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Abstract: In this study, 52 asymptotic Curve Number (CN) regression equations were developed for
combinations of representative land covers and hydrologic soil groups. In addition, to overcome
the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA) model when it is
applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN) regression equation
model (watershed-scale L-THIA ACN model) was developed by integrating the asymptotic CN
regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale
L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its
streamflow prediction. The coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE)
values for observed versus simulated streamflows over intervals of eight days were greater than 0.6
for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic
CN regression equation method, can simulate long-term streamflow sufficiently well with the ten
parameters that have been added for the characterization of streamflow.
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1. Introduction

In recent years, environmental disasters, such as droughts and floods, caused by climate changes
have increased in occurrence, and various approaches to finding solutions for these issues have been
suggested and investigated [1–4]. Estimation of runoff in watersheds is very important to preventing
droughts and floods, preserving the ecological integrity of aquatic systems and managing water
quality [5–7]. There are two ways to estimate the runoff in a watershed: monitoring of streamflow and
use of rainfall–runoff models.

Monitoring of streamflow is more accurate than the use of computer models in estimating runoff
in a watershed. However, it can be difficult to measure streamflow in all of the subbasins in a
watershed without appropriate manpower and financial resources. In addition, it can be difficult
to collect streamflow data during flooding and typhoon seasons [8]. Furthermore, for sustainable
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watershed management, prediction of future streamflow changes with climate/land use changes
should be considered. For these reasons, watershed-scale continuous rainfall–runoff models have been
widely used for management of hydrology and environment plans because these computer models
can be used to estimate the long-term streamflow at gauged/ungauged subbasins efficiently [9–13].

There are many computer rainfall–runoff models available for use in estimating runoff,
including SWAT (Soil and Water Assessment Tool) [14], L-THIA (Long-Term Hydrologic Impact
Assessment) [15–17], SWMM (Storm Water Management Tool) [18,19] and STEPL (Spreadsheet Tool
for Estimating Pollutant Load) [20,21], among others. Most of these models calculate direct runoff
using the Curve Number (CN) method proposed by the Natural Resources Conservation Service
(NRCS-CN) [22].

The L-THIA model is simpler than some other models, such as SWAT and HSPF. In addition,
the L-THIA model can calculate direct runoff and pollutant loads with a limited number of input
parameters, such as rainfall data, land cover and hydrologic soil group data [15,17]. The L-THIA
model has been developed in web and ArcGIS versions [23–27]. It has been used in the calculation of
runoff and pollutant loads in many studies. Recently, a version of the L-THIA model with low-impact
development (LID) capability was developed and has been used for efficient watershed management
purposes, such as the determination of Total Maximum Daily Loads (TMDLs), in the USA [28].

However, the NRCS-CN method used in the L-THIA model cannot be used to calculate
direct runoff accurately during low-flow seasons because the static CN value considered in the
NRCS-CN method does not explain the relationship between rainfall and asymptotic CN, especially
for lower-rainfall–CN datasets [29].

According to the relationships between rainfall and CN suggested by numerous rainfall–runoff
datasets [30], the CN decreases as the rainfall increases and converges to an asymptotic CN.
However, some previous studies on the asymptotic CN method [30–36] have been limited in that
they have considered only ungaged watersheds, whereas other studies have considered only gaged
watersheds and have employed regression equations from datasets for gaged watersheds in direct
runoff estimation.

To overcome this limitation, thirteen Land Cover-based Asymptotic CN (ACN) Regression
Equations (LC-ACN-REs) were proposed for the estimation of runoff in ungaged watersheds, and
these equations were applied to TMDL watersheds in South Korea [29]. The results of comparisons
between observed and estimated runoff indicated that LC-ACN-REs can simulate direct runoff very
well in comparison to the NRCS-CN method. Although LC-ACN-REs have been proven to be efficient
tools for accurate estimation of direct runoff, they are still limited in that the effects of hydrologic soil
groups on direct runoff estimation cannot be simulated.

The L-THIA model has been used for runoff estimation on the watershed scale [16,25,26,37].
However, the L-THIA model is not applicable to larger watersheds, because it does not consider the
lag time for direct runoff to reach streams, which could be more than one day, meaning that only a
fraction of the direct runoff will flow into streams on the day of simulation [38]. In addition, the current
L-THIA model does not simulate baseflow and channel routing within watershed structures and does
not consider point source discharge.

