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Abstract: During the 1927 Mississippi flood, the levee was dynamited downstream of New Orleans
creating a 2 km wide crevasse that inundated the Breton Sound estuary and deposited a crevasse
splay of about 130 km2. We measured sediment deposition in the splay that consisted of a silty-clay
layer bounded by aged peat below and living roots above. Based on coring, we developed a map
of the crevasse splay. The clay layer ranged from 2 to 42 cm thick and occurred 24 to 55 cm below
the surface. Bulk density of the clay layer decreased and soil organic matter increased with distance
from the river. 210Pbexcess and 137Cs dating an age of ~1926–1929 for the top of the layer. During the
flood event, deposition was at least 22 mm¨ month´1—10 times the annual post-1927 deposition. The
crevasse splay captured from 55% to 75% of suspended sediments that flowed in from the river. The
1927 crevasse deposition shows how pulsed flooding can enhance sediment capture efficiency and
deposition and serves as an example for large planned diversions for Mississippi delta restoration.
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1. Introduction

Approximately 25% of wetlands in the Mississippi River delta plain have been lost since 1932,
with a total land loss of 4900 km2 and a current rate of loss of 39 to 43 km2¨ year´1 [1,2]. This
wetland loss have been attributed to pervasive hydrologic alteration of the deltaic plain, herbivory,
enhanced subsidence, salt-water intrusion, and creation of impoundments [3,4]. Underlying all of
these causes is the separation of the delta from the Mississippi River by levees that confine the river
channel and restrain seasonal flood waters [3,5–8]. We now understand the value of river floods that
provide fresh water to reduce salinity stress, iron to complex with sulfide and reduce sulfide toxicity,
mineral sediments to promote accretion, and nutrients to stimulate wetland productivity, which
leads to organic soil formation [7,9–11]. Combating coastal erosion and restoring coastal wetlands
is now a main component of State and Federal policy [12], and the construction of river diversions
to reintroduce Mississippi River water and sediments into coastal basins is planned for the coming
decade [4,13,14]. Understanding how historical floods and crevasse deposits built land will inform
future restoration work as scientific research and engineering converge on the best approaches for
coastal land-building. Our paper examines the 1927 flood crevasse deposition to understand the depth,
volume and distribution of sediment flood deposits in Caernarvon, Louisiana.

Water 2016, 8, 38; doi:10.3390/w8020038 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2016, 8, 38 2 of 12

Late summer 1926 was the beginning of a meteorological event unprecedented in historical
records for the Lower Mississippi River Valley, an event that culminated in the Mississippi River
remaining above flood stage at St. Louis for six months from January to June 1927. Peak discharge of
2,470,000 ft3¨ s´1 (~70,000 m3¨ s´1) was measured during May 1927 at Vicksburg, Mississippi [15,16],
which was nearly four times the average mean flow of about 18,000 m3¨ s´1. Heavy rainfall combined
with snowmelt within the three major tributary basins, the upper Mississippi, Ohio, and Missouri
Rivers, combined to make this the largest flood event on record and changed the course of history for
the management of the Mississippi River and its delta. Sustained high waters on the lower river caused
numerous levee failures and led to extensive flooding over nearly 70,000 km2 of the lower Mississippi
alluvial valley. In Louisiana, extensive flooding occurred in the southern part of the state, and New
Orleans appeared unlikely to escape a similar fate. River stage at New Orleans peaked at 21 feet (6.9 m)
on 21 April 1927 (Figure 1), which stood in stark contrast to a city largely positioned below sea level
with a peak elevation of about 3 m [15]. In an effort to lower river levels at New Orleans, a section of
levee near Caernarvon, 22 km downriver from the city at river mile 81, was destroyed with dynamite
(Figure 2). A 2-km wide opening resulted that allowed river water to flow for over three months into
the Breton Sound estuary. Peak discharge through the breach was 9254 m3¨ s´1, or about one seventh
of peak river discharge [15–17].
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Figure 1. A monthly running mean of daily stage (m, NGVD29) at the Carrollton gauge, New 
Orleans, Louisiana, is shown from 1871 to 2011 for the Mississippi River (a); the 1927 flood was the 
highest recorded stage on the river in 132 years, exceeding the next highest stage in 1916 by over half 
a meter. Daily stage is shown for 1927 (b), 1973 (c), and 2011 (d) to illustrate the duration and 
variability in flood crest heights and timing for major flood years. After the implementation of flood 
control plans, the river never again crested as high as the 1927 flood. 

