarizes the principal characteristics of the
simulations in the sensitivity analysis.

Table 2. Numerical parameters of the SPH simulations in the sensitivity analysis.

TEST Turbulence Model η/Σ NP

T1a mixing-length model 1.5 3000
T1b k-ε turbulence model 1.5 3000

Both the mixing length model and the k-ε model yield similar results and are able to predict the
oscillating characteristics and cyclic mechanisms in hydraulic jumps.

The instantaneous vorticity fields (Figures 7 and 8) of the configuration with oscillations between
the B and wave jump clearly indicate that the transition phase between the two jump types is well
reproduced by both turbulence models (T1a and T1b). Vortices are characterized by a clockwise
or anti-clockwise rotation, depending on which type of jump is present. In particular, vortices are
characterized by a clockwise rotation when the wave jump occurs (Figures 7a–c and 8a–c) and by an
anti-clockwise one for the B jump (Figures 7b–d and 8b–d), respectively.
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Figure 8. Instantaneous SPH vorticity field in the SPH simulation of Test T1b: (a) t = 15 s; (b) t = 21 s;
(c) t = 26 s; and (d) t = 30 s. Colour scale is the same as in Figure 7.

Figure 9 shows the amplitude spectrum of the pressure fluctuations computed in tests T1a and
T1b, compared with the measurements under the hydraulic jump B32 of Table 1, where the pressure
tap was located at a distance of 26 cm from the time-averaged position of the jump toe. From the
analysis of the spectrum, it is clear that even the pressure fluctuations are quasi-periodic and strongly
influenced by the oscillations between the B and wave jump types; furthermore, it is possible to observe
the existence of a peak in each spectrum, as was shown in the experiments by [16].
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Figure 9. Amplitude spectrum of pressure fluctuations under the hydraulic jump (configuration B32 of
Table 1) for the SPH simulations of test T1 and two different turbulence models: mixing-length (T1a)
and k-ε (T1b).
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Although both turbulence models yield similar results, the detailed comparison of the
computed amplitude spectra with the measured ones shows that the results obtained with the
mixing-length model are closer to the experimental data than the k-ε ones (Figure 9). In particular,
the two-equation turbulence model overestimates the peak amplitude of the pressure fluctuations
upstream, while predicting a lower main frequency. A possible explanation of this behaviour could
reside in an underprediction of turbulent kinetic energy (or in an overprediction of it dissipation rate) by
the k-ε model, which leads to a slightly lower turbulent diffusion downstream of the jump. A possible
solution to these problems could be found in a careful tuning of the model parameters, or in the
application of a different two-equation model, such as the RNG k-εmodel, which has been successfully
applied to the Eulerian numerical simulations of hydraulic jumps [22]. However, the obtained results
showed that a good agreement with experiments could be already obtained by applying the simpler,
mixing-length turbulence model and, therefore, all the remaining SPH simulations (tests T2 to T7)
were performed with it.

Analysis of Stable vs. Oscillating Flow Behaviour

The simulated flow patterns reproduce what was observed during the experiments.
The stable states shown by tests T4 and T6 are confirmed by the numerical results, showing the

formation of an A-jump for test T4 (Figure 10) and of a B-jump for test T6 (Figure 11), respectively:
although the jump toe exhibits a certain displacement from its average position, the jump pattern is
maintained during the whole simulation period.Water 2017, 9, 790  11 of 25 
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Figure 10. Instantaneous SPH vorticity field in the SPH simulation of Test T4: (a) t = 15 s; (b) t = 
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Figure 10. Instantaneous SPH vorticity field in the SPH simulation of Test T4: (a) t = 15 s; (b) t = 18 s;
(c) t = 22 s; and (d) t = 24 s. Colour scale is the same as in Figure 7.
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oscillations between jump types, resulting in the cyclic formation and evolution of jump vortices. As 

such, the complete spatial and temporal knowledge of the flow yielded by the SPH simulation can 

help us to improve the understanding of the phenomena by performing additional analyses of the 

flow field, without requiring new extensive experimental activity. 

Figure 11. Instantaneous SPH vorticity field in the SPH simulation of Test T6: (a) t = 30 s; (b) t = 40 s;
(c) t = 50 s; (d) t = 60 s; (e) t = 70 s; and (f) t = 80 s. Colour scale is the same as in Figure 7.

