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Abstract: A new approach for flood frequency analysis based on the probability density 

evolution method (PDEM) is proposed. It can avoid the problem of linear limitation for 

flood frequency analysis in a parametric method and avoid the complex process for 

choosing the kernel function and window width in the nonparametric method. Based on the 

annual maximum peak discharge (AMPD) in 54 years from the Dalai hydrologic station 

which is located on the downstream of Nen River in Heilongjiang Province of China,  

a joint probability density function (PDF) model about AMPD is built by the PDEM. Then, 

the numerical simulation results of the joint PDF model are given by adopting the one-sided 

difference scheme which has the property of direction self-adaptive. After that, according 

to the relationship between the marginal function and joint PDF, the PDF of AMPD can be 

obtained. Finally, the PDF is integrated and the frequency curve could be achieved.  

The results indicate that the flood frequency curve obtained by the PDEM has a better 

agreement with the empirical frequency than that of the parametric method widely used at 

present. The method based on PDEM is an effective way for hydrologic frequency analysis. 
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1. Introduction 

The target of flood frequency analysis is to derive the probability distribution function (PDF) of 

annual maximum peak discharge (AMPD) according to the measured data. Then, the magnitude of a 

flood for a given return period can be estimated as the design basis of flood sluicing buildings, bridges, 

culverts, and other flood control projects[1,2]. Flood frequency analysis provides not only design basis 

for water conservancy projects which are going to be built, but also a calculation foundation for risk 

analysis and systematic use of water resources for those that have been built. Hence, flood frequency 

analysis is of great importance in hydraulic engineering. There have been numerous studies about it 

and the methods for flood frequency analysis can be divided into parametric method and 

nonparametric method, generally. 

The parametric method for flood frequency analysis mainly includes two steps: (1) select an 

appropriate parent distribution for the measured data and, (2) estimate the parameters for the selected 

distribution. In regard to parent distribution selection, the Monte Carlo Bayesian method for a 

comprehensive study on computing the expected probability distribution was introduced by  

Kuczera [3]. A variety of mathematic test methods in flood parent distribution selection were adopted 

by Kite et al. [4–8]. Besides, the probability plot correlation coefficient (PPCC) test which was a 

powerful and easy-to-use goodness of fit test in completing samples for the composite hypothesis of 

normality was proposed by Filliben [9]. Thereafter, the PPCC test was extended for studying kinds of 

probability distribution types [10–12]. With respect to the parameter estimation research for the 

selected parent distribution, several methods have been extensively used, such as method of moments 

(MOM), method of maximum likelihood (ML), and curve-fitting method. The MOM, which includes the 

conventional moments [13], the linear moments (L-moments) [14–18], and the probability-weighted 

moments (PWM) [19–28], is the oldest way of deriving point estimators. The method of ML can give the 

most likely values of the parameters for a given distribution. It was adopted in estimating parameters for 

various distribution types [29,30] and different situations [31]. Moreover, El Adlouni, S. et al. [32] 

developed the generalized ML estimators for the nonstationary generalized extreme value model by 

incorporating the covariates into parameters. As to the curve-fitting method, it can be divided into  

two main categories, one is fitting the empirical frequency curve to the best by visual observation, the 

other is optimal curve-fitting method. Due to the characteristics of flexibility and easy manipulation, 

the curve-fitting method by visual observation is extensively applied in practical flood frequency 

analysis in China. However, the weakness of this method is prominent that different results may be 

obtained by different persons at different time. Obviously, it is not an objective method [33]. Thus, many 

researchers paid attention to the optimal curve-fitting method [34–36]. From the above studies, it can be 

seen that much work has been conducted on both steps of the parametric method. However, there still 

exists one problem in the parametric method because it is based on an assumption that the data in a 

given system obeys a certain distribution. It is regrettable that the limited distribution types cannot 
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always satisfy all kinds of practice. Hence, there is the so-called linear limitation problem in 

parametric method. When the assumed parent distribution does not agree with the fact, the precision of 

corresponding calculation results cannot be guaranteed. 

For the linear limitation problem in the parametric method, Tung [37] proposed the application of 

the nonparametric method in hydraulic frequency analysis in 1981 for the first time.  