The objectives of this study were as follows: (1) to extend the available LC-ACN-REs to
consider hydrologic soil groups (A,B,C,D), as described in the NEH-4 CN (National Engineering
Handbook Chapter 4) table [22]; (2) to develop a watershed-scale model of the Long-term Hydrologic
Impact Assessment with the extended LC-ACN-REs (the watershed-scale L-THIA ACN model)
by adding modules for direct runoff, baseflow and channel routing; and (3) to evaluate this
LC-ACN-RE-enhanced watershed-scale L-THIA ACN model with soil component, lag time, baseflow
and channel routing capabilities.
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2. Materials and Methods

2.1. LC-ACN-RE Approach to Considering Hydrologic Soil Groups

In the project “Long-term monitoring of Nonpoint Source (NPS) pollution” funded by the Ministry
of Environment (MOE) of South Korea, runoff and water quality samples were collected for each
representative land cover type rather than for specific Hydrologic Soil Groups (HSGs) or other soil
infiltration properties. Thus, the LC-ACN-REs developed by [29] were classified as being applicable by
land cover type; the effects of soil infiltration properties on direct runoff estimation cannot be analyzed
with LC-ANC-RE approaches.

To overcome this limitation of the LC-CAN-REs [29], rainfall and direct runoff data from the
“Long-term monitoring of Nonpoint-Source (NPS) pollution” project were analyzed to obtain the
CN value for each combination of rainfall and direct runoff using Equation (1), which was proposed
by Hawkins [30]. HSG information for the monitoring site was then compiled for use in estimating
CN values for other HSGs. The CN values for other HSGs were estimated by multiplying the CN
values obtained using Equation (1) by the ratios of the CN values for other HSGs in the NEH-4 CN
table (Table 1). After obtaining the CN values for 13 land cover types and four HSG combinations,
52 asymptotic regression equations, such as the following, were obtained from regression analysis,
as illustrated in Figure 1 (Equation (2) [30]).

CN “ 25400{254` 5rP` 2Q´
a

4Q2 ` 5PQs (1)

where Q is the direct runoff (mm) and P is the rainfall (mm).

CNpPq “ CN8 ` p100´ CN8qexpp´kPq (2)

where CN8 is the asymptotic CN value, P is the rainfall (mm) and k is a fitting constant.

Figure 1. Asymptotic CN regressions obtained in the study by Hawkins [30]. CN(P) is the Curve
Number as a function of rainfall, and CN0 = 100/(1 + P/2) defines a threshold below which no
runoff occurs until the rainfall P in mm exceeds an initial abstraction of 20% of the maximum
potential retention.
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Table 1. CN values for thirteen land cover types and Hydrologic Soil Groups (HSGs) from Land
Cover-based Asymptotic CN Regression Equations (LC-ACN-REs). NEH-4, National Engineering
Handbook Chapter 4.

Name of the Land Cover in
LC-ACN-RE Approach

CN Value in NEH-4 CN Table for Individual Soil Type [22]

A B C D

Residential area 77 85 90 92
Manufacturing area 81 88 91 93

Regional public facility area 89 92 94 95
Recreational facility area 89 92 94 95

Road 98 98 98 98
Commercial area 89 92 94 95

Upland 62 71 78 81
Orchard 62 71 78 81

Greenhouse 62 71 78 81
Paddy 62 71 78 81
Pasture 30 58 71 78
Forest 45 66 77 83

Bare land 77 86 91 94

2.2. Development of the Watershed-Scale L-THIA ACN Model

The watershed-scale L-THIA ACN model developed in this study consists of three modules,
for direct runoff, baseflow (with extended LC-ACN-REs developed as described in Section 2.1) and
channel routing capabilities (Figure 2). The model requires daily rainfall, point source data and
hydrological response unit (HRU) mapping created by combining a subbasin map, a soil map and a
land use map.
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Figure 2. Flow diagram for the development of watershed-scale L-THIA ACN model.

2.2.1. Development of the Direct Runoff Estimation Module

As explained above, the 52 asymptotic regression equations (Equation (2)) were obtained for
13 land cover types and four HSGs. Using these equations, the CN values for a given set of daily
rainfall data were computed for all land cover and HSG combinations for each watershed studied.

According to various studies on the NRCS-CN method, CN values can be adjusted based on the
slope in a watershed [39], as well as for various local conditions that affect rainfall–runoff. Thus, an
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adjustment coefficient was added to explain the effect of the slope on the CN values (Equation (3)).
In this study, the limits of the range for the adjustment coefficient for CN were set to ´0.1 and +0.1
(´10% and +10%).

Adj_CNHRU “ CNHRU,ACN ˆ Adj_CN (3)

where CNHRU is the adjusted CN value for HRU, Adj_CNHRU, ACN is the CN value determined from
the extended LC-ACN-REs and Adj_CN is the adjusted coefficient for CN.

After adjustment of the CN values, the direct runoff of each HRU was estimated (Equation (4)).

Q1
DR,HRU “

pP´ 0.2Sq2

pP` 0.8Sq
, P ě 0.2S, S “

25400
Adj_CNHRU

´ 254 (4)

where Q1
DR,HRU is the amount of direct runoff generated by an HRU for each day (mm), P is the rainfall

(mm), S is the potential maximum retention (mm) and Adj_CNHRU,ACN is the adjusted coefficient
for CN.

