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Abstract: This paper presents artificial neural network (ANN)-based models for forecasting 

precipitation, in which the training parameters are adjusted using a parameter automatic 

calibration (PAC) approach. A classical ANN-based model, the multilayer perceptron 

(MLP) neural network, was used to verify the utility of the proposed ANN–PAC approach. 

The MLP-based ANN used the learning rate, momentum, and number of neurons in the 

hidden layer as its major parameters. The Dawu gauge station in Taitung, Taiwan, was the 

study site, and observed typhoon characteristics and ground weather data were the study 

data. The traditional multiple linear regression model was selected as the benchmark for 

comparing the accuracy of the ANN–PAC model. In addition, two MLP ANN models 

based on a trial-and-error calibration method, ANN–TRI1 and ANN–TRI2, were realized 

by manually tuning the parameters. We found the results yielded by the ANN–PAC model 

were more reliable than those yielded by the ANN–TRI1, ANN–TRI2, and traditional 

regression models. In addition, the computing efficiency of the ANN–PAC model 

decreased with an increase in the number of increments within the parameter ranges 

because of the considerably increased computational time, whereas the prediction errors 

decreased because of the model’s increased capability of identifying optimal solutions. 
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1. Introduction 

Taiwan is a long and narrow island located between Japan and the Philippines in the Western 

Pacific and has an area of 35,981 km2; the Central Mountain Range runs from north to south, and the 

Tropic of Cancer passes through the south. On average, approximately 80 tropical cyclones, also 

known as typhoons, form annually worldwide, of which approximately 30 form in the western North 

Pacific. Most typhoons in Taiwan form between May and November, and, on average, 3.9 typhoons 

affect Taiwan each year. As soon as a typhoon strikes, it often causes continuous torrential rainfall, 

leading to severe flooding, landslides, and debris flow [1]. Therefore, an effective and quantitative 

precipitation forecast model for typhoon periods is necessary. 

The concept of artificial neurons was first introduced in 1943 [2]. In the late 1980s, research on 

artificial neural network (ANN) applications advanced after the introduction of backpropagation 

training algorithms for feedforward ANNs [3]. ANNs, which simulate the biological nervous system 

and brain activity, have become the preferred forecasting approach in hydrology and hydrometeorology 

(e.g., [4–19]). ANNs are advantageous because feedforward networks are universal approximators 

capable of learning continuous functions with any desired degree of accuracy. Most ANN models have 

several parameters that users can adjust for realizing different scenarios and objectives, and the results 

produced by such models are typically distinct, which renders identifying the unique optimal solution 

difficult [20]. 

To realize a model that accurately represents the system being modeled, the model parameters must 

be determined using known system inputs and responses; the process of determining the optimal value 

of these parameters is termed “calibration.” Traditionally, ANN-based models are calibrated using 

trial-and-error approaches [21]. Maier and Dandy [22] reviewed numerous ANNs and reported that 

several heuristic calibration approaches have been proposed in which the models dynamically adapt 

the learning rate and momentum value as training progresses. The majority of these approaches are 

based on the principle of increasing the step size taken in weight space when successive weight 

updates reduce the error (or when the steps are in the same direction) and reducing the step size  

when the error increases in consecutive iterations (or when the steps are in opposite directions)  

(e.g., [23–33]). For calibrating hidden neurons, Sheela and Deepa [34] reviewed various methods for 

fixing the number of hidden neurons in ANNs and reported that randomly selecting the number of 

hidden neurons can result in overfitting or underfitting. Empirical studies have shown that optimizing 

these parameters is highly problem-dependent [35,36]. 

Trial-and-error calibration approaches are easy to comprehend but the results are not always 

satisfactory unless the modeler is experienced. As indicated by Cai et al. [20], the parameters are 

typically separately adjusted during trial-and-error calibration. The adjustment of a parameter is 

stopped when no further improvement is made in the goodness-of-fit, and the same process is applied 

to optimize each parameter without considering the effects of the other parameters. Although this 

method is simple and widely accepted, it can produce unsatisfactory and suboptimal results. 
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This paper presents the development of ANN-based models for forecasting precipitation in which 

the training parameters are adjusted using a parameter automatic calibration (PAC) approach. A 

classical ANN-based multilayer perceptron (MLP) neural network was used to demonstrate the utility 

of the proposed PAC approach. MLP neural networks are extensively used to model an unknown 

system with observable inputs and outputs, which is similar to synthesizing an approximation of a set 

of multidimensional functions, and are widely employed because of their simplicity, flexibility, and 

ease of use. The developed methodology was used to construct precipitation forecasting models for the 

Dawu gauge station in Taitung, Taiwan. The performance of the ANN–PAC model in the analysis of 

historical typhoon events was compared with those of various ANN-based models that employ  

trial-and-error calibration and traditional linear multiple regressions. 