The damage caused by floodwaters in the entire Lower Mississippi River Valley displaced over 
900,000 people, or nearly one percent of the total U.S. population at the time, with 246 confirmed 
deaths and unofficial fatality estimates that exceeded 1000 [15]. Total property damage was 
estimated at $400 million in 1927 (>$4 billion in 21st century), exceeding the aggregate losses of all 
previous Mississippi River floods at the time. The flood had tremendous social, economic, and 
environmental consequences and led directly to the current flood control system, the Mississippi 
River and Tributaries Project [15]. After the 1927 flood, engineered structures were built, including 
3500 km of high levees and several emergency spillway outlets, that have more effectively confined 
the river while also limiting maximum discharge past New Orleans (Figure 1c,d). Today, when the 
Mississippi River reaches about 5.1 m at New Orleans, the Bonnet Carré Spillway immediately 
upstream of the city is opened. With a capacity up to 9000 m3·s−1, the spillway discharges river water 

Figure 1. A monthly running mean of daily stage (m, NGVD29) at the Carrollton gauge, New Orleans,
Louisiana, is shown from 1871 to 2011 for the Mississippi River (a); the 1927 flood was the highest
recorded stage on the river in 132 years, exceeding the next highest stage in 1916 by over half a meter.
Daily stage is shown for 1927 (b); 1973 (c); and 2011 (d) to illustrate the duration and variability in
flood crest heights and timing for major flood years. After the implementation of flood control plans,
the river never again crested as high as the 1927 flood.

The damage caused by floodwaters in the entire Lower Mississippi River Valley displaced over
900,000 people, or nearly one percent of the total U.S. population at the time, with 246 confirmed
deaths and unofficial fatality estimates that exceeded 1000 [15]. Total property damage was estimated
at $400 million in 1927 (>$4 billion in 21st century), exceeding the aggregate losses of all previous
Mississippi River floods at the time. The flood had tremendous social, economic, and environmental
consequences and led directly to the current flood control system, the Mississippi River and Tributaries
Project [15]. After the 1927 flood, engineered structures were built, including 3500 km of high levees
and several emergency spillway outlets, that have more effectively confined the river while also
limiting maximum discharge past New Orleans (Figure 1c,d). Today, when the Mississippi River
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reaches about 5.1 m at New Orleans, the Bonnet Carré Spillway immediately upstream of the city is
opened. With a capacity up to 9000 m3¨ s´1, the spillway discharges river water across >1300 ha of
cypress swamp before entering Lake Pontchartrain [6,18]. The Bonnet Carré Spillway has been opened
10 times since 1934 to prevent river stage at New Orleans from reaching pre-1927 levels [18].
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the estimated width of the levee breach. 
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Mississippi River water into the Breton Sound estuary. While carrying out research on the impacts of 
the diversion on water quality [19,20] and wetland elevation [21], a distinctive silty-clay layer 
(hereafter referred to as the clay layer) was discovered in the vicinity of the 1927 crevasse. We 
hypothesized that the clay layer was associated with the 1927 flood, and furthermore, that it would 
be thickest near the site of the 1927 breach and that dating would be coincident with the time of the 
flood. Our objective in this paper is to investigate the clay layer spatial extent in the upper basin near 
the former levee breach and date the deposit using 210Pb geochronology. 

2. Study Area 

The study site is located in the upper Breton Sound estuary, an area of about 1100 km2 of fresh, 
brackish, and saline wetlands interspersed with open waterbodies. The estuary is part of the  
St. Bernard delta complex, which was formed between 4000 and 2000 years ago, as well as the 
Plaquemines-Balize delta complex, which was formed during the last ~1300 years [22]. Since then, 
approximately half of the original wetlands have disappeared by the processes of shore-line erosion 
and coastal subsidence [23] exacerbated by human activity [3,5]. Numerous natural crevasses and 

Figure 2. The Breton Sound estuary. Dots indicate where core samples were taken and the approximate
area of the crevasse splay deposit based on our measurements. Blue dots indicate cores that had
additional analysis carried out. Upper right inset: aerial photo showing Mississippi River water
flowing through the 1927 Caernarvon levee breach. Dark black line at the site of the crevasse is the
estimated width of the levee breach.