In a large-scale watershed, the amount of direct runoff that occurs on a day can be lagged, and
only a portion of the direct runoff will flow into a stream on a day. Thus, in this study, the direct
runoff delay process was addressed in the module in the form of an exponential function of the time of
concentration (TC) and the lag coefficient (DRlag), as proposed in the SWAT model (Equation (5)) [38].

Once the direct runoff of each HRU is calculated using Equation (4), the amount of direct runoff
flowing into the stream can be calculated using Equation (5).

QDR,HRU “ pQ1
DR,HRU `Qstor,i´1q ˆ

ˆ

1´ exp
„

´DRlag

TC

˙

(5)

where QDR,HRU is the amount of direct runoff discharged to the main channel on a given day (mm),
Q1

DR,HRU is amount of direct runoff generated by the HRU on a given day (mm), Qstor is the direct
runoff lagged from the previous day, DRlag is the direct runoff lag coefficient and TC is the time of
concentration (h).

The value of the lag coefficient (DRlag) ranges from 1 to 12 and should be provided by the user
after investigating watershed characteristics or related documents. The time of concentration is
defined as the time required for water to flow from a remote point in a watershed to a watershed
outlet. The time of concentration is important in the rainfall runoff model and can be estimated
from various formulas, although the variability of the estimates of the time of concentration given
by various formulas can be high [40]. There are two types of time of concentration: the time
required for overland flow and the time required for channel flow. These are calculated from
watershed-specific information, such as the average slope (m/m), the slope length (m), the channel
length from the most distant point to the subbasin outlet (km) and Manning1s coefficient, n, as shown
in Equations (6) and (7) [38,41]. Equations (4) and (5) were added to the direct runoff module of the
watershed-scale L-THIA ACN model.

TCo “
Lslope

0.6 ¨ n0.6

18 ¨ Slope0.3 (6)

TCc “
0.62 ¨ L ¨ nc

0.75

Area0.125 ¨ Slopec0.375 (7)

In these equations, TCO is the time of concentration for overland flow (h); TCC is the time of
concentration for channel flow (h); LSlope is the HRU slope length (m); n is Manning1s coefficient for
overland flow; nC is Manning’s coefficient for channel flow; Slope is the average slope of the HRU
(m/m); SlopeC is the channel slope (m/m); L is the channel length from the most distant point to the
subbasin outlet (km); and Area is the area of the HRU (km2).
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In this study, the values of Manning’s coefficient from Table 2 were used for the calculation of
TCO, and the values of Manning’s coefficient for TCC were calibrated based on the land cover and
the parameter range, based on Table 2. The Slope, the Area of the HRU and the channel length L from
the most distant point to the subbasin outlet (km) were calculated using a GIS tool for the purpose of
computing the time of concentration for overland flow and the time of concentration for channel flow.

Table 2. Manning’s roughness coefficient, n, for overland flow [42].

Land Cover Median Range

Fallow, no residue 0.010 0.008–0.012
Conventional tillage, no residue 0.090 0.060–0.120

Conventional tillage, residue 0.190 0.16–0.220
Chisel plow, no residue 0.090 0.060–0.120

Chisel plow, residue 0.130 0.100–0.160
Fall disking, residue 0.400 0.300–0.500
No till, no residue 0.070 0.040–0.100

No till, 0.5–1 t/ha residue 0.120 0.070–0.170
No till, 2–9 t/ha residue 0.300 0.170–0.470
Rangeland, 20% cover 0.600 –

Short-grass prairie 0.150 0.100–0.200
Dense grass 0.240 0.170–0.300

Bermuda grass 0.410 0.300–0.480

However, because the calculation of the slope length is strongly affected by the digital elevation
model (DEM) cell size, the field slope length can be overestimated when it is calculated using a GIS
tool [43]. Furthermore, the DEM resolution, slope length, river networks and flow length estimation
are among the major source of uncertainties in rainfall–runoff modeling [44]. Thus, in this study, the
slope length of each HRU was calculated from the relationship between the field slope length and
the average field slope, as proposed in [45]. This relationship between the field slope length and the
average field slope (Table 3) was added to the direct runoff module in the watershed-scale L-THA
ACN model. However, this relationship, described in Table 3, was obtained from measurements made
in the USA. Thus, to reflect local field slope length properties, an additional parameter (SLSUB) was
added to adjust the slope length.

Table 3. Suggested maximum slope length for field slope for contouring [45].

Land Slope (%) Maximum Length (m)

1–2 122
3–5 91
6–8 61

9–12 37
13–16 24
17–20 18
21–25 15

After calculation of the direct runoff for each HRU released to the stream, the direct runoff of
each subbasin was calculated by summing the direct runoff from all HRUs within each subbasin
(Equation (8)):

QDR,sub “

n
ÿ

HRU“1

QDR,HRU (8)

where QDR,sub is the amount of direct runoff generated in the subbasin on a given day (mm).
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2.2.2. Development of Baseflow Module

The NRCS-CN method and LC-ACN-REs are both used for direct runoff estimation, but not for
baseflow computation for a watershed. The baseflow component was developed and linked to the
watershed-scale L-THIA ACN model for use in watershed hydrology studies, as well as evaluation of
the water quality of a watershed.