2. Methodology 

The MLP ANN is briefly introduced before the methodology of the ANN–PAC algorithm  

is presented. 

2.1. Sketch of MLP ANN 

MLPs are feedforward neural networks trained using a standard backpropagation algorithm. They 

are supervised networks and the desired response must be trained [37]. MLP networks often consist of 

an input layer, one or more nonlinear hidden layers, and a linear output layer. Each layer may contain 

one or more nonlinear processing units called neurons or nodes [38]. Figure 1 is a scheme of a typical 

MLP network featuring three layers: input, hidden, and output layers. Mathematically, a three-layer 

MLP comprising n1 input nodes, n2 hidden nodes, and n3 output nodes, is expressed as: 

2 1
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y f w f w x r n
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  
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where p, q, and r are the indices of the input, hidden, and output nodes, respectively; px  is the input 

node of the input layer, 1
pqw  is the weight set connecting the input and hidden layers, 2

qrw  is the weight 

set connecting the hidden and output layers, ry  denotes the network outputs, f1(g) is the activity 

function of the hidden layer, and f2(g) is the activity function of the output layer. 

In a MLP network, the output is generated by passing signals from the input layer to the output 

layer through the hidden layer. When constructing an MLP structure, the number of neurons in  

the hidden layer is not constant and must be optimized depending on the characteristics of the 

application [39]. The inputs to a perceptron are weighted, summed over the inputs, translated, and 

passed through an activation function. The frequently used activity functions include linear, sigmoidal, 

and hyperbolic tangents [40]. As the training progresses, the weights are updated systematically using 

the backpropagation algorithm and the network output is compared with the target output. The learning 

acquired by the network is stored in its weights in a distributed manner. An MLP comprises major 

parameters, namely the learning rate, momentum, and number of nodes in the hidden layer. These 

parameters are typically set on the basis of experience or are adjusted one parameter at a time and their 

effect on the model observed [20]. 
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Figure 1. Architecture of the three-layer multilayer perceptron (MLP) neural network. 

2.2. Proposed ANN–PAC Model 

In this section, a methodology is presented for an ANN–PAC approach in forecasting precipitation 

during typhoons. Figure 2 illustrates the flowchart of the proposed method, and each step is described 

as follows. 

Phase 1, Data Preprocessing: The collected data contain typhoon characteristics and ground weather 

data (Section 3.1). Because a traditional training–validation–test procedure is adopted for the 

optimization of an ANN model, the collected data are classified into training, validation, and testing 

subsets. The training set is used to build model structures and adjust the connected weights of the 

constructed models. The validation set is used to validate an optimal parameter set, and the testing set 

is used to evaluate the performance of the constructed models and confirm their generalizability. 

Phase 2, Model Structure and Parameters Setting: The model architecture of the MLP model is 

fixed, including the number of inputs (attributes) in the input layer, the number of neurons in the 

hidden layer (considered a decision variable in this study and optimized through automatic 

calibration), and the output in the output layer. Subsequently, the ranges of three critical parameters in 

the MLP network—the learning rate, momentum, and number of neurons in the hidden layer—are set. 

Finally, the number of increments between maximal and minimal parameter values is fixed. 

Phase 3, Model Training: First, a decision condition selects whether the model parameters are 

calibrated automatically. If “yes”, the modeling process proceeds in the three-loop training structure by 

using the parameter values designed in Phase 2; if “no”, the parameter values are set manually (i.e., 

trial-and-error calibration). The training process is initiated using a training set; the MLP kernel 

function is repeatedly called and the outputs returned for training the model. The trained models are 

validated using a validation set. Then, the optimal trained model and their parameter set are identified. 

Phase 4, Model Verification: The tested typhoons (i.e., a testing set) are simulated using the optimal 

trained model, and the forecast results are evaluated according to the performance measures. 

In Phase 3, when training the ANN model we performed an early stopping procedure to avoid 

overfitting caused by an overly close reconstruction of the data in the training set. The stopping 
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procedure is briefly described as follows: first, the backpropagation algorithm is applied on a training 

set. The performance of the obtained input–output map is then iteratively validated in a validation set. 