Objectives and Hypothesis

In August 1991, a river diversion structure was opened at Caernarvon, Louisiana, to channel
Mississippi River water into the Breton Sound estuary. While carrying out research on the impacts of
the diversion on water quality [19,20] and wetland elevation [21], a distinctive silty-clay layer (hereafter
referred to as the clay layer) was discovered in the vicinity of the 1927 crevasse. We hypothesized that
the clay layer was associated with the 1927 flood, and furthermore, that it would be thickest near the
site of the 1927 breach and that dating would be coincident with the time of the flood. Our objective in
this paper is to investigate the clay layer spatial extent in the upper basin near the former levee breach
and date the deposit using 210Pb geochronology.

2. Study Area

The study site is located in the upper Breton Sound estuary, an area of about 1100 km2 of
fresh, brackish, and saline wetlands interspersed with open waterbodies. The estuary is part of
the St. Bernard delta complex, which was formed between 4000 and 2000 years ago, as well as the
Plaquemines-Balize delta complex, which was formed during the last ~1300 years [22]. Since then,
approximately half of the original wetlands have disappeared by the processes of shore-line erosion
and coastal subsidence [23] exacerbated by human activity [3,5]. Numerous natural crevasses and
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minor distributaries as well as seasonal overbank flooding occurred along the lower Mississippi River
prior to human manipulation [24–26]. The upper perimeter of the Breton Sound estuary was fringed
by 1 to 3 km of freshwater forested wetlands (i.e., see USGS St. Bernard map 1892). Regular Mississippi
River flow into the estuary decreased with the construction of flood control levees soon after the
colonization of New Orleans by the French in 1719 [27]. However, major riverine inputs to the estuary
still occurred via crevasses, minor distributaries, and overbank flooding throughout the first quarter of
the twentieth century [25], such as the 335 m wide crevasse at Poydras near Caernarvon in 1922 that
resulted in a flow of 13,014 m3¨ s´1 and scoured a 90-foot deep scour hole still present today 1.3 km
east of the Caernarvon structure [28]. The 1927 flood crevasse was closed in 1928, and river flow to the
basin is now prevented by levees with exception of the Caernarvon freshwater diversion structure,
White’s Ditch siphon, the Pointe a la Hache Relief Outlet, and the Bohemia Spillway all of which
discharge about 100 times less than the 1927 crevasse and are spread over a 45-km distance along the
western edge of the basin [29]. The Caernarvon diversion structure, with a maximum discharge rate of
226 m3¨ s´1, was opened in August 1991 [29].

3. Methods

Sediment cores were collected pre-Hurricane Katrina in the basin to map the areal extent of
flood deposits and to confirm the age of the flood deposit using 210Pbexcess and 137Cs geochronology
(Figure 2). During March to July 1998, twenty-seven 1-m deep cores were collected using a McAuley
coring device at the outfall area of the present-day Caernarvon diversion and the 1927 Caernarvon levee
breach. Cores were collected at an increasing radius from the locus of the original levee break until
the layer could no longer be visually distinguished. The corer allowed extraction of soft organic-rich
marsh sediments with minimal disturbance or compaction. Cores were described geologically and
photographed in the field at the time of extraction when color contrasts were greatest with particular
attention given to the depth to and thickness of the silty-clay layer associated with the 1927 event.

Six of the cores were sampled for more detailed laboratory analysis of sediment properties,
specifically bulk density (from dry weight; [30]) and organic matter content (loss on ignition; [31])
of representative layers above, within, and below the clay layer. A map of the clay layer deposit was
constructed from sediment sampling in a 15 km radius from the site of the 1927 levee breach that
included all cores where the clay layer was visually distinguishable in the sediments. The volume of
the depositional layer was estimated, and the dry weight of the sediments contained in this volume was
calculated based on representative values for the bulk density and organic matter content. We studied
old maps and photos of the area and measured water depths of water bodies in the vicinity of the
1927 breach to determine if there were scour holes associated with the 1927 event.