According to Dingman [46], the aquifer in a watershed is composed of two aquifers, an unconfined
aquifer and a confined aquifer. Water recharged into an unconfined aquifer contributes to flow in the
main channel and influences the amount of streamflow, while water recharge into a confined aquifer is
assumed to flow somewhere outside of the watershed [47].

Based on the user-defined fraction of infiltrated water flowing into the confined aquifer from
each HRU, the amount of infiltrated water flowing into the unconfined aquifer can be estimated. The
baseflow module, which was developed and integrated into the watershed-scale L-THIA ACN model,
simulates these processes to account for the baseflow contribution to streamflow in a watershed. The
water balance in an unconfined aquifer is calculated according to Equation (9):

aq fHRU,i “ aq fHRU,i´1 `ωuncon f ,HRU ´QBF,HRU (9)

where aqfHRU,i is the amount of water stored in an unconfined aquifer on a given day (mm), aqfHRU,i-1
is the amount of water stored in the unconfined aquifer on the previous day (mm), ωunconf,HRU is the
amount of recharge entering the unconfined aquifer on that day (mm) and QBF,HRU is the amount of
baseflow into the main channel (mm).

The amount of water recharged into both aquifers (confined and unconfined) is estimated using
the exponential decay weighting function (Equation (10)) proposed by Venetis [48] and used by
Sangrey et al. [49] in their precipitation–groundwater response model and by Neitsch et al. [38] in the
SWAT model:

ωrchrg,HRU,i “

«

1´ exp

˜

´1
BFdelay

¸ff

ˆ FHRU,i ` exp

˜

´1
BFdelay

¸

ˆωrchrg,HRU,i´1 (10)

where ωrcharg,HRU,i is the amount of recharge entering both aquifers on a given day (mm), BFdelay is the
delay time in aquifer recharge once the water infiltrates from the surface (days), FHRU,i is the amount of
infiltration on the given day (mm) and ωrcharg„HRU,i-1 is the amount of recharge that enters the aquifers
on the previous day (mm).

The amount of infiltration on a given day is calculated using Equation (11), which is modified
from that used in the NRCS-CN method [22] and was used by Kim et al. [50] to estimate the CN-based
infiltration and baseflow:

Fhru,i “
SpP´ Iaq

P´ Ia ` S
, Ia “ 0.2S, S “

25400
Adj_CNHRU,ACN

´ 254 (11)

where FHRU,i is the amount of infiltration on a given day (mm), S is the is the potential maximum
retention (mm), P is the rainfall (mm), Adj_CNHRU, ACN is the CN value determined from the extended
LC-ACN-REs and Ia is the initial abstraction (mm).

In the baseflow module, only a fraction of the infiltrated water is assumed to flow into the
unconfined aquifer, based on the user-defined fraction of infiltrated water flowing into the confined
aquifer (Equations (12) and (13)):

ωcon f ,HRU “ Frcon f ˆωrchrg,HRU (12)

ωuncon f ,HRU “ ωrchrg,HRU ´ωcon f ,HRU (13)
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where ωconf,HRU is the amount of infiltrated water flowing into a confined aquifer on a given day
(mm), Frconf is the fraction of water flowing into the confined aquifer and ωunconf,HRU is the amount of
recharge entering the unconfined aquifer on that day (mm).

The amount of water flowing into an unconfined aquifer contributes to baseflow only if the
amount of water in the unconfined aquifer exceeds a threshold value specified by the user that
depends on the aquifer1s characteristics. The steady-state response of the baseflow is expressed by
Equation (14) [51]:

QBF,HRU “
8000ˆ ksat

L2BF
ˆ hwtbl (14)

where QBF,HRU is the amount of baseflow into the main channel (mm), ksat is the hydraulic conductivity
of the aquifer (mm/day), LBF is the distance from the ridge or subbasin divide for the baseflow to the
main channel (m) and hwtbl is the water table height (m).

The water table height (hwtbl) depends on the baseflow response in the non-steady state and is
calculated using Equation (15) [52]:

dhwtbl
dt

“
ωuncon f ,HRU ´QBF,HRU

800ˆ µ
(15)

where dhwtbl
dt is the change in the elevation of the water table (mm/day), ωuncon f ,HRU is the amount of

recharge entering the unconfined aquifer on a given day (mm), QBF,HRU is the baseflow into the main
channel on that day (mm) and µ is the specific yield of the unconfined aquifer (m/m).