For the flow conditions that exhibited an oscillatory pattern in the experiments, oscillatory flow
patterns were also observed during numerical simulations, such as for test T2, where an A-wave pattern
occurs (Figure 12), or for the test T1 previously discussed, which shows a B-wave behaviour (Figure 7).
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Figure 12. Instantaneous SPH vorticity field in the SPH simulation of Test T2: (a) t = 5 s; (b) t = 10 s;
(c) t = 12 s; (d) t = 16 s; Colour scale is the same as in Figure 7.

The previous results show that the SPH simulations can correctly reproduce all the main
characteristics of this phenomenon, which under specific flow conditions can lead to cyclic oscillations
between jump types, resulting in the cyclic formation and evolution of jump vortices. As such,
the complete spatial and temporal knowledge of the flow yielded by the SPH simulation can help us
to improve the understanding of the phenomena by performing additional analyses of the flow field,
without requiring new extensive experimental activity.

Figure 13 shows the amplitude spectra of the time series of the surface elevations, upstream and
downstream of the jump for test T1. From the analysis of these spectra it is possible to observe in each
of them the existence of a peak at a frequency around 0.1 Hz, which confirms the conclusions drawn
by [12], who stated the quasi-periodicity of the oscillating characteristic of wave and B jumps.
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Figure 13. Test T1: Amplitude spectrum of the time series of the surface elevations: (a) upstream;
and (b) downstream of the jump.
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Furthermore, as the frequency of the peak in the upstream spectrum is almost equal to the
downstream one, it is possible to conclude that fluctuations of the surface profile downstream of the
jump also depend essentially on the alternations between B and wave jumps.

Figure 14 shows the amplitude spectrum of the time series of the surface elevations, upstream and
downstream of the jump for test T2. From the analysis of the previously mentioned figure it is possible
to observe the also in this case the existence of a peak in the spectrum of the time series of the surface
elevations upstream of the jump, consistently with the oscillations between A and wave jumps.

However, in this case, no dominant peak frequency was noted, unlike in the T1 case with
alternations between B and wave jumps. Consequently, as also suggested by [12], the present numerical
results confirm that the surface profile downstream of the roller in this case is not affected strongly by
the oscillation between different jump types.

It is possible to evaluate non-linearity through the ratios between the amplitude of the two higher
harmonics (A2 and A3) and that of the main component (A1), as proposed by [74,75]. A value of
A2/A1 equal to 0.105 and 0.017 is found for surface elevation upstream of the jump in test T1 and test
T2, respectively. A value of A3/A1 equal to 0.12 and 0.25 is found for surface elevation upstream of
the jump in test T1 and test T2, respectively.

A value of A2/A1 equal to 0.18 and 0.35 is found for surface elevation downstream of the jump
in test T1 and test T2, respectively. A value of A3/A1 equal to 0.35 and 1.056 is found for surface
elevation downstream of the jump in test T1 and test T2, respectively. The tendency of these ratios to
increase in the direction of the flow shows that the non-linearity of the surface waves tends to enhance
while the waves propagate downstream.
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Figure 14. Test T2: Amplitude spectrum of the time series of the surface elevations: (a) upstream;
and (b) downstream of the jump.

The numerical results highlight also the relationship between the tailwater depth ratio yt/y1 and
the upstream Froude number F1 as a function of the relative step height s/y1. The results are presented
in the form of diagram (Figure 15) as function of the relative step height s/y1 equal to 0.06 to 0.1. In the
diagram (Figure 15), the basic flow pattern is indicated in the legend (A-jump, B-jump) including the
oscillatory flow patterns (B-wave and A-wave).
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Figure 15. Regime chart for flow configurations with 0.6 < s/y1 < 1.1. The dashed line shows the
approximate boundaries between A and B jump types.

The results show the different regions of flow conditions and the occurrence of oscillatory flow
conditions between two different jump types characterised by quasi-periodic oscillations (Figure 15).

Figures 16–19 show a part of the time series and the amplitude spectra of the pressure evaluated
at different locations along the channel the bottom under the hydraulic jumps T1and T2 of Table 1,
which represent the two possible oscillating regimes (B-wave and A-wave, respectively). In particular,
the pressure was evaluated at a distance of 7, 10, 20 and 100 cm from the time-averaged position of the
hydraulic jump toe.
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Figure 16. Time series of the pressure under hydraulic jump (configuration: T1) at a distance of: (a) 7 cm;
(b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged position of the hydraulic jump toe.
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Figure 17. Amplitude spectrum of pressure fluctuations under hydraulic jump (configuration: T1) at
a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged position of the
hydraulic jump toe.
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Figure 18. Time series of the pressure under hydraulic jump (configuration: T2) at a distance of: (a) 7 cm;
(b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged position of the hydraulic jump toe.
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Figure 19. Amplitude spectrum of pressure fluctuations under hydraulic jump (configuration: T2) at
a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged position of the
hydraulic jump toe.
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It can be seen from the pressure time history that, in the point closest to the jump toe, the bottom
pressure assumes alternatively low and high pressures which can be mostly related to low and high
water levels. Downstream, the cycle between low and high pressures is less regular, possibly because
of the simultaneous effect of level fluctuations due to waves and of turbulent pressure fluctuations
downstream of the roller. From the analysis of the pressure amplitude spectra for test T1 (Figure 17),
it is clear that even the pressure fluctuations are quasi-periodic and strongly influenced by the
oscillations between the B and wave types, as they show a peak amplitude at the same frequency of
the elevation spectra.