Although the extent of the flood deposit layer, its depth below the marsh surface, its composition,
and its thinning with distance from the site of the levee breach indicated that the layer was from
the 1927 flood breach, we collected a soil core to determine if the layer could be dated to 1927.
A single sediment push core (7-cm ID) was collected that extended from the soil surface to below
the crevasse deposit in the upper basin and sectioned at 1-cm intervals. Each section was dried,
homogenized, packed into 10-mm diameter vials, and sealed. After three weeks ingrowth for secular
equilibrium between 226Ra and daughters, the sediments were counted on a well germanium detector
for 210Pb, 137Cs, and 226Ra daughters to estimate the age of the sediment at the top of the clay layer.
Pb-210 (t1/2 = 22.3 y) was corrected for its parent, 226Ra (t1/2 = 1620 y), to obtain the unsupported
210Pb (210Pbexcess) required for dating. Sediment self-absorption of gamma rays was accounted for
using methods outlined by Cutshall et al. [32]. The constant flux:constant supply (CF:CS) model was
employed to estimate the sediment ages within the core [33].

4. Results

A scour hole was not evident from examination of historical maps and photos, and field
investigation of the water bodies directly in the path of the levee breach revealed only shallow



Water 2016, 8, 38 5 of 12

(<2 m) water depths. Thus we concluded that the depositional layer in the wetlands was not scoured
from the natural levee. The silty-clay layer was visually distinguishable in 23 cores to a distance of
12 km from the point of the 1927 levee break. Heavily rooted marsh soils occurred above the clay layer,
which was underlain by an aged peat. A maximum thickness of 42 cm was observed at 7 km from
the break adjacent to the southeast corner of Lake Lery. Where present, the top of the layer occurred
between 24 and 55 cm below the marsh surface, with an average depth of 35 cm, yielding an average
rate of aggradation post 1927 of 5 mm¨ year´1. The Caernarvon crevasse deposit is distinctly different
from the marsh deposits above and below the layer. In the six cores from which bulk density and
percent organic matter values were measured, the fresh marsh soil below the silty-clay layer was a
poorly consolidated peat with a bulk density ranging from 0.08 to 0.13 g¨ cm´3, and an organic matter
content from 50% to 80%. The brackish marsh soil above the crevasse deposit was better consolidated
with bulk density of 0.22 to 0.54 g¨ cm´3 and organic matter content of 10% to 35%. The highest bulk
densities (0.22 to 1.00 g¨ cm´3) and lowest organic matter contents (4% to 25%) of each of the sampled
cores occurred in the clay deposit layer. The bulk density of the crevasse layer was inversely related
to the distance from the levee breach (Figure 3a). Percent organic matter (Figure 3b) was positively
related to distance.
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The clay layer ranged from 2 to 42 cm thick and occurred between 24 and 55 cm below the sediment
surface (Figure 3c). Deposition rates ranged from 5.6 to 117 mm¨ month´1 (37 ˘ 26 mm¨ month´1,
mean ˘1 .e.) within the crevasse deposit coring array (Figure 3d). The zone of deposition was
greatest at the crevasse head and decreased with increasing distance until it was no longer visually
discernible about 12 km south of the breach. Based on the thickness of the clay layer depositional
wedge, an integrated volume of 2.79 ˆ 107 m3 of sediments were deposited within the 130 km2 crevasse
splay during the 1927 flood (Figure 3e). Using the average measured sediment dry bulk density of this
layer of 0.98 g¨ cm´3, we estimate 2.74 ˆ 1010 kg sediments are present within the crevasse splay layer.
This value of bulk density is for the current silty-clay deposit. There was likely some compression
since 1927, but we used the total amount of mineral material in the layer to calculate the total weight of
deposited sediments. This would not have been affected by compression. The 1927 artificial crevasse
was active for a 3.6 month period [17]. Water discharge through the breach averaged 7800 m3¨ s´1 for
108 days and yielded a total volume of water of 7.3 ˆ 1010 m3 [15,17]. Peak discharge was 9254 m3¨ s´1.
Estimates of annual sediment loads in the river from 1881 to 1911 averaged 402 ˆ 106 m3 over a 30-year
period [34], while modeled suspended sediment concentrations of the flood stage of the river range
from 500 to 675 mg¨ L´1 around 1927 [35,36]. Based on these modeled concentrations, the sediment
load entering the Caernarvon crevasse in 1927 ranged 3.63 to 4.91 ˆ 1010 kg with a volume of 3.71 to
5.01 ˆ 107 m3 assuming a bulk density of 0.98 g¨ cm´3, which is higher but relatively close to what
we calculated based on core measurements (i.e., 2.74 ˆ 1010 kg and 2.79 ˆ 107 m3). Given sediment
concentrations of 500 and 675 mg¨ L´1, the capture efficiency ranged from 55% to 75% during the
flood event.