Combining Equations (14) and (15) yield Equation (16) [38]:

dQBF,HRU

dt
“ 10ˆ

ksat

πˆ L2BF
ˆ pωuncon f ,HRU ´QBF,HRUq “ αBF ˆ pωuncon f ,HRU ´QBF,HRUq (16)

where QBF,HRU is the baseflow into the main channel on a given day (mm), ksat is the hydraulic
conductivity of the aquifer (mm/day), LBF is the distance from the ridge or subbasin divide for the
baseflow to the main channel (m), µ is the specific yield of the unconfined aquifer (m/m), ωunconf,HRU
is the amount of recharge entering the unconfined aquifer on that day (mm) and αBF is the baseflow
recession constant.

After integrating and rearranging Equation (14), QBF, HRU can be expressed by Equation (17) [38]:

QBF,HRU,i “ QBF,HRU,i´1 ˆ expr´αBF ˆ ∆ts `ωuncon f ,HRU ˆ p1´ expr´αBF ˆ ∆tsq, i f aq f ą aq fthr
QBF,HRU,i “ 0, i f aq f ă aq fthr

(17)

where QBF,HRU,i is the baseflow into the main channel on a given day (mm), QBF,HRU,i-1 is the baseflow
into the main channel on the previous day, αBF is the baseflow recession constant, ωunconf,HRU is the
amount of recharge entering the unconfined aquifer on the given day (mm), ∆t is the time step (one
day), aqf is the amount of water stored in the unconfined aquifer on the given day (mm) and aqfthr is
the threshold water level in the unconfined aquifer for baseflow contribution to the main channel to
occur (mm).

The baseflow recession constant (αBF) in Equation (17) reflects the baseflow response to the amount
of recharge [52]. Values between 0.1 and 0.3 represent slow response conditions in a watershed, and
values between 0.9 and 1.0 represent rapid response conditions [38,52]. Two options (simple long-term
daily average and daily time series point source capabilities) were enabled in the direct runoff module
to simulate the effects of discharge from Waste Water Plants (WWP) or other point sources on watershed
hydrology and water quality.

2.2.3. Development of Channel Routing Module

Streamflow flows downward and meets flow from other upper streams in channel networks. The
amount of streamflow in a watershed is affected by various mechanisms. In this study, a channel
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routing module was integrated into the watershed-scale L-THIA ACN model for simulation of flow
routing using the Muskingum routing method [53]. The Muskingum routing method estimates the
storage volume in a channel length as a combination of wedge and prism storage [53]. The concept of
the Muskingum routing method is illustrated in Figure 3. The first case represents the storage in the
river during the rising limb of a hydrograph; the second case represents uniform flow; and the third
case represents the storage during the falling limb of the hydrograph. This hysteresis might cause
different flood wave speeds during the rising and falling limbs of the hydrograph [54].
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The effects of these variables and the reach storage–discharge relationship are expressed by the
equation used in the Muskingum routing method to estimate the reach storage volume, Vstor:

Vstor “ KpXqin ` p1´ Xqqoutq (18)

where Vstor is the reach storage volume (m3/s), K is the storage time constant for the reach (s), X is the
weighting factor, qin is the inflow rate (m3/s) and qout is the outflow rate (m3/s).

Equations (18) and (19), proposed by Williams [55], can be combined and simplified as Equation (20):

∆t
ˆ

qin ` qin,∆t

2

˙

´ ∆t
ˆ

qout ` qout,∆t

2

˙

`Vstor “ Vstor,∆t (19)

qout,∆t “ C1qin,∆t ` C2qin ` C3qout (20)

where qin is the inflow rate at the beginning of the time step (m3/s), qin,∆t is the inflow rate at
the end of the time step (m3/s), qout is the outflow rate at the beginning of the time step (m3/s),
qout,∆t is the outflow rate at the end of the time step (m3/s) and C1, C2 and C3 are expressed by
Equations (21)–(23), respectively.

C1 “
∆t´ 2ˆ Kˆ X

2ˆ Kˆ p1´ Xq ` ∆t
(21)

C2 “
∆t` 2ˆ Kˆ X

2ˆ Kˆ p1´ Xq ` ∆t
(22)

C3 “
2ˆ Kˆ p1´ Xq ´ ∆t
2ˆ Kˆ p1´ Xq ` ∆t

(23)

The value for the weighting factor, X, is a user input. The value of the storage time constant, K, is
calculated using Equation (24):

K “ Mk1ˆ bank f ull `Mk2ˆ bank f ull0.1 (24)
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where K is the storage time constant for a reach segment (s), Mk1 and Mk2 are weighting factors input
by the user, bankfull is the storage time constant estimated for the reach segment with bankfull flows
(s) and bankfull0.1 is the storage time constant estimated for the reach segment with one tenth of the
bankfull depth (s).

The value of bankfull can be calculated using Equation (25) [38,53]:

bank f ull “
1000ˆ Lreach

c
(25)

where bankfull is the storage time constant estimated for the reach segment with bankfull flows (s), Lreach
is the stream length (m) and c is the celerity corresponding to the flow for the specified depth (m/s).