The nonparametric method can solve the linear limitation problem for the reason that the process of 

parent distribution assumption is avoided. Therefore, it was employed and emphasized in this field 

gradually [38–44]. Nevertheless, the defect of the nonparametric method is also evident that there is no 

specific criteria about how to select a better kernel function and window width in different situations. 

Because of this, it is difficult to take use of the nonparametric method in practice [45]. Thereby,  

a method which does not need to choose kernel function and window width, meanwhile the 

assumption of parent distribution can be avoided, is necessarily demanded. 

The probability density evolution method (PDEM) which has no need of assuming a parent 

distribution in flood frequency analysis takes the probability conservation principle, which means that 

the law of probability conservation exists during the state evolution process for a conservative 

stochastic system, as the theoretical foundation. The basic idea of using PDEM in flood frequency 

analysis is different from the nonparametric method. Therefore, the process of choosing kernel 

function as well as window width is avoided, and the PDEM is adopted for flood frequency analysis in 

this paper. Firstly, the joint PDF model about AMPD is established through PDEM. And then,  

by means of numerical method, the model is able to be solved and the probability density value as well as 

the probability distribution value of AMPD can be obtained. Finally, the frequency curve will be achieved. 

This paper is organized as follows: in Section 2, the basic idea of the PDEM is introduced.  

In Section 3, a model about the joint PDF of AMPD is derived based on the PDEM. The solution 

method about the model and frequency values calculation of AMPD are suggested. Also presented in 

this section is the robustness study about the proposed method by statistical experiment research 

(Monte-Carlo method). An example and discussion will be given in Section 4, while the last section 

contains a brief summary of the results. 

2. Probability Density Evolution Method  

Due to the coupling effect between nonlinear and stochastic, the accurate prediction of nonlinear 

response for practical engineering structure is difficult to implement. In the light of this,  

Li and Chen [46,47] developed an in-depth study on the principle of probability conservation and 

derived the PDEM by the combination of state space description for principle of probability 

conservation and different physical equations, such as the classical Liouville Equation, Fokker Planck 

Kolmogorov (FPK) Equation, and Dostupov–Pugachev (D–P) Equation. The PDF of structure 

response containing the whole stochastic factors in the dynamic system can be acquired through the 

numerical solution of probability density evolution equation. Thus, in recent years, a systematic 

research of the PDEM has been made in stochastic response analysis of multi-dimensional linear and 

nonlinear structure systems, calculation of dynamic reliability and system reliability, as well as control 

aspects based on reliability. The basic idea of PDEM is briefly introduced as follows [48,49]. 

Suppose that an m-dimension virtual stochastic process can be described as: 
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( , τ),     ( , τ)l l= Φ = ΦX Θ ΘX  (1)

where, X is the state vector, Φ represents the mapping relationship between X and Θ, τ. Θ is random 

vector, τ is virtual time. Xl and Φl are the l-th component of X and Θ, respectively, l = 1, 2,…, m, m is 

an integer. 

According to the probability compatibility condition, when {Θ = θ}, the expression about Xl(τ) can 

be obtained: 

( , τ θ)d 1P x x
∞

−∞

= ΘlX  (2)

where ( , τ θ)P xΘlX  is the conditional PDF of Xl(τ) at {Θ = θ}. 

From Equation (1), it is known that Xl = Hl(θ,τ) when {Θ = θ}, namely, the probability of  

Xl = Hl(θ,τ) equals 1 when {Θ = θ}. Therefore, the probability of Xl ≠ Hl(θ,τ) must be 0. Combining 

above analysis with Equation (2) yields: 

0,    (θ,τ)
( , τ θ)

,   (θ,τ) 
l

l

x H
P x

x H

≠
= ∞ =

ΘlX  (3)

Equations (2) and (3) fit the definition of Dirac Function. Hence, they can be comprehensively 

expressed as: 

( , τ θ) δ( (θ,τ))lP x x H= −ΘlX  (4)

where δ(·) is the Dirac’s Function. 

According to the conditional probability formula, the joint PDF of stochastic variable (Xl(τ), Θ) 
which is denoted as 

 
( ,θ,τ)

l
P xΘX  can be derived from Equation (4): 

 ( ,θ,τ) ( , τ θ) (θ) δ( (θ,τ)) (θ)lP x P x P x H P= = −Θ Θ ΘΘl lX X  (5)

where PΘ(θ) is the PDF of Θ. 