For the test T2 (Figure 19), no dominant peak frequency was noted, unlike in the T1 case with
alternations between B and wave jumps.

Figures 20–23 show a part of the time history of the horizontal u and vertical v velocity components
computed at a point 0.01 m above the channel bottom under the hydraulic jumps T1 and T2 of Table 1,
at a distance of 7, 10, 20 and 100 cm from the time-averaged position of the hydraulic jump toe.
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Figure 20. Time series of the horizontal velocity component under hydraulic jump (configuration: T1)
measured at a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged
position of the hydraulic jump toe.
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Figure 21. Time series of the vertical velocity component under hydraulic jump (configuration: T1)
measured at a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged
position of the hydraulic jump toe.
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Figure 22. Time series of the horizontal velocity component under hydraulic jump (configuration: T2)
measured at a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged
position of the hydraulic jump toe.
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Figure 23. Time series of the vertical velocity component under hydraulic jump (configuration: T2)
measured at a distance of: (a) 7 cm; (b) 10 cm; (c) 20 cm; and (d) 100 cm, from the time-averaged
position of the hydraulic jump toe.

The basic characters of the oscillating flow fields depicted in Figures 5 and 10 can be easily
deduced from the velocity time histories.

In the case of test T1, the B-jump phase conserves a non-zero horizontal velocity component
throughout the jump, consistent with the presence of the anti-clockwise roller on the surface; on the
other hand, the wave-phase exhibits an almost vertical, downward flow at the intermediate locations
downstream of the jump, which are a consequence of the strong clockwise roller, as sketched in
Figure 1b.

In the case of test T2, the oblique flow induced by the jump roller just downstream of the toe
during the A-jump phase (Figure 1a) can be deduced by the reduced values of u and by the positive
values of v, while the structure of the wave-jump phase is less defined than in the previous case.

In any case, the analysis of the oscillating phenomena indicates in both oscillating flows a strong
correlation among the surface profile elevations, velocity components and pressure fluctuations.
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A quantitative evaluation of this correlation can be obtained by computing the correlation
coefficient r:

r =

n
∑

i=1

[(
x1i − x1

)(
x2i − x2

)]
√

n
∑

i=1

(
x1i − x1

)2 n
∑

i=1

(
x2i − x2

)2
(5)

where x1 and x2 are the two variables values, and the bar denotes an average of the two variables values.
For test T1, the computed values of r for (p–u), (p–v) and (u–v) pairs of data at a distance of

7 cm from the time-averaged position of the hydraulic jump toe, are equal to −0.72, 0.85 and −0.8,
respectively (Figure 24).
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Figure 24. Plot of r versus d for: (a) (p–u); (b) (p–v); and (c) (u–v) pairs of data (configuration: T1).

For test T2, the computed values of r for (p–u), (p–v) and (u–v) pairs of data at a distance of
7 cm from the time-averaged position of the hydraulic jump toe, are equal to −0.98, 0.97 and −0.96,
respectively (Figure 25).

High negative values of the r coefficient for (p–u) indicate that, in general, upstream of the
bottom step low levels correspond to horizontal flow (wave-jump conditions) and vice versa.
This anti-correlation between pressure (or level) and u fluctuations is maintained downstream in
the T2 case, while in the T1 case the two quantities are instead weakly correlated.

Farther downstream, the two velocity components and the pressures are substantially
uncorrelated in the T2 case, indicating that the characteristic flow pattern of alternate near-wall
and subsurface streams does not imply any preferential direction of the vertical motions, while exhibit
still a non-zero degree of correlation in the T1 case, indicating that the oscillation between the B-jump
and the stronger wave-jump tends to propagate its effects more than the oscillation between wave-jump
and A-jump.
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5. Conclusions

A Weakly-Compressible SPH (WCSPH) scheme, which includes both an algebraic mixing-length
model and a two-equation turbulence model, was applied to the modelling of the transition from
supercritical to subcritical flow at an abrupt drop, which can be characterised by several flow patterns
depending upon the inflow and tailwater flow conditions.