The value of c can be determined from Equation (26), using the cross-sectional area of the stream
and Manning’s equation [38]:

c “
d

dA
pqchq “

5
3

˜

R
2
3 ˆ I

1
2

n

¸

“
3
5
¨ vc (26)

where A is the cross-sectional area of flow in the stream (m2), qch is the flow rate in the stream (m3/s),
R is the hydraulic radius for a given depth of flow (m), I is the slope (m/m) and n is Manning’s coefficient
for the channel.

To calculate Vc in Equation (26), the metacenter of the streams should be evaluated, and the actual
shapes of all of the streams in each subbasin should be measured. However, it would be difficult to
measure the cross-sections of all of the streams. In this study, all streams in subbasins were assumed to
be trapezoidal channels with side slopes of 0.5, and the slope of the flood plain was assumed to be 0.25.
These assumptions are similar to those made in the SWAT model [38].

2.3. Input Parameters of Watershed-Scale L-THIA ACN Model

The watershed-scale L-THIA ACN model was developed to estimate streamflow using direct
runoff, baseflow and channel routing modules.

The parameters of these three modules consist of CN parameters for all HRUs, two direct runoff
parameters, four baseflow parameters and three channel routing parameters, as summarized in
Table 4. The watershed-scale L-THIA ACN model requires a smaller number of parameters than other
watershed models, such as SWAT and HSPF.

Table 4. Parameters used in the watershed-scale L-THIA ACN model.

Calibration
Component

Calibration
Parameter Description of Parameter Range of

Parameter

Direct runoff
Adj_CN (1) Adjusted coefficient for CN ´0.1–0.1

DRlag
(1) Direct runoff lag coefficient 1–12

SLSUB (2) Adjustment for slope length ´10–10

Baseflow

αBF
(1) Baseflow recession constant 0.1–1.0

Frconf
(1) Fraction of water flowing into confined aquifer 0.0–0.9

aqfthr
(1) Threshold water level in the unconfined aquifer

for baseflow contribution (mm) 0.0–5000

BFdelay
(1) Delay time for aquifer recharge after water

infiltration from surface (day) 1–10

Channel
routing

MK1 (1) Weighting factor for influence of normal flow
on storage time constant value 0.1–0.9

Mk2 (1) Weighting factor for influence of low flow on
storage time constant value 0.1–0.9

Mkx (1) Weighting factor for Muskingum method 0.1–0.9

Note: (1) constant value; (2) multiplied value.
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2.4. Applications of Watershed-Scale L-THIA ACN Model

The watershed-scale L-THIA ACN model, developed in this study, was applied to four watersheds
(Goboo A, Tancheon A, Kumbon A and Pyungchang A) in South Korea, where TMDLs have been
implemented to evaluate the water quality achieved with various management practices (Figure 4).
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Among the four watersheds, the Goboo A watershed (231.9 km2) has a somewhat flatter
topography, with average slopes (5.0%). The land cover distribution is forest (13.6%), urban (5.7%),
agricultural (71.6%), pasture (3.7%), bare land (0.9%) and other (4.6%). The areas of the Tancheon
A, Kumbon A and Pyungchang A watersheds are 203.9, 289.3 and 1756.9 km2, respectively, and the
average slopes of these three watersheds are 14.6, 25.7 and 30.8%, respectively.

The land cover distributions of the Tancheon A, Kumbon A and Pyungchang A watersheds
are forest (50.3, 65.9 and 80.5%, respectively), urban (25.3, 2.7 and 1.7%, respectively), agricultural
(5.3, 20.8 and 12.8%, respectively), pasture (13.8, 7.7 and 2.0%, respectively), bare land (3.9, 1.4 and
1.2%, respectively) and other (1.3, 1.6 and 1.9, respectively). The Goboo A, Tancheon A and Kumbon A
watersheds are headwater watersheds. The Pyungchang A watershed is considerably larger than these
other three watersheds and includes the Jucheon A headwater watershed.

The watershed-scale L-THIA ACN model requires daily rainfall data, as well as HRU maps, which
are prepared from combinations of subbasin, land cover and soil maps. Subbasin maps were delineated
by 30-m resolution DEM and stream data using the ArcGIS watershed delineation geoprocessing tool.
HRU maps were created by combining subbasin maps, reconnaissance soil maps and land cover maps
provided by the Ministry of Environment of South Korea.

Daily streamflows for 1 January 2010–31 December 2014 were estimated for the four watersheds
using the watershed-scale L-THIA ACN model and precipitation data from the Korean Meteorological
Administration (KMA). The watershed-scale L-THIA ACN model was calibrated and validated by
adjusting the parameters of the direct runoff and baseflow to fit the simulated daily streamflows
for eight-day intervals to observed streamflow data. The calibration period was 1 January 2008–31
December 2010 and the validation period was 1 January 2011–12 December 2014.