Differentiating Equation (5) on both sides with regard to τ, and using the derivation rule of 

compound function will yield: 

[ ] [ ] 

( , )
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Because both θ and τ are fixed values in the differential process of compound function, the partial 

derivative of y = x − Hl(θ,τ) is dy = dx. Therefore, substitute ∂y in Equation (6) with ∂x. Then,  

Equation (6) can be rewritten as follow: 

[ ]
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that is: 
( ,θ,τ) ( ,θ,τ)

(θ,τ) 0
τ l

P x P x
H

x

∂ ∂
+ =

∂ ∂
 Θ  Θl lX X  (8)

Equation (8) is the probability density evolution equation, and the corresponding initial condition 

can be conveniently obtained from Equation (5): 

τ 0 0,( ,θ,τ) δ( ) (θ)lP x x x P= = − Θ ΘlX  (9)

where x0,l is the l-th component of x0. 

The boundary condition of Equation (8) reads as: 

( ,θ,τ) 0xP x →±∞ = ΘlX  (10)

By means of numerical difference method, the probability density evolution equation can be solved 
based on Equations (9) and (10). Thus, the joint PDF ( ,θ,τ)P xΘlX  is obtained. In accordance with the 

relationship between the marginal function and joint PDF, the PDF ( , τ)P x
lX  can be acquired:  

θ

( , τ) ( ,θ,τ) θP x P x d
Ω

=   Θl lX X  (11)

where Ωθ is the distribution domain of Θ. 

3. The Flood Frequency Analysis Method Based on PDEM 

3.1. The Joint PDF Model for Peak Discharge 

In flood frequency analysis, the sample of AMPD, which is composed of measured data from the 

hydrologic stations for years, can be denoted as Z = (z1, z2, z3,…, zn), here n is the total number of data 

in the sample. With consideration of the stochastic characteristic of hydrologic variables, the AMPD 

can be expressed by a one-dimension static stochastic process Y (y). 

Construct a one-dimension stochastic process: 

( ) ( , ) ( )t H t Y y t= = ⋅X Z  (12)

then 

1 1( ) ( ) ( , )t tY y t H t= == =X Z  (13)

where, X(t) is the state vector of parent peak discharge. H represents the mapping relationship between 

X and Z, t. Z is the random vector consisting of peak discharge measurement of data. t is time. 

It can be seen from Equation (13) that the PDF of AMPD can be obtained through the derivation of 

PDF for one-dimension stochastic process X(t) at t = 1. 

Comparing Equation (12) with Equation (1), it is found that both forms of them are consistent. 

Therefore, a joint probability density evolution equation of (X, Z) corresponding to Equation (8) can be 

obtained as follows: 

( , , ) ( , , )
( , ) 0

P x z t P x z t
H z t

t x

∂ ∂+ =
∂ ∂

XZ XZ  (14)

where PXZ(x,z,t) is the joint PDF of (X, Z). 
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Discretize z and bring the measured data in Equation (14). Then, the joint PDF model of peak 

discharge can be acquired: 

( , , ) ( , , )
( , ) 0       ( 1, 2, ,0 1)j j

j

P x z t P x z t
H z t j n t

t x

∂ ∂
+ = = ≤ ≤

∂ ∂
 XZ XZ  (15)

Considering that the acquisition of the measured data for AMPD is an independent process; 

therefore; when there is no any other additional information; the probability of the measured data for 

AMPD which is denoted as PZ(zj) can be described as:  

1
( )jP z

n
=Z  (16)

Taking into account Equations (9) and (16), the initial condition of Equation (15) can be written as: 

0 0 0

1
( , , ) δ( ) ( ) δ( )t jP x z t x x P z x x

n= = − = −XZ Z  (17)

where x0 is the initial value of AMPD. 