The numerical results showed a satisfactory agreement with the measurements by [16] and most
of the peculiar features of the flow were qualitatively and quantitatively reproduced by the SPH model.
It must be highlighted that the analysis of the sensitivity of the present results to the particle resolution
showed the limits that allow one to obtain a precise description of the main characteristics of these
hydraulic jumps, even if the precise detail of the turbulent flow inside the jump roller is not described.
From this viewpoint, a valuable outcome of the present research is the demonstration that the SPH
method, being able to represent the onset of the different oscillating regimes, can yield results whose
reliability goes beyond the simple validation of a numerical scheme, to a point where the data obtained
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by the simulation can be used together with experiments to get a better interpretation of the physics
underlying the flow phenomenon.

Actually, both the stable states of the flow, which lead to the formation either of an A-jump
(at higher submergence and Froude number) or of a B-jump (at lower submergence and Froude
number), and the flow conditions which exhibited an oscillatory pattern, with either an A-wave or a
B-wave behaviour, were confirmed by the numerical results.

Although both turbulence models yielded similar results, the detailed comparison of the computed
amplitude spectrum of the pressure fluctuations under hydraulic jump for the configuration with
B-wave oscillations with the measured ones, showed that the results obtained with the simpler
mixing-length model are even closer to the experimental data than the ones obtained with the standard
k-ε model, in particular when amplitude spectra and peak amplitudes of the pressure fluctuations
under hydraulic jump are compared.

As observed experimentally by [17], these numerical results show the existence of a peak at a
similar frequency in the amplitude spectra of the time series of the surface elevations upstream and
downstream of the jump, in the amplitude spectra of the pressure and in the amplitude spectra of the
fluctuations of the velocity components measured under the hydraulic jump.

The analysis of amplitude spectra, of the vorticity fields and of the correlation coefficients indicates
that velocity components and pressure fluctuations are strongly influenced by the oscillations between
the B and wave jump types, and that a strong correlation exists among the velocity and vorticity fields
and the pressure fluctuations even far downstream of the jump position.

Furthermore, these numerical results show that the oscillation between the B-jump and the
stronger wave-jump tends to propagate its effects more than the oscillation between wave-jump and
A-jump. In both cases, the waves generated by the oscillation show a remarkably non-linear behaviour
while propagating in the flow direction.

The previous results show eventually that the SPH simulations can correctly reproduce all the
main characteristics of this phenomenon, which under specific flow conditions can lead to cyclic
oscillations between jump types, resulting in the cyclic formation and evolution of jump vortices.
As such, the complete spatial and temporal knowledge of the flow yielded by the SPH simulation can
improve the understanding of the phenomena, allowing one to perform detailed analyses directly on
the numerical flow field, without resorting to additional, extensive experimental activity.

Author Contributions: M. Mossa. conceived and designed the experiments; M. Mossa performed the experiments;
M.Mossa, D. De Padova and S. Sibilla analyzed the data; S. Sibilla developed the SPH numerical code; M. Mossa,
D. De Padova and S. Sibilla contributed analysis tools; D. De Padova, M. Mossa and S. Sibilla wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959.
2. Rajaratnam, N.; Subramanya, K. Flow equation for the sluice gate. J. Irrig. Drain. Eng. 1967, 93, 167–186.
3. Moore, W.L.; Morgan, C.W. Hydraulic jump at an abrupt drop. Trans. ASCE 1959, 124, 507–524.
4. Hager, W.H.; Kawagoshi, N. Hydraulic jumps at rounded drop. Proc. Instit. Civil Eng. 1990, 89, 443–470.

[CrossRef]
5. Ohtsu, I.; Yasuda, Y. Transition from supercritical to subcritical flow at an abrupt drop. J. Hydraul. Res. 1991,

29, 309–328. [CrossRef]
6. Chanson, H.; Toombes, L. Supercritical flowat an abrupt drop: Flow patterns and aeration. Can. J. Civil. Eng.

1998, 25, 956–966. [CrossRef]
7. Nebbia, G. Su taluni fenomeni alternativi in correnti libere. L’Energia Elettrica, Fasc. I 1942, XIX, 1–10.

Available online: http://www.diia.unina.it/pdf/pubb0034.pdf (accessed on 12 October 2017).
8. Hager, W.H.; Bretz, N.V. Hydraulic jumps at positive and negative steps. J. Hydraul. Res. 1986, 24, 237–252.