3. Results and Discussion

3.1. Result of Extended LC-ACN-RE Approach for the Consideration of HSGs

In this study, thirteen land cover-based asymptotic CN regression equations (LC-ACN-REs) were
extended to 52 regression equations to consider HSGs, using the ratio of CN for a given HSG in
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the NEH-4 CN table (Table 5). Thus, the CN values for each HSG group can be estimated with the
52 extended LC-ACN-REs. These CN values were used to estimate the direct runoff, the infiltration
from each HRU and the baseflow component.

Table 5. Parameters of extended LC-ACN-REs with HSG considered.

Land Cover Soil Type Asymptotic CN Regression

CN8 100 ´ CN8 K

Residential area

A 74.43 25.57 0.0417
B 82.20 17.80 0.0124
C 86.72 13.28 0.0059
D 88.61 11.39 0.0048

Manufacturing area

A 60.69 39.31 0.0282
B 67.69 32.31 0.0169
C 70.69 29.31 0.0128
D 72.70 27.30 0.0104

Commercial area

A 86.19 13.81 0.0593
B 89.09 10.91 0.0376
C 91.03 8.97 0.0263
D 92.00 7.47 0.0185

Recreational facility area

A 80.29 19.71 0.0677
B 83.00 17.00 0.0550
C 84.80 15.20 0.0427
D 85.70 14.30 0.0428

Road

A 66.27 33.73 0.0110
B 66.27 33.73 0.0110
C 66.27 33.73 0.0110
D 66.27 33.73 0.0110

Paddy

A 55.34 44.66 0.0515
B 63.37 36.63 0.0312
C 69.62 30.38 0.0224
D 72.30 27.70 0.0191

Upland

A 38.84 61.16 0.0144
B 47.84 52.16 0.0077
C 54.84 45.16 0.0044
D 57.84 42.16 0.0033

Green house

A 41.34 58.66 0.0355
B 47.35 52.65 0.0198
C 52.13 47.87 0.0123
D 54.13 45.87 0.0077

Orchard

A 48.77 51.23 0.0274
B 55.84 44.16 0.0204
C 61.35 38.65 0.0157
D 63.71 36.29 0.0176

Forest

A 36.07 63.93 0.0362
B 52.91 47.09 0.0274
C 60.46 39.54 0.0141
D 64.84 35.16 0.0117

Pasture

A 22.99 75.77 0.0181
B 34.09 65.91 0.0164
C 40.33 59.67 0.0164
D 43.95 56.05 0.0164

Bare land

A 74.76 25.24 0.0200
B 82.59 17.41 0.0092
C 87.13 12.87 0.0072
D 89.91 10.09 0.0066

The 52 extended regression equations predict the lowest asymptotic CN values for
high-permeability soils of the HSG A type and the highest asymptotic CN values for low-permeability



Water 2016, 8, 153 13 of 18

soils of the HSG D type. The highest asymptotic CN value predicted by these equations was 92.0 for
commercial areas, and the lowest asymptotic CN value was 23.0 for pasture.

3.2. Application of the Watershed-Scale L-THIA ACN Model

The watershed-scale L-THIA ACN model was calibrated using observed streamflow data for the
four study watersheds in South Korea. The calibrated values of the ten parameters for each study
watershed are shown in Table 6.

Table 6. Calibrated and validated model parameters for streamflow simulation using the watershed-
scale L-THIA ACN model.

Watershed Adj_CN SLSUB DRlag αBF aqfthr Frconf BFdelay Mk1 Mk2 Mkx

Goboo A ´0.04 7.0 3 0.5 5.0 0.05 1 0.05 0.95 0.2
Tancheon A 0.06 1.0 6 0.5 5.0 0.03 2 0.10 0.90 0.1
Kumbon A 0.07 1.0 7 0.5 5.0 0.01 2 0.75 0.25 0.2

Pyungchang A 0.09 1.0 10 0.5 150.0 0.10 5 0.05 0.95 0.2

Among the ten parameters, Adj_CN and DRlag ranged from´0.04–0.09 and from 3–10, respectively.
As the average slope of each watershed decreased, the Adj_CN parameter value also decreased, and the
DRlag value increased. Thus, Adj_CN and DRlag should be adjusted for the average slope of a watershed
before being used in the watershed-scale L-THIA ACN model. As described in the previous section,
field slope lengths should be adjusted based on local conditions. For the Goboo A watershed, the
SLSUB parameter, which is the adjusted slope length parameter, was found to be seven times greater
than the default value.

The greater the area of a watershed is, the higher the threshold water level for baseflow (aqfthr) in
an unconfined aquifer is.

The BFdelay parameter was found to exhibit the same trend as the aqfthr parameter. The baseflow
recession constant (αBF) values were found to be similar for all four of the study watersheds.
The baseflow response to main streamflow in the four watersheds constituted normal response
conditions, as indicated by αBF values from 0.4–0.6 (note that αBF values of 0.1–0.3 represent a slow
response, and αBF values of 0.7–1.0 represent a fast response) [52].