According to reference [50], the system state H(z,t) can be expressed as: 

( , ) sin(2.5π )H z t z t=  (18)

In this way, the discrete form of velocity function in Equation (15) is taken as follows:  

( , ) cos(2.5π ) 2.5πj jH z t z t= ⋅  (19)

3.2. Model Solution and Frequency Values Calculation of Peak Discharge 

Equation (15) is the one-dimension variable coefficients convection equation, which can be solved 

by many finite difference methods. According to calculation experience, a fairly satisfactory 

calculation precision will be achieved by adopting the one-sided difference scheme. Considering that 

the sign of the velocity function may change between positive and negative with the variation of time t, 

in this paper, the one-sided difference scheme possessing the characteristic of direction adaptive is 

selected to discretize Equation (15) as follows: 

, , 1 1, 1 1, 1

1 1
(1 ) ( ) ( )

2 2j m m L j m m L m L j m m L m L j mP h r p h r h r p h r h r p− − − + −= − + + − −
 

(20)

1

1
( (z , ) (z , ))

2m j m j mh Ht tH −= +   (21)

where Pj,m denotes the discrete form of joint PDF for XZ and is short for PXZ(xi,zj,tm), in which xi = iΔx 

(i = 0, ±1, ±2,…), tm = mΔt(m = 0,1, 2,…). xi and tm are the discrete values of calculation interval for 

time axis and space axis, respectively. Δx and Δt are the space step and time step, respectively, rL is the 

ratio of Δt to Δx. 

In order to ensure the convergence of the calculation results, the Courant–Friedrichs–Lewy 

condition for the difference scheme of Equation (20) is needed: 

1,        0,1, 2m Lh r m≤ ∀ =   (22)
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After establishing the joint PDF model of peak discharge and selecting a suitable difference scheme, 

the calculation of flood frequency based on PDEM can be described as follows: 

(1) Determine space step Δx and time step Δt for evaluating the velocity function and initial 

condition. First of all, select a suitable Δx and Δt according to Equation (22) by trial method. Secondly, 

denote the discrete points of time axis in the domain [0, 1] as tm. Thus, the velocity function can be 

calculated through Equation (19). Likewise, denote the discrete points of space axis in the 

corresponding domain as xi. After that, the discrete form of Equation (17) can be given as: 

0

1 0

( , , )      

00
XZ i j

i

x nP x z t

i

=
 Δ= 
 ≠

 (23)

(2) Solve Equation (15) by employing the difference scheme of Equation (20). Then, the discrete 

value of joint PDF PXZ(xi,zj,tm) at tm = 1 can be acquired. 

(3) Conduct the numerical integration with respect to zj according to Equation (11). Thereby,  

the discrete PDF will be written as: 

1 1
1

( ) ( , ) ( , , )
n

Y X t XZ i j t
j

P y P x t P x z t= =
=

= =  (24)

(4) Calculate the frequency values of peak discharge through the discrete PDF. Firstly, in order to 

get a better calculation precision for the flood frequency, the cubic spline interpolation on the PDF of 

peak discharge calculated by Equation (24) is implemented. Secondly, the trapezoid method is adopted 

to calculate the area value between the adjacent points on the curve of peak discharge PDF which has 

already been interpolated. Then, the values of cumulative area with descending order of peak discharge 

are computed. Finally, the flood frequency can be obtained. 

The flowchart of the flood frequency calculation based on the PDEM is depicted in Figure 1. 

 

Figure 1. Flowchart of the flood frequency calculation based on the PDEM. 
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3.3. The Robustness Study for PDEM  

In order to analyze the robustness of the proposed method, the statistical experiment research 

(Monte–Carlo method) is adopted. Since the measured hydrological data of natural rivers is relatively 

short, usually less than 60 years, hence, the statistical experiment research with small samples has 

actual hydrological significance. In order to evaluate the robustness of PDEM, two commonly used 

parent distribution types for hydrology in this statistical test are taken to analyze and calculate two 

groups of samples and four parent parameters, with a total of 32 programs. The specific steps for the 

robustness study are as follows: 

1. Give the parent parameters of statistical distribution and assume their distribution types, then 

extract m group of sample series with the length of n from every parent distribution. 

2. Calculate the design value of design frequency with PDEM. 

3. Analyze various types of error of design value and study their robustness. 

The specific plan is as follows: 

(1) The parent distribution: Pearson Type III, Log Normal. 

(2) Estimation method: the probability density evolution method (PDEM). 

(3) Sample size: n = 30, n = 50. 

(4) Design frequency: p1 = 0.02, p2 = 0.01. 

(5) Parent parameters: As seen in Table 1. 

(6) Sampling times: m = 50. 

(7) Evaluation criteria: Relative mean square (RMS) error and relative error of the mean design 

value (as shown in Equations (25) and (26)). 