[CrossRef]

http://dx.doi.org/10.1680/iicep.1990.11875
http://dx.doi.org/10.1080/00221689109498436
http://dx.doi.org/10.1139/l98-013
http://www.diia.unina.it/pdf/pubb0034.pdf
http://dx.doi.org/10.1080/00221688609499303


Water 2017, 9, 790 23 of 25

9. Abdel Ghafar, A.; Mossa, M.; Petrillo, A. Scour from flowdownstream of a sluice gate after a horizontal
apron. In Proceedings of the Sixth International Symposium on River Sedimentation—Management of
Sediment—Philosophy, Aims, and Techniques, New Delhi, India, 7–11 November 1995; Varma, C.V.J.,
Rao, A.R.G., Eds.; Oxford & IBH Publishing Co. Pvt. Ltd.: Delhi, India, 1995; pp. 1069–1088.

10. Mossa, M.; Petrillo, A. Sui fenomeni alternativi in un risalto idraulico. In Proceedings of the Congress
‘Giornate di Studio in onore del Prof. Edoardo Orabona nel centenario della nascita’, Editoriale BIOS,
Rome, Italy, 13-14 October 1997; pp. 125–153. (In Italian)

11. Mossa, M.; Tolve, U. Flow visualization in bubbly two-phase hydraulic jump. J. Fluids Eng. 1998, 120,
160–165. [CrossRef]

12. Mossa, M. On the oscillating characteristics of hydraulic jumps. J. Hydraul. Res. 1999, 37, 541–558. [CrossRef]
13. Wang, H.; Chanson, H. Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng.

2015, 141, 04015010-1–04015010-10. [CrossRef]
14. Wang, H.; Murzyn, F.; Chanson, H. Total pressure fluctuations and two-phase flow turbulence in hydraulic

jumps. Exp. Fluids 2014, 55. [CrossRef]
15. Long, D.; Rajaratnam, N.; Steffler, P.M.; Smy, P.R. Structure of flow in hydraulic jumps. J. Hydraul. Res. 1991,

29, 207–218. [CrossRef]
16. Mossa, M.; Petrillo, A.; Chanson, H. Tailwater Level Effects on Flow Conditions at an Abrupt Drop.

J. Hydraul. Res. 2003, 41, 39–51. [CrossRef]
17. Chippada, S.; Ramaswamy, B.; Wheeler, M.F. Numerical simulation of hydraulic jump. Int. J. Num. Meth. Eng.

1994, 37, 1381–1397. [CrossRef]
18. Ma, F.; Hou, Y.; Prinos, P. Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 2001, 39,

493–503. [CrossRef]
19. Carvalho, R.; Lemos, C.; Ramos, C. Numerical computation of the flow in hydraulic jump stilling basins.

J. Hydraul. Res. 2008, 46, 739–752. [CrossRef]
20. Meireles, I.C.; Bombardelli, F.A.; Matos, J. Air entrainment onset in skimming flows on steep stepped

spillways: An analysis. J. Hydraul. Res. 2014, 52, 375–385. [CrossRef]
21. Chanson, H.; Carvalho, R. Hydraulic jumps and stilling basins. Chapter 4. In Energy Dissipation in

Hydraulic Structures; Chanson, H., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015;
A. Balkema Book.

22. Bayon, A.; Valero, D.; García-Bartual, R.; Jos, F.; Valles-MorF, J.; Lopez-Jim, P. Performance assessment
of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump.
Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]

23. Dalrymple, R.A.; Rogers, B.D. Numerical modelling of waves with the SPH method. Coast. Eng. 2006, 53,
131–147. [CrossRef]

24. De Padova, D.; Dalrymple, R.A.; Mossa, M. Analysis of the artificial viscosity in the smoothed particle
hydrodynamics modelling of regular waves. J. Hydraul. Res. 2014, 52, 836–848. [CrossRef]

25. Altomare, C.; Suzuki, T.; Domínguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M.; Caceres, I. A hybrid numerical
model for coastal engineering problems. In Proceedings of the 34th International Conference on Coastal
Engineering (ICCE), Seoul, Korea, 15–20 June 2014. [CrossRef]

26. Lind, S.J.; Stansby, P.K.; Rogers, B.D.; Lloyd, P.M. Numerical predictions of water-air wave slam using
incompressible-compressible smoothed particle hydrodynamics. Appl. Ocean Res. 2015, 49, 57–71. [CrossRef]

27. Ni, X.; Feng, W.B.; Wu, D. Numerical simulations of wave interactions with vertical wave barriers using the
SPH method. Int. J. Numer. Methods Fluids 2014, 76, 223–245. [CrossRef]

28. Shadloo, M.S.; Weiss, R.; Yildiz, M.; Dalrymple, R.A. Numerical simulation of long wave runup for breaking
and nonbreaking waves. Int. J. Offshore Polar Eng. 2015, 25, 1–7.

29. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of the velocity field and vorticity generation
within a hydrofoil-induced spilling breaker. Environ. Fluid Mech. 2016, 16, 267–287. [CrossRef]

30. Fourtakas, G.; Rogers, B.D.; Laurence, D.R. Modelling sediment resuspension in industrial tanks using SPH.
La Houille Blanche 2014, 18, 39–45. (In French) [CrossRef]

31. Manenti, S.; Sibilla, S.; Gallati, M.; Agate, G.; Guandalini, R. SPH simulation of sediment flushing induced
by a rapid water flow. J. Hydraul. Eng. 2012, 138, 272–284. [CrossRef]

http://dx.doi.org/10.1115/1.2819641
http://dx.doi.org/10.1080/00221686.1999.9628267
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001010
http://dx.doi.org/10.1007/s00348-014-1847-9
http://dx.doi.org/10.1080/00221689109499004
http://dx.doi.org/10.1080/00221680309499927
http://dx.doi.org/10.1002/nme.1620370807
http://dx.doi.org/10.1080/00221686.2001.9628274
http://dx.doi.org/10.1080/00221686.2008.9521919
http://dx.doi.org/10.1080/00221686.2013.878401
http://dx.doi.org/10.1016/j.envsoft.2016.02.018
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
http://dx.doi.org/10.1080/00221686.2014.932853
http://dx.doi.org/10.9753/icce.v34.waves.60
http://dx.doi.org/10.1016/j.apor.2014.11.001
http://dx.doi.org/10.1002/fld.3933
http://dx.doi.org/10.1007/s10652-015-9433-0
http://dx.doi.org/10.1051/lhb/2013014
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000516


Water 2017, 9, 790 24 of 25

32. Manenti, S.; Pierobon, E.; Gallati, G.; Sibilla, S.; D’Alpaos, L.; Macchi, E.G.; Todeschini, S. Vajont disaster:
Smoothed Particle Hydrodynamics modeling of the post-event 2D experiments. J. Hydraul. Eng. 2016, 142,
1–11. [CrossRef]

33. Mokos, A.; Rogers, B.D.; Stansby, P.K. Multiphase SPH modelling of violent hydrodynamics on GPUs.
Comput. Phys. Commun. 2015, 196, 304–316. [CrossRef]

34. Ulrich, C.; Leonardi, M.; Rung, T. Multi-physics SPH simulation of complex marine-engineering
hydrodynamic problems. Ocean Eng. 2013, 64, 109–121. [CrossRef]

35. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows,
towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136,
11–34. [CrossRef]

36. Ataie-Ashtiani, B.; Shobeyri, G. Numerical simulation of landslide impulsive waves by incompressible
smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 2008, 56, 209–232. [CrossRef]

37. Capone, T.; Panizzo, A.; Monaghan, J.J. SPH modelling of water waves generated by submarine landslides.
J. Hydraul. Res. 2010, 48, 80–84. [CrossRef]

38. Cartwright, B.K.; Chhor, A.; Groenenboom, P. Numerical simulation of a helicopter ditching with emergency
flotation devices. In Proceedings of the 5th Spheric International workshop, Manchester, UK, 23–25 June 2010;
pp. 98–105.

39. Marrone, S.; Bouscasse, B.; Colagrossi, A.; Antuono, M. Study of ship wave breaking patterns using 3D
parallel SPH simulations. Comput. Fluids 2012, 69, 54–66. [CrossRef]

40. Zhang, A.; Cao, X.-Y.; Ming, F.; Zhang, Z.-F. Investigation on a damaged ship model sinking into water based
on three dimensional SPH method. Appl. Ocean Res. 2013, 42, 24–31. [CrossRef]

41. Espa, P.; Sibilla, S.; Gallati, M. SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a
free-surface rectangular tank. Adv. Appl. Fluid Mech. 2008, 3, 105–140.