The 210Pbexcess analysis of the top of the clay layer at 15 cm depth revealed an age of ~1926–1929,
while rapid (3.6 months) deposition of 80 mm occurred below this depth (16 to 24 cm clay thickness in
this core; Figure 4) shown as mixing in the 210Pb profile. During the flood event, deposition was at
least 22 mm¨ month´1 based in the clay layer in this core—equivalent to 264 mm¨ year´1.
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5. Discussion 

Figure 4. Recent accretion rates were estimated using 210Pbex (left) and 137Cs (middle) dating to
isolate the sediment layer associated with 1927 flood deposition (right). The top of the sediment layer
occured at 15 cm, which is about 1926–1927. Above the sediment layer, accretion rates were about
2.5–3.0 mm¨ year´1 for this location.
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5. Discussion

In the Mississippi delta, hundreds of crevasses have been identified along distributary channels
that overlap to form a continuous band of crevasse deposits essential to the formation and maintenance
of both natural levees and coastal wetlands [25,28,34,37,38]. Our measurements indicate that the area
of the crevasse splay at Caernarvon was about 130 km2. The artificial 1927 crevasse was similar in size
and duration to naturally occurring historical crevasses. For example, the Davis Pond crevasse located
on the west bank of the river upriver of New Orleans, which was active in the second half of the 19th
century, is between 150 and 200 km2. The crevasse splay is still clearly visible on photos of the area.
The Bonnet Carré crevasse, which was active from 1849 to 1882, created a large depositional sediment
fan in wetlands and up to two meters of deposition in western Lake Pontchartrain [25]. The Bonnet
Carré Spillway is probably the closest modern analog to the 1927 crevasse. The floodway has been
opened 10 times since the 1930s (about once a decade and representing about 1% of the time since it
was completed in 1933; an opening is likely in early 2016) with flows ranging from 3000 to 9000 m3¨ s´1,
and accretion rates in the spillway average about 25 mm¨ year´1 compared to about 4 mm¨ year´1

in adjacent wetlands without river input [6,18]. Total fine grained sediment deposition in wetlands
within the spillway near Lake Pontchartrain is as high as 2 m or an average of about 200 mm for each
flood event.

Our results for sediment accretion rates before and after the 1927 event are similar to other
reports of accretion for the Mississippi delta. We measured sediment deposition since the 1927 flood
of between 2.5 and 3.0 mm¨ year´1. Other measurements of accretion at Caernarvon range from
2.5 to <10 mm¨ year´1 [5,21,39]. Accretion is highly variable throughout the Mississippi delta, with
negative values at areas that are eroding to very high rates near major riverine sources [40], such as the
Atchafalaya Delta, which is accreting up to 14 mm¨ year´1 [41].

While large floods are episodic, the 1927 Caernarvon crevasse illustrates their land-building
potential can be much higher than current diversions that discharge less than 200 m3¨ s´1 [5]. Given
relative sea level rise estimates for the northern Gulf of Mexico and coastal Louisiana of 5.5 to
9.7 mm¨ year´1 (e.g., [42]), the land-building potential of a diversion as small as the Caernarvon
diversion is limited. Snedden et al. [43] demonstrated that the sediment discharge through the
Caernarvon diversion yielded deposition rates of about 0.65 mm¨ year´1 between 2002 and 2003,
which is 4 times less than the long-term rate of 2.5 to 3.0 mm¨ year´1. Since Hurricane Katrina in
2005, a small new delta has formed in Big Mar, a shallow pond that resulted from a failed agricultural
impoundment. Over the last two decades the delta in Big Mar has grown to almost 250 ha, with about
235 ha of those acres forming in the10 years after Katrina [44]. However, under historical conditions of
prolonged high sediment yield discharge during a flood event, such as occurred in 1927 in the same
location as the modern diversion, the impact on land-building is much more dramatic.