The relative RMS error is: 

2

1

( )
1

δ=    100%

m

pi p
i

p

x x

x m
=

−
×

 

 (25)

1

1 1
ω - 100%

m

pi p
ip

x x
x m =

= × 
 (26)

The relative error of the mean design value is: 
where, xp represents a true value of design frequency p whose distribution is known, pix


 is the 

design value of estimated p. 

Table 1. Parent parameters. 

No. Mean (EX) Coefficient of Variation (Cv) Coefficient of Skewness (Cs) 

1 1000 1.0 2.5 
2 1000 1 3 
3 1000 2 4 
4 1000 2.5 5 
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The calculation results of 32 plans about statistical tests mentioned-above can be seen in Tables 2 

and 3. It can be found for both distribution of Log Normal and Pearson Type III, the relative error of 

the mean design value ω does not exceed 15%, and the relative RMS error δ of that is not greater than 

40%. In addition, the corresponding design value of same design frequency calculated by different 

theoretical parent distribution is relatively close. It is demonstrated that the difference of theoretical 

population has little influence on the calculation results. Therefore, as an estimated method of design 

value, the PDEM is relatively robust. 

Table 2. The results calculated by PDEM with theoretical population of Log Normal distribution. 

No. p n Parent Parameters True Value Mean Value of Design Value δ ω 

1 0.02 
30 

Cv = 1  

Cs = 2.5 

3913.10 4022.49 26.45 2.80 

2 0.01 4899.40 4713.69 27.9 3.79 

3 0.02 
50 

3913.10 4161.22 24.19 6.34 

4 0.01 4899.40 4442.61 28.92 9.32 

5 0.02 
30 

Cv = 1  

Cs = 3 

3913.10 3685.51 34.58 5.82 

6 0.01 4899.40 4416.54 34.5 9.86 

7 0.02 
50 

3913.10 4262.01 27.46 8.92 

8 0.01 4899.40 5169.09 29.37 5.50 

9 0.02 
30 

Cv =2  

Cs = 4 

6063.75 6468.00 29.21 6.67 

10 0.01 8540.85 8944.98 36.21 4.73 

11 0.02 
50 

6063.75 6797.37 30.62 12.10 

12 0.01 8540.85 7806.87 34.83 8.59 

13 0.02 
30 

Cv = 2.5  

Cs = 5 

6698.42 7196.04 31.69 7.43 

14 0.01 9795.19 8829.59 36.55 9.86 

15 0.02 
50 

6698.42 7307.51 19.11 9.09 

16 0.01 9795.19 10,340.84 29.9 5.57 

Table 3. The results calculated by PDEM with theoretical population of Pearson Type III distribution. 

No. p n Parent Parameters True Value Mean Value of Design Value δ ω 

17 0.02 
30 

Cv = 1  

Cs = 2.5 

4040 3926.20 17.74 2.82 

18 0.01 4850 4468.80 27.9 7.86 

19 0.02 
50 

4040 4076.80 17.71 0.91 

20 0.01 4850 4645.50 25.58 4.22 

21 0.02 
30 

Cv = 1  

Cs = 3 

4150 3967.60 29.5 4.40 

22 0.01 5050 4714.50 29.83 6.64 

23 0.02 
50 

4150 4372.20 21.08 5.35 

24 0.01 5050 5118.10 24.99 1.35 

25 0.02 
30 

Cv = 2  

Cs = 4 

7300 7045.80 16.75 3.48 

26 0.01 9100 8454.10 28.66 7.10 

27 0.02 
50 

7300 6910 24.95 5.34 

28 0.01 9100 9001 33.44 1.09 

29 0.02 
30 

Cv = 2.5  

Cs = 5 

8875 8135 23.3 8.34 

30 0.01 11,125 9593 24.43 13.77 

31 0.02 
50 

8875 8506 28.62 4.16 

32 0.01 11,125 10,104 30.72 9.18 
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4. Case sStudy 

4.1. Study Area 

In this study, flood frequency analysis is performed on the Nen River in Heilongjiang Province in 

Northeast China. The Nen River is the biggest tributary of the Songhua River, whose annual runoff 

and catchment are ranked third among all of the rivers in China. The area of the Nen River basin is 

approximately 297,000 km2, and the full-length of its main stream is more than 1370 km. In addition, 

the climate characteristic of this basin is that winter is long and cold, while summer is short and rainy. 