42. López, D.; Marivela, R.; Garrote, L. Smoothed Particle Hydrodynamics Model Applied to Hydraulic
Structures: A Hydraulic Jump Test Case. J. Hydraul. Res. 2010, 48, 142–158. [CrossRef]

43. Jonsson, P.; Jonsén, P.; Andreasson, P.; Lundström, T.; Hellström, J. Smoothed Particle Hydrodynamic
Modelling of Hydraulic Jumps: Bulk Parameters and Free Surface Fluctuations. Engineering 2016, 8, 386–402.
[CrossRef]

44. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows
through an SPH model. Eur. J. Mech. B/Fluids 2012, 34, 35–46. [CrossRef]

45. Chern, M.-J.; Syamsuri, S. Effect of Corrugated Bed on Hydraulic Jump Characteristic Using SPH Method.
J. Hydraul. Eng. 2013, 139, 221–232. [CrossRef]

46. De Padova, D.; Mossa, M.; Sibilla, S.; Torti, E. 3D SPH modelling of hydraulic jump in a very large channel.
J. Hydraul. Res. 2013, 51, 158–173. [CrossRef]

47. Ben Meftah, M.; De Serio, F.; Mossa, M.; Pollio, A. Analysis of the velocity field in a large rectangular channel
with lateral shockwave. Environ. Fluid Mech. 2007, 7, 519–536. [CrossRef]

48. Ben Meftah, M.; De Serio, F.; Mossa, M.; Pollio, A. Experimental study of recirculating flows generated by
lateral shock waves in very large channels. Environ. Fluid Mech. 2008, 8, 215–238. [CrossRef]

49. Ben Meftah, M.; Mossa, M.; Pollio, A. Considerations on shock wave/boundary layer interaction in undular
hydraulic jumps in horizontal channels with a very high aspect ratio. Eur. J. Mech. B/Fluids 2010, 29, 415–429.
[CrossRef]

50. Mossa, M. Discussion on Relation of surface roller eddy formation and surface fluctuation in hydraulic
jumps by K.M. Mok. J. Hydraul. Res. 2005, 43, 588–592. [CrossRef]

51. Mossa, M.; Petrillo, A.; Chanson, H. Discussion on the “Tailwater Level Effects on Flow Conditions at an
Abrupt Drop”. Unpublished work. 2004.

52. Mossa, M. Experimental study of the flow field with spilling type breaking. J. Hydraul. Res. 2008, 46, 81–86.
[CrossRef]

53. Gomez-Gesteira, M.; Rogers, B.D.; Darlymple, R.A.; Crespo, A.J.C. State-of-the-art of classical SPH for
free-surface flows. J. Hydraul. Res. 2010, 48, 6–27. [CrossRef]

54. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics—A Meshfree Particle Methods; World Scientific Publishing:
5 Toh Tuck Link, Singapore, 2007.

55. Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574.
[CrossRef]

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001111
http://dx.doi.org/10.1016/j.cpc.2015.06.020
http://dx.doi.org/10.1016/j.oceaneng.2013.02.007
http://dx.doi.org/10.1016/j.compfluid.2016.05.029
http://dx.doi.org/10.1002/fld.1526
http://dx.doi.org/10.1080/00221686.2010.9641248
http://dx.doi.org/10.1016/j.compfluid.2012.08.008
http://dx.doi.org/10.1016/j.apor.2013.03.006
http://dx.doi.org/10.1080/00221686.2010.9641255
http://dx.doi.org/10.4236/eng.2016.86036
http://dx.doi.org/10.1016/j.euromechflu.2012.02.002
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000618
http://dx.doi.org/10.1080/00221686.2012.736883
http://dx.doi.org/10.1007/s10652-007-9034-7
http://dx.doi.org/10.1007/s10652-008-9057-8
http://dx.doi.org/10.1016/j.euromechflu.2010.07.002
http://dx.doi.org/10.1080/00221680509500158
http://dx.doi.org/10.1080/00221686.2008.9521942
http://dx.doi.org/10.1080/00221686.2010.9641242
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551


Water 2017, 9, 790 25 of 25

56. Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Progress Phys. 2005, 68, 1703–1759. [CrossRef]
57. Violeau, D. Fluid mechanics and the SPH method: Theory and applications; Oxford University Press: Oxford, UK, 2012.
58. Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1992, 110, 399–406. [CrossRef]
59. Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal

degree. Adv. Comput. Math. 1995, 4, 389–396. [CrossRef]
60. Sibilla, S. An algorithm to improve consistency in Smoothed Particle Hydrodynamics. Comput. Fluids 2015,

118, 148–158. [CrossRef]
61. Lind, S.; Xu, R.; Stansby, P.; Rogers, B.; Lloyd, P.M. Incompressible smoothed particle hydrodynamics for

free-surface flows: A generalised diffusion based algorithm for stability and validations for impulsive flows
and propagating waves. J. Comput. Phys. 2012, 231, 1499–1523. [CrossRef]