The iteration process is stopped when the performance in the validation set begins to decrease, even if 

the performance in the training set continues to increase under the desired threshold. Detailed 

descriptions were provided by Pasini [41] and Prechelt and Orr [42]. 

 

Figure 2. Determining artificial neural network (ANN)-based MLP parameters using an 

automatic calibration approach. 
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3. Experiment 

3.1. Study Area and Data 

Figure 3 depicts the experimental site at the Dawu gauge station (22°21′27″ N, 120°53′44″ E; 

elevation 8.1 m) in Taiwan, located along the main path of the Northwestern Pacific tropical typhoons. 

This study considered 28 typhoon events that affected Dawu station between 2001 and 2012 (Table 1). 

The climatology of typhoons and the ground weather data of the Dawu station were collected from the 

Central Weather Bureau of Taiwan. Typhoon characteristics, namely the pressure, latitude, and 

longitude of the typhoon center; radius of the typhoon; and maximal wind speed near the typhoon 

center, were collected for analysis. The ground weather data comprised the air pressure, temperature, 

dew point temperature, relative humidity, and vapor pressure of the ground; surface wind speed and 

direction; and surface rain rate. 

 

Figure 3. Dawu gauge station and the track of Typhoon Morakot (2009). 

Table 1. The 28 typhoon events considered in this study. 

Year Typhoon Name Year Typhoon Name 

2001 Lekima 2007 Pabuk, Wutip, Sepat, Wipha, Krosa 
2002 Nakri 2008 Kalmaegi, Fung-Wong, Sinlaku 
2003 Morakot, Dujuan, Melor 2009 Morakot 
2004 Mindulle, Aere, Nanmadol 2010 Fanapi 
2005 Haitang, Matsa, Talim, Longwang 2011 Nanmadol 
2006 Chanchu, Billis, Kaemi, Bopha 2012 Tembin 

3.2. Data Division 

The typhoon characteristics data comprised 1462 records measured at hourly intervals. Table 2 lists 

the mean, minimal, and maximal values of the data attributes. To build the ANN–PAC model, the data 

sets were classified into training and testing sets. The typhoon events that occurred between 2001 and 
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2008 were used for training. In addition, Typhoons Morakot (2009) and Fanapi (2010) were used as a 

validation set, and Typhoons Nanmadol (2011) and Tembin (2012) were used as a testing set.  

Figures 3 and 4 display the historical tracks of these typhoons. 

Table 2. Range and average values of data attributes. 

Data Attribute Range Mean 

Pressure at typhoon center (hPa) 912.0−1000.0 964.3 
Latitude (°N) of typhoon center (degree) 12.0−27.8 23.2 

Longitude (°E) of typhoon center (degree) 115.3−128.1 121.5 
Radius of typhoon (km) 0−300.0 207.7 

Maximum wind speed near typhoon center (m⋅s−1) 7.0−16.0 11.9 
Air pressure on the ground (hPa) 967.2−1011.3 995.0 
Temperature on the ground (°C) 23.1−35.8 27.0 

Dew point temperature on the ground (°C) 18.1−28.0 24.1 
Relative humidity on the ground (%) 40.0−100.0 85.5 
Vapor pressure on the ground (hPa) 20.8−37.8 30.2 

Surface wind speed (m⋅s−1) 0.0−20.2 3.6 
Surface wind direction 0.0−360.0 165.7 

Surface rain rate (mm⋅h−1) 0.0−103.0 4.5 

 

Figure 4. Typhoon tracks of (a) Fanapi (2010); (b) Nanmadol (2011); and (c) Tembin (2012). 

3.3. Modeling Using ANN–PAC 

This study employed a widely used MLP neural network for forecasting precipitation at the study 

site. Figure 1 depicts the input–output patterns of the MLP model. The model inputs contained  

13 meteorological attributes, and the target output is the amount of rain in the next 1 h. As stated, the 

MLP ANN comprises the learning rate, momentum, and number of neurons in the hidden layer.  

To construct the MLP, sigmoid and linear activity functions were used in the hidden and output  

layers, respectively. The proposed ANN–PAC approach was applied for investigating the optimal 

parameter combination. 

The ranges of the three aforementioned parameters in the MLP network were set. Because the 

momentum and learning rate are theoretically in the range of [0, 1], 0.1 and 1.0 were set as their lower 

and upper limits. For the number of hidden neurons, we defined the ratio of hidden neurons as the ratio 
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of the number of neurons in the hidden layer to the number of records in a training set. This ratio 

ranged between 0.01 and 0.1. 