About 82% annual precipitation comes from June to September. The Dalai hydrologic station is a 

central control station located at the downstream of the Nen River. According to the data of AMPD in 

Table 4, which covers 54 years measured data from Dalai hydrologic station, the PDF and the 

frequency of AMPD based on the PDEM are studied. 

Table 4. The measured data of annual maximum peak discharge (AMPD) from Dalai 

hydrologic station. 

Year 
AMPD 

(m3/s) 
Year 

AMPD 

(m3/s) 
Year 

AMPD 

(m3/s) 
Year 

AMPD 

(m3/s) 
Year 

AMPD 

(m3/s) 

1951 3760 1962 4090 1973 2410 1984 4250 1995 1610 

1952 2100 1963 3470 1974 825 1985 2500 1996 3970 

1953 4750 1964 1510 1975 1270 1986 3690 1997 2100 

1954 1480 1965 2980 1976 1370 1987 1980 1998 16100 

1955 3200 1966 2330 1977 1770 1988 5640 1999 1890 

1956 6370 1967 1410 1978 899 1989 5280 2000 1380 

1957 7790 1968 740 1979 588 1990 3950 2001 1160 

1958 4570 1969 8810 1980 3110 1991 6370 2002 541 

1959 2920 1970 1990 1981 2950 1992 2010 2003 4590 

1960 5760 1971 1400 1982 1060 1993 5780 2004 2280 

1961 3130 1972 1920 1983 3860 1994 1710 - - 

4.2. Data Analysis Method and Parameters Selection 

To show the rationality of the calculation results based on PDEM, two groups of comparisons  

are conducted: 

(1) The comparison between frequency histogram and the PDF of peak discharge calculated by 

PDEM as well as parametric method.  

(2) The comparison between empirical frequency and the frequency values of peak discharge 

calculated by PDEM as well as parametric method. 

All the calculations in above comparisons are carried out based on the Matlab software. The interval 

number of frequency histogram in this study is evaluated by the following equation as mentioned in [51]: 

21 logk n= +  (27)

where k is the interval number. 
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As to the empirical frequency, it is derived from the expectation equation wholly adopted in 

hydrological frequency analysis at present. Arrange the measured data in a descending order, as z1, 

z2,…, zm,…, zn. Then, the empirical frequency of peak discharge sample Fe(zi) can be expressed as: 

( )e 1i

m
F z

n
=

+
 (28)

The related parameters of the flood frequency analysis method used in this paper are given as 

follows: the time step Δt and the space step Δx are selected according to Equation (22) by trial method. 

When Δt equals to 0.0001 s and Δx equals to 19.95 m3/s, Equation (22) can be satisfied. Taking into 

account that the value of AMPD is greater than zero, the initial sample value x0 can be selected 

between zero and the minimum value of measured data. From Table 4, it can be seen that the  

minimum value and the maximum value of AMPD are 541 m3/s and 16,100 m3/s, respectively. Hence,  

set x0 = 50 m3/s, and the calculation interval of AMPD is selected ranging from 50 to 20,000 m3/s. 

4.3. Results and Discussion 

During the process of parent distribution selection in parametric method, three fitting methods 

including the chi-square test, the Kolmogorov–Smirnov test, and the Anderson–Darling test are 

employed to analyze six kinds of distribution types which are often used in hydrologic frequency 

analysis. The parameters of them are estimated by the method of ML, and the relevant results are listed 

in Table 5. The results of goodness of fit tests are summarized in Table 6. The calculation methods of 

statistic values for fit tests in Table 6 are introduced in reference [52]. It can be seen from Table 6 that 

the order of calculation results obtained by chi-square test are somewhat different with those obtained 

by the other two tests. However, the top four orders of distribution types, namely Log Pearson Type III 

distribution, Log Normal distribution, Gamma distribution, and Pearson Type III distribution are 

identical. Hence, the above four distribution types are selected for subsequent investigations. 

Table 5. Estimated parameter values of different distribution types. 

Distribution Log Pearson Type III Log Normal Gamma Weibull (3P) Pearson Type III Gumbell 

Parameters 

α = 59226  

β = 0.003  

γ = −163.820 

σ = 0.699  

μ = 7.842 

α =1.5753 

β =2061.6 

α = 1.114  

β = 2825.100 

γ = 532.690 

α = 3.822  

β = 11163  

γ = −670.590 

σ = 2017.500 

μ = 2083.100 

Table 6. The results of goodness of fit tests. 