Comparisons of the simulation results and observed eight-day interval streamflows revealed
reasonable agreement for the Goboo A watershed, with a coefficient of determination (R2) of 0.66 and
Nash–Sutcliffe Efficiency (NSE) of 0.64. The R2 values for Tancheon A, Kumbon A and Pyungchang A
were 0.62, 0.9 and 0.62, respectively, and the NSE values were 0.61, 0.92 and 0.60, respectively (Figure 5
and Table 7).

Table 7. Results of streamflow estimation and comparison of observed and estimated values. NSE,
Nash–Sutcliffe Efficiency.

Watershed
Average Streamflow

(2008–2010, Calibration) R2 NSE
Average Streamflow

(2011–2014, Validation) R2 NSE

Obs. Est. Obs. Est.

Goboo A 4.45 3.92 0.66 0.64 4.13 4.48 0.79 0.78
Tancheon A 9.39 9.60 0.62 0.61 12.93 11.40 0.72 0.70
Kumbon A 5.95 6.09 0.93 0.93 6.34 5.92 0.62 0.60

Pyungchang A 34.38 36.74 0.62 0.60 53.69 51.35 0.80 0.79
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The validation results for the Goboo A watershed indicated that the R2 and NSE values were 0.79
and 0.78, respectively. The R2 values for Tancheon A, Kumbon A and Pyungchang A were 0.72, 0.62
and 0.80, respectively, and the NSE values were 0.70, 0.60 and 0.79, respectively (Figure 5 and Table 7).

According to Ramanarayanan et al. [56] and Moriasi et al. [57], R2 and NSE values that reflect
satisfactory calibration of streamflow are R2 ě 0.5 and NSE ě 0.5. By these criteria, the performance
of the watershed-scale L-THIA ACN model developed in this study was acceptable, because the R2

and NSE values obtained from the calibration and validation were greater than 0.6 for all four study
watersheds considered (Table 7).

There were no significant differences in the average streamflow for the study watersheds. The
differences between the observed data and simulated streamflows in the calibration were 11.9, 2.2, 2.4
and 6.9% for the Goboo A, Tancheon A, Kumbon A and Pyungchang A watersheds, respectively, and
the differences in the validation were 8.5, 11.8, 6.6 and 4.4% (Table 7). As the results of this study show,
the watershed-scale L-THIA ACN model can simulate streamflow well for watersheds ranging in size
from 200.0 km2–1756.9 km2.

As shown in Figure 5, the estimated peak flow during the high-flow season was lower than the
observed peak flow. This can be explained by reduced infiltration, which is estimated using Equation
(11). As the rainfall amount becomes greater, the CN estimated using the asymptotic CN approach
becomes lower, resulting in a greater value of S (the potential maximum retention, mm). As S becomes
greater, the infiltration approaches zero, especially for forest and pasture land covers. This results in
a lower baseflow contribution to the total streamflow. Similar issues have been mentioned in other
studies [58,59]. Although Equation (11) is simple to use in estimating the contributions of infiltration
and baseflow to streamflow using the CN value, more in-depth investigation is needed to account for
the lower infiltration that occurs in land cover areas with lower CN values.

4. Conclusions

In this study, LC-ACN-REs were improved by enabling consideration of HSG characteristics.
In addition, a watershed-scale L-THIA ACN model was developed with direct runoff, baseflow and
channel routing capabilities integrated together. With this new L-THIA model, users can simulate
streamflow (direct runoff + baseflow) in a watershed. Daily rainfall data, land cover and HSG maps,
DEM and ten additional model parameters are needed for the simulation of streamflow.

The simulated streamflow agreed well with the observed streamflow for the four study watersheds
(as indicated by R2 values in the range of 0.62–0.93 and NSE values in the range of 0.60–0.93 for both
calibration and validation). These results demonstrate the predictive capability of the watershed-scale
L-THIA ACN model developed in this study. Two model parameters (Adj_CN and DRlag) were found
to be closely related to the average field slope. Further in-depth investigation is needed to derive
the relationships between the field slope length and these two model parameters. It should be noted
that the watershed-scale L-THIA ACN model was not applied comprehensively to the watersheds for
ranges of rainfall, land use, soil and topography conditions. It should also be noted that the values of
the model parameters were estimated using manual calibration processes, which are affected by the
subjective judgments of the model users.

For these reasons, automatic calibration using PARASOL (Parameter Solution), SUFI-2 (Sequential
Uncertainty FItting algorithm), GLUE (Generalized Likelihood Uncertainty Estimation) and GA
(Genetic algorithm) is needed for objective evaluation of the model parameters. With this function
enabled, the relationship between the average field slope and the Adj_CN and DRlag parameters could
be analyzed and utilized in the watershed-scale L-THIA ACN model for streamflow estimation in
ungaged watersheds.
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