In addition, the number of increments between the maximal and minimal values, assumed as 10 

equal-sized intervals, is the same for all three calibrated parameters. The effect of the number of 

increments on the prediction accuracy is evaluated in Section 4.4. 

During training, the MLP network was trained using a training set. The model prediction errors, 

computed using the relative root mean squared error (RRMSE), were then calculated for each iterative 

process using a validation set: 

( )2pre obs obs

1

1
RRMSE

N

i i
i

O O O
N =

= −  (2)

where pre
iO  and obs

iO  are the predicted and observed values at record i, respectively; obsO  is the 

average of the observations and N is the number of records. 

The optimal parameter values were obtained after calibrating the parameters using the ANN–PAC 

approach: the ratio of hidden neurons = 0.02, momentum = 0.2, and learning rate = 0.6. Figure 5 

displays the RRMSE results of the ANN–PAC model using a validation set. To three-dimensionally 

depict the RRMSE variations, one of three parameters was fixed; for example, in Figure 5a, the 

RRMSE variations were plotted at various learning rate and momentum values and a fixed hidden 

neurons ratio of 0.02. 

 

Figure 5. Three-dimensional plots of relative root mean squared error (RRMSE) variations 

at (a) a fixed hidden neurons ratio of 0.02, (b) a fixed momentum of 0.2; and (c) a fixed 

learning rate of 0.6. 

4. Evaluations and Comparisons 

4.1. Results 

The traditional multiple linear regression model was selected as the benchmark for comparing the 

accuracy of the ANN–PAC model. Unlike ANNs, which typically require a trial-and-error or heuristic 

parameter calibration approach, the coefficients in regression analysis can be efficiently calculated 

using the matrix algebra regardless of the number of data points and variables. Figure 6a presents the 

1-h-ahead rain variations of the observations and predictions obtained using a validation set  

(i.e., Typhoons Morakot and Fanapi) for the ANN–PAC and regression-based models, and Figure 6b 
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presents the 1-h-ahead rain variations of the observations and predictions obtained using a testing set 

(i.e., Typhoons Nanmadol and Tembin). The predictions obtained using the ANN–PAC model were 

highly consistent with the observed data, compared with the regression-based models for both the 

validation and testing sets. To evaluate the constructed ANN–PAC models, we designed two model 

scenarios, as described in the next section. 

 

Figure 6. Simulation results of 1-h-ahead predictions for hyetograph using:  

(a) the validation set and (b) the testing set. 

4.2. Model Scenarios 

ANN model parameters are typically fixed on the basis of experience. As shown in Figure 2, the 

parameters of the proposed methodology can be manually tuned using trial-and-error calibration. 

Herein, the process of calibrating ANN-based MLP parameters by using a validation set is described. 

As illustrated in Figure 7, the initial momentum and learning rate values were set first. After sensitivity 

analysis, the “local” optimal ratio of the hidden neurons was calibrated. Subsequently, the local 

optimal ratio of the hidden neurons and the initial learning rate, which had been calibrated, were fixed, 

and the local optimal momentum value was calculated through sensitivity analysis. Subsequently, the 

local optimal ratio of hidden neurons and momentum value were fixed, and the suitable learning rate 

was calculated through sensitivity analysis. 

In this study, two scenarios with differing initial parameters were designed using the 

aforementioned trial-and-error method. The first scenario, ANN–TRI1, used initial values of 0.02, 0.2, 

and 0.2 for the ratio of hidden neurons, momentum, and learning rate, respectively. The second 

scenario, ANN–TRI2, used initial values of 0.05, 0.5 and 0.5, respectively. The ranges of these 

parameters are the same as those in Section 3.3. Figure 8 plots the sensitivity results of the MLP 
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parameters for the ANN–TRI1 and ANN–TRI2 models. The calibrated values of the three parameters 

are (0.01, 0.3, 0.5) and (0.03, 0.2, 0.2) for ANN–TRI1 and ANN–TRI2, respectively. 

 

Figure 7. Trial-and-error calibration of ANN parameters. 

 

Figure 8. Sensitivity results of MLP parameters by using a validation set for two  

MLP ANN models based on a trial-and-error calibration method: (a) ANN–TRI1; and  

(b) ANN–TRI2. 