Before river embankment became widespread in many of the world’s rivers, overbank flooding
and crevasses were important and common mechanisms for replenishing floodplain and delta
sediments and fertilizing the landscape [24,25,28,45–47]. Crevasses function during high water via
temporary channels through low points along the natural levee, forming crevasse splays, which have
areas on the order of 10 to 100 s of km2 compared to 100 to 1000 s of km2 for full deltaic lobes [26,38,48].
These processes of floodplain and delta inundation and draining have built land along river corridors
and in deltas around the world [38,46,48–51]. Where levees have not stopped river floods, overbank
flooding still occurs, such as in the Danube [52], northwestern Mediterranean deltas [53] and for the
Atchafalaya delta of the Mississippi [48], and leads to more sustainable wetlands. There is a general
consensus that major world deltas will become smaller in the 21st century due to accelerated sea-level
rise and a reduction in sediment input (e.g., [54]). Thus, it seems clear that the Mississippi delta will
be considerably smaller by the end of the century. Our results indicate that the use of episodic large
inputs of river water would lead to maximizing the area of deltaic wetlands.
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Human impacts on deltas globally have led to widespread deterioration and
unsustainability [45,46]. The combined effects of land use change and climate change make
clear the need for new paradigms in how humans manage and restore deltas. Tessler et al. [55]
reported that the combination of land use changes, climate change, and increasing energy costs will
increase risks significantly of non-sustainable outcomes, especially in first world countries such as
restoration and management of the Mississippi and Rhine deltas. Given predictions of accelerated
sea level rise, increasing human impacts, and growing energy scarcity [13,42,56,57], delta restoration
should be aggressive and large scale. We believe that restoration of the Mississippi delta will require
diversions similar in scale to historical crevasses if they are to be most effective. Such large episodic
diversions may help to alleviate a growing problem associated with proposed diversions in the
Mississippi delta. Because continuous inputs of river water result in near permanent freshening in
some locations, strong opposition has developed to diversions in local fishing communities due to the
displacement of local fisheries worth hundreds of millions of dollars [58]. The periodic opening of the
Bonnet Carré Spillway and the 1927 crevasse at Caernarvon serve as good models for understanding
the significance of this fishery concern. The periodic openings have minimized algal blooms to short
periods [59] and resulted in larger fisheries catches in years following openings [60]. Large, episodic
introductions of river water would also help alleviate the impacts of projected increases in large river
floods [61] and the frequency of category 3 and 4 hurricanes [62,63]. Operation of large diversions
during major floods could both reduce the pressure on levees, as in the case of the Bonnet Carré
Spillway, and lead to large episodic land building events. These would enhance hurricane protection,
especially if restoration of cypress swamps were undertaken in the fresh portions of the crevasse splay
area. Early maps show that there was a fringe of swamps several km wide in the upper Breton Sound
estuary at the beginning of the 20th century. In contrast, if no action is taken, the transportation and oil
and gas infrastructure critical to national interests of shipping, trade, and energy, as well as the high
value of ecosystem goods and services of the delta will be undermined and ultimately lost [58,64].
The cost to not saving the land that supports all of these critical economic functions, seafood, energy,
shipping, are prohibitive in the long term, and large diversions must be part of any coordinated effort
to maintain the Mississippi delta [64]. Given the global scale of deteriorating deltas threatened by
sea-level rise and economic vitality of these regions [45,54], forging a solution that utilizes the full
capacity of the river may be the best outcome we have available.

6. Conclusions

We measured the extent, sedimentary characteristics, and age of a crevasse splay located where an
artificial breach in the levee was created during the 1927 flood of the Mississippi River. The thickness
and depth of the deposit was measured by repeated coring in the area where the splay was located.
The deposit covered about 130 km2 and was wedge shaped with the thickest part located near the site
of the levee breach. The thickness of the clay layer ranged from 2 to 42 cm and occurred 24 to 55 cm
below the surface. Bulk density of the clay layer decreased and organic matter increased with distance
from the river. 210Pbexcess and 137Cs dating indicated that the layer was deposited about 1926–1929.
The deposition rate of the clay layer was 22 mm¨ month´1—10 times the annual post-1927 deposition
of 2.6 to 3.0 mm¨ year´1. We calculated that the crevasse splay captured from 55% to 75% of suspended
sediments that flowed in from the river. The 1927 crevasse deposition shows how pulsed flooding can
enhance sediment deposition efficiency in deltaic environments and serves as an example for large
planned diversions for Mississippi delta restoration.
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