Distribution 
Kolmogorov Smirnov Anderson Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

Log Pearson Type III 0.059 1 0.151 1 2.011 3 

Log Normal 0.060 2 0.153 2 1.999 2 

Gamma  0.071 4 0.247 4 1.624 1 

Weibull (3P) 0.079 5 0.310 5 2.957 5 

Pearson Type III 0.067 3 0.185 3 2.039 4 

Gumbell 0.082 6 0.379 6 3.313 6 
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According to the PDF expression of the selected distributions, the calculation results of PDF by the 

parametric method can be achieved as seen in Figure 2. In the same way, through the expression of 

PDF, the frequency values of peak discharge can also be obtained, as depicted in Figure 3. 

 

Figure 2. Probability density curve of AMPD from Dalai hydrologic station. 

 

Figure 3. Frequency curve of AMPD from Dalai hydrologic station. 

It can be seen from Figure 2 that the trends of probability density curve for AMPD calculated by 

parametric method with four distributions are similar, but the right tail does not agree well with the 

frequency histogram. For the matching result calculated by PDEM, it has a better agreement with the 

frequency histogram, even the mutational parts on the right tail of the probability density curve are 

included. Hence, compared with the parametric method, taking use of PDEM can show the preferable 

effect on the distribution structure of PDF for AMPD. The reason for this is that PDEM is a kind of 

method which can be directly estimated through the sample data and does not need to assume a parent 

distribution. Moreover, it can also simulate different types of measured data, including data with  

multi-peak distribution, which is impossible to be realized by parametric method. 

Figure 3 is the frequency curve of peak discharge calculated by PDEM and the parametric method. 

It is shown that both methods can fit well with the empirical frequency points at the middle of the 

frequency interval, however, at the two ends of the frequency interval, more points will be fitted by 

means of the PDEM instead of the parametric method. Therefore, according to the above analysis from 

Figure 3, it can be concluded that employing PDEM to calculate the frequency curve of peak discharge 
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has a better fitting performance than that with parametric method. The reason for this is analogous to 

the description mentioned in Figure 2. 

In order to get a more clear recognition about the fitting effect of empirical frequency points and 

design frequency values obtained by PDEM as well as parametric method, the Equation (29) is 

selected to analyze the RMS error, which is treated as the measurement index of estimation accuracy 

for flood frequency. 

2

1

1
= ( ( ) ( ))

n

d i e i
i

RMSE F z F z
n =

−  (29)

In Equation (29), RMSE is the RMS error, Fd(zi) is the design frequency of peak discharge sample. 

The calculation results of Equation (29) are shown in Table 7. 

Table 7. Calculation results of RMS error. 

Methods 
Parametric Method 

PDEM
Pearson Type III Log Pearson Type III Log Normal Gamma 

RMS error 0.033 0.023 0.022 0.021 0.019 

From Table 7, it can be observed that the orders of RMS error for PDEM and parametric method 

including four different parent distribution types are arranged as PDEM < Gamma < Log Normal < 

Log Pearson Type III < Pearson Type III. The results demonstrate that PDEM has a better calculation 

precision than that of parametric method. 

The stability criteria for calculation results can be denoted by the relative error. The relative error 

between the 54 empirical frequency points and the corresponding design frequency obtained by the 

two methods is calculated and the values of relative error in certain intervals are shown in Table 8.  

The smaller the interval is, the higher the stability request represents. Through calculation it is found 

that both of the maximum relative errors for AMPD calculated by two methods appear at the 

maximum sample value. In reality, the larger the peak discharge is, the greater influence the projects 

suffer. For that reason, more attention should be paid to the maximum relative errors. Besides, the 

sample numbers corresponding to the relative error in certain ranges reflect the stability of the 

calculation results. Hence, attention should also be drawn to them.  

Table 8. Calculation results of relative error. 