4.3. Performance Levels and Comparisons 

To assess the performance levels from the obtained results, the relative mean absolute error 

(RMAE), RRMSE, and coefficient of correlation (r) were calculated: 
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where preO  is the average of the predictions. Low RMAE and RRMSE values and high r values 

typically indicate favorable performance levels. Precise predictions are those whose RMAE, and 

RRMSE are nearly 0 and r values are nearly 1. 

The predictions of the ANN–PAC, ANN–TRI1, ANN–TRI2, and regression models were compared 

using these performance criteria. Table 3 lists the results for the four models obtained using RMAE, 

RRMSE, and r performance criteria calculated by the validation and testing sets. The RMAE was 

computed using a term-by-term comparison of the error in the prediction and the actual value of the 

variable. Thus, the RMAE is an unbiased statistic for measuring the predictive capability of a  

model [43]. For the validation and testing sets, the RMAE and RRMSE results for the ANN–PAC 

model were lower than those for the ANN–TRI1, ANN–TRI2, and regression models, implying that 

ANN–PAC exhibited relatively few prediction errors and lower bias measures with respect to the 

actual values, possibly because trial-and-error calibrations cannot be performed for all variables 

simultaneously but rather separately, which is a time-intensive process. Moreover, because the 

interaction between parameters cannot be determined, this method cannot obtain global optimal 

solutions [20]. The r performance levels suggested that the ANN–PAC and regression models 

successfully exploited the relationship between the observed and predicted rainfalls. In addition, by 

comparing the ANN–PAC results obtained for the validation and testing sets, we observed that  

the performance levels obtained using the validation set were slightly higher than those obtained using 

the testing set. Therefore, we concluded that the generalizability of the constructed ANN–PAC  

model can be calibrated using the training–validation–testing procedure for applications in 

precipitation forecasting. 

Table 3. Performance levels of the various models assessed by using the validation set 

Testing sets. 

Subset Model 
Performance 

RMAE RRMSE r 

Validation set ANN-PAC 0.397 0.575 0.886 

 ANN-TRI1 0.528 0.750 0.817 

 ANN-TRI2 0.482 0.695 0.832 

 Regressions 0.441 0.708 0.859 

Testing set ANN-PAC 0.429 0.685 0.824 

 ANN-TRI1 0.557 0.901 0.742 

 ANN-TRI2 0.555 0.895 0.733 

 Regressions 0.581 0.880 0.755 
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4.4. Effects of the Number of Increments 

As stated in Section 3.3, the number of increments between the minimal and maximal values for 

each parameter was 10. To investigate the effect of the number of increments on the prediction ability 

and computation efficiency, the number of increments were varied as 5, 8, 10, and 13. Figure 9 

illustrates the relationships among RRMSE prediction errors by using a validation set, computational 

time, and the number of increments. As the number of increments increases, the computing efficiency 

decreases because of a considerable increase in computational time, whereas the prediction errors 

decrease because of the increased capability of finding the optimal solution. 

  

Figure 9. Effect of increment numbers on computational time and prediction errors. 

5. Conclusions 

ANNs are widely applied in engineering solutions. When constructing ANN-based models, a 

considerable number of model parameters must be calibrated, and the trial-and-error method is 

frequently employed for calibration during ANN training. This paper presents ANN models for  

1-h-ahead rainfall forecasting, in which the training model parameters are adjusted using the proposed 

PAC approach. The classical MLP ANN model was used to verify the utility of the proposed approach. 

The MLP-based ANN comprises three parameters: the learning rate, momentum, and number of nodes 

in the hidden layer. 

Observed typhoon characteristics and ground weather data at the Dawu gauge station in Taitung, 

Taiwan, were the study data. To compare the accuracy of ANN–PAC, traditional multiple linear 

regression was selected as the benchmark. In addition, two ANN models based on a trial-and-error 

calibration method, ANN–TRI1 and ANN–TRI2, were realized by manually tuning the parameters. 

The results clarify that the ANN–PAC model yielded more reliable results than ANN–TRI1,  

ANN–TRI2, and the regression models. Moreover, as the number of increments within the parameter 

ranges increased, the computing efficiency of the ANN–PAC model decreased because of considerable 

increase in the computational time, whereas the prediction errors of the model decreased because of 

the model’s increased capability of finding the optimal solution. Therefore, a high number of 
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increments within parameter ranges must be used in applications where accuracy is critical, whereas a 

low number must be used in applications where computing efficiency is essential. 
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