62. Khayyer, A.; Gotoh, H.; Shimizu, Y. Comparative study on accuracy and conservation properties of two
particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context.
J. Comput. Phys. 2017, 332, 236–256. [CrossRef]

63. Vacondio, R.; Rogers, B.; Stansby, P.; Mignosa, P. Variable resolution for SPH in three dimensions:
Towards optimal splitting and coalescing for dynamic adaptivity. Comput. Methods. Appl. Mech. Eng.
2016, 300, 442–460. [CrossRef]

64. Sun, P.; Colagrossi, A.; Marrone, S.; Zhang, A. The δ+-SPH model: Simple procedures for a further
improvement of the SPH scheme. Comput. Methods Appl. Mech. Eng. 2017, 315, 25–49. [CrossRef]

65. Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D. Free-surface flows solved by means of SPH schemes
with numerical diffusive terms. Comput. Phys. Commun. 2010, 181, 532–549. [CrossRef]

66. Antuono, M.; Colagrossi, A.; Marrone, S. Numerical diffusive terms in weakly-compressible SPH schemes.
Comput. Phys. Commun. 2012, 183, 2570–2580. [CrossRef]

67. Meringolo, D.D.; Colagrossi, A.; Marrone, S.; Aristodemo, F. On the filtering of acoustic components in
weakly-compressible SPH simulations. J. Fluids Struct. 2017, 70, 1–23. [CrossRef]

68. Aristodemo, F.; Tripepi, G.; Meringolo, D.D.; Veltri, P. Solitary wave-induced forces on horizontal circular
cylinders: Laboratory experiments and SPH simulations. Coast. Eng. 2017, 129, 17–35. [CrossRef]

69. Kazemi, E.; Nichols, A.; Tait, S.; Shao, S. SPH modelling of depth-limited turbulent open channel flows over
rough boundaries. Int. J. Numer. Methods Fluids 2017, 83, 3–27. [CrossRef] [PubMed]

70. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl.
Meth. Eng. 1974, 3, 269–289. [CrossRef]

71. Violeau, D.; Issa, R. Numerical modelling of complex turbulent free-surface flows with the SPH method:
An overview. Int. J. Numer. Methods Fluids 2007, 53, 277–304. [CrossRef]

72. Randles, P.W.; Libersky, L.D. Smoothed particle hydrodynamics: Some recent improvements and applications.
Comput. Methods Appl. Mech. Eng. 1996, 139, 375–408. [CrossRef]

73. De Padova, D.; Dalrymple, R.A.; Mossa, M.; Petrillo, A.F. An analysis of SPH smoothing function modelling
a regular breaking wave. In Proceedings of the International Conference XXXI Convegno Nazionale di
Idraulica e Costruzioni Idrauliche, Perugia, Italy, 9–12 September 2008; p. 182.

74. Guza, R.T.; Thornton, E.B. Local and shoaled comparisons of sea surface elevations, pressures and velocities.
J. Geoph. Res. 1980, 85, 1524–1530. [CrossRef]

75. Petrillo, A. Evoluzione delle onde di mare su bassi fondali sabbiosi con pendenza variabile. In Proceedings
of the IX Congresso Nazionale AIMET A, Bari, Italy, 7–8 Ottobre 1988.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0034-4885/68/8/R01
http://dx.doi.org/10.1006/jcph.1994.1034
http://dx.doi.org/10.1007/BF02123482
http://dx.doi.org/10.1016/j.compfluid.2015.06.012
http://dx.doi.org/10.1016/j.jcp.2011.10.027
http://dx.doi.org/10.1016/j.jcp.2016.12.005
http://dx.doi.org/10.1016/j.cma.2015.11.021
http://dx.doi.org/10.1016/j.cma.2016.10.028
http://dx.doi.org/10.1016/j.cpc.2009.11.002
http://dx.doi.org/10.1016/j.cpc.2012.07.006
http://dx.doi.org/10.1016/j.jfluidstructs.2017.01.005
http://dx.doi.org/10.1016/j.coastaleng.2017.08.011
http://dx.doi.org/10.1002/fld.4248
http://www.ncbi.nlm.nih.gov/pubmed/28066121
http://dx.doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/10.1002/fld.1292
http://dx.doi.org/10.1016/S0045-7825(96)01090-0
http://dx.doi.org/10.1029/JC085iC03p01524
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Set Up 
	SPH Numerical Method 
	Numerical Tests and Results 
	Conclusions 