Method 

Number (Ratio) of the Relative Error Maximum 

Relative 

Error 
<1% <3% <5% <10% 

Parametric 

method 

Pearson Type III 5 (9.259%) 13 (24.074%) 26 (48.148%) 43 (79.630%) 89.000% 

Gamma(3P) 7 (12.963%) 26 (48.148%) 38 (70.370%) 49 (90.741%) 94.179% 

Log Normal 8 (14.815%) 25 (46.296%) 36 (66.667%) 45 (83.333%) 88.126% 

Log Pearson Type III 7 (12.963%) 25 (46.296%) 33 (61.111%) 41 (75.926%) 61.500% 

PDEM 13 (24.074%) 28 (51.852%) 40 (74.074%) 50 (92.593%) 47.602% 

From Table 8, it can be seen that the maximum relative error of calculation results by Pearson  

Type III distribution is the biggest, while the sample numbers corresponding to the relative error 
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falling in certain ranges are the least among the four distribution types in the parametric method. 

Therefore, the stability of the calculation results by Pearson Type III distribution is not satisfied. For 

Gamma and Log Normal distribution, although the general sample numbers corresponding to the 

relative error falling in certain ranges are more than that of Log Type III distribution, the maximum 

relative errors of them are also expanded. With regard to the Log Type III distribution which is 

contrary to Gamma and Log Normal distribution, it possesses a smaller maximum relative error, but 

the same fewer sample numbers. In a word, the calculation results of relative error by the parametric 

method are not desirable. While, it is observed that more sample numbers and a smaller maximum 

relative error can be obtained by PDEM than by Gamma & Log Normal distribution, and Log Type III 

distribution, respectively. Further analysis shows that even though there are few differences between 

the calculation results by PDEM and Gamma distribution as well as Log Normal distribution when the 

relative error is less than 3%, 5%, and 10%, the former presents advantages if the relative error is less 

than 1% compared with the two latter ones. The number (ratio) of the relative error less than 1% 

obtained by PDEM is 13 (24.074%), the corresponding results calculated by Gamma distribution as 

well as Log Normal distribution are 7 (12.963%) and 8 (14.815%), respectively. The differences of the 

calculation results between PDEM and the two latter ones are 6 (11.111%) and 5 (9.259%), 

respectively. That is to say the calculation results by PDEM are advantageous, especially when the 

stability request is high. In addition, with regard to maximum relative error, even comparing with the 

results of Log Pearson III distribution (61.500%), which has the smallest maximum relative error in 

parametric method, the performance of PDEM (47.602%) is not in the least inferior, only accounting 

for 77.402% of it. 

From the analysis above, it can be concluded that the flood frequency in Dalai station on the  

Nen River calculated by PDEM not only has a remarkable advantage on calculation accuracy, but also 

a better stability than the results calculated by parametric method. Therefore, it is suitable to use the 

PDEM in flood frequency analysis due to its estimation characteristic using the sample data directly 

instead of assuming a parent distribution at the beginning. 

5. Conclusions 

To avoid the disadvantage of the parametric method and nonparametric method in flood frequency 

analysis, the calculation of frequency curve for peak discharge based on the PDEM is presented in this 

paper. Take the example of flood frequency analysis on the Nen River, the numerical analysis results 

indicate that the frequency curve of peak discharge calculated by PDEM fit better with the empirical 

frequency points than that by parametric method. The detail conclusions are as follows: 

(1) The PDEM can avoid the problem of linear limitation in flood frequency analysis using 

parametric method. It has a more rational theoretical background due to the fact that there is no need to 

give a parent distribution when calculating the flood frequency. Furthermore, the PDEM in flood 

frequency analysis can also avoid the complex problem of choosing the kernel function and window 

width in nonparametric method. The joint PDF model about AMPD built based on the PDEM is solved 

through numerical method with sample data directly. Thus, compared with the nonparametric method, 

the adoption of PDEM method in frequency analysis is easier to operate. 
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(2) It is obvious that the frequency curve of peak discharge calculated by PDEM fit better with the 

empirical frequency points than by parametric method with four distribution types. When the RMS 

error is treated as the accuracy index of calculation results, the corresponding value for PDEM is no 

more than 90.476% of that for parametric method. While the stability of calculation results is judged 

by relative error less than 1%, the former stability value is more than 1.625 times of the latter ones.  

In addition, when the value of AMPD is huge, in another word, which has great influence in the 

engineering design, the relative error calculated by PDEM is only 77.402% of the best calculation 

results in parametric method. Overall, the results of estimation accuracy and stability calculated with 

PDEM are better than those obtained with the parametric method. Therefore, it can be concluded that 

adopting PDEM to calculate the frequency curve of peak discharge is feasible and effective. And it is 

suggested to consider PDEM in more frequency analysis in hydraulic engineering. 
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