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Abstract: Elevational climatic heterogeneity, complex terrains, and varying subsurface properties
affect the sensitivity of evapotranspiration (ET) in dryland mountain forests to hydrometeorological
changes. However, the elevational distribution of ET sensitivity and its major influencing factors
remain poorly understood. This study focused on the mid-altitude zone (1000–3500 m) forests in
the Chinese Western Tianshan Mountains and assessed ET sensitivity to multiple climate variables,
including precipitation (P) and potential evapotranspiration (PET), from 2000 to 2020. To evaluate
the multi-year mean and trends in ET sensitivity, multi-source remote sensing data and regional
survey data were analyzed using Spearman’s correlation coefficient, the sliding window method,
and Kendall’s test. Furthermore, the relative importance of environmental variables (topography,
geology, soil, and vegetation) was investigated. P and PET showed no significant trends, while
ET exhibited a significant increasing trend (5.81 mm/yr, p < 0.01), particularly at elevations above
2000 m. Most forests (93.5%) showed a positive sensitivity of ET to P, and 70.0% showed a positive
sensitivity of ET to PET, mainly at elevations of 1500–2500 m. Additionally, the trend in ET sensitivity
to P decreased with an increasing elevation, with 64.5% showing a positive trend. Meanwhile, the
trend in ET sensitivity to PET increased with elevation, with 88.1% showing a positive trend. No-
tably, 53.2% of the forests showed increasing ET sensitivity trends to both P and PET, primarily at
elevations of 2000–3000 m with a mean normalized difference vegetation index (NDVI) of 0.56. Geo-
logical factors, particularly the hydrological properties of weathered bedrock, contributed the most
(~47%) to mean sensitivity. However, geological and vegetative factors, including the NDVI and
root zone water availability, were the main contributors (35% each) to the sensitivity. This study
highlights the elevation-dependent sensitivity of dryland mountain forests to hydrothermal changes,
with higher-elevation forests (>2000 m) being more sensitive to global warming.

Keywords: evapotranspiration sensitivity; elevational gradient; dryland mountains forest; multi-
source analysis; environmental control

1. Introduction

Drylands cover more than 40% of the Earth’s surface and support around 40% of the
global human population [1–3]. Ecosystems in water-limited drylands are highly fragile
and sensitive to the increasing aridity caused by climate change [4,5]. Mountains in dry-
lands serve as regional “water towers”, supplying fresh water to downstream areas [6]. The

Water 2024, 16, 1252. https://doi.org/10.3390/w16091252 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16091252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0009-0000-4038-5185
https://orcid.org/0000-0002-2790-0135
https://doi.org/10.3390/w16091252
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16091252?type=check_update&version=2


Water 2024, 16, 1252 2 of 21

warming climate is expected to intensify and accelerate the global hydrological cycle, with
impacts that vary across different spatial and temporal scales [7]. Mountains are unique
ecosystems that encompass all latitudinally controlled climate zones, and the vegetation in
these areas are highly sensitive to both average and extreme hydroclimatic conditions [8,9].
Elevation-dependent warming phenomena result in more rapid environmental changes
in mountain systems compared to the lowlands, particularly in dryland mountain ecosys-
tems [10]. Forest evapotranspiration (ET) plays a crucial role in the hydrological cycle
of dryland mountains, directly influencing the water supply and ecological security of
oasis-desert areas in the lower reaches [11,12]. Therefore, it is essential to quantify the
spatiotemporal patterns of forest ET in response to climatic variations along elevational
gradients for effective water resource management in water-limited regions [13].

ET plays a crucial role in the water budget and energy balance of biogeophysical
systems, impacting the functioning of the local and regional climate, hydrology, and ecosys-
tem [14,15]. Forest ET encompasses the combined processes of water loss from the land
surface to the atmosphere through evaporation and canopy transpiration, which closely
links a series of land surface processes with ecosystem functions [16]. It is important to un-
derstand the complex interactions between forest ET, climate conditions (e.g., precipitation
(P), net radiation, air temperature, humidity, and wind speed), and surface characteristics
(e.g., soil moisture and canopy structure), especially in the context of global warming and
the increasing impact of human activities [17]. The Budyko framework highlights that
water and energy supply conditions, represented by P and potential evapotranspiration
(PET), respectively, are the two major climatic factors controlling actual ET, particularly
in dryland regions where water availability is limited [18,19]. The variation in dryland
forest ET is highly sensitive to these two climatic factors, which collectively determine
bioclimatic aridity [20,21]. Climate change, notably global warming, is expected to impact
ET by increasing the potential evapotranspiration (PET) levels due to changes in radiation,
temperature, and water vapor deficit, as well as variability in P [22,23].

There has been increasing concern about the impacts of climate factors on ecosys-
tem ET in many regions across different climate zones in the context of global warming,
ranging from humid catchments and semi-arid and arid mountainous basins to boreal
forests [23–27]. However, the impact of elevation on the sensitivity of mountain forest ET
to atmospheric water input and demand has rarely been discussed. This issue is becoming
more relevant as water input fluctuation and atmospheric water demand increase [28].
One of the challenges in studying ET and its response to climate variability is the spatial het-
erogeneity of mountainous forest ecosystems, particularly along the elevation gradient [29].
This spatial variation is influenced by the multiple altitudinally controlled climatic zones of
mountains, complex land surface conditions, and the intricate forest ET process [30]. Recent
advancements have led to the development of several long-term gridded ET products uti-
lizing remote sensing, land surface models, and data assimilation. These products have the
capability to address the limitations of ground measurements and provide opportunities
for studying large-scale spatiotemporal variations in ET [31].

Furthermore, recent studies have emphasized the significant impact of bedrock lithol-
ogy and regolith properties on the sensitivity of ecosystem productivity to variations in
climatic water deficit [32,33]. Of particular note is the limited water storage and supply
capacity of the shallow soil cover beneath mountain forests, highlighting the critical role
of water from the bedrock regolith in sustaining these forests during dry periods [34,35].
In tectonically active environments characterized by fault zones that fragment rocks and
create complex geomorphological features, surface fault characteristics play a crucial role in
shaping the spatial and temporal vegetation patterns [36,37]. Hence, geological variables,
such as regolith properties and tectonic properties, likely play a significant role in regulat-
ing mountain forest ET, although detailed studies investigating these geological impacts
remain limited.

The Tianshan Mountains, known as the “water tower of Central Asia” [38], are the
largest mountain range in arid regions globally and act as the primary water source
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and ecological barrier for the region. Mountain forests within the Tianshan Mountains
play a crucial role in water and soil conservation, as well as in maintaining ecosystem
functions. The climatic conditions and forest ecosystems of the Tianshan Mountains are
highly sensitive to climate change [39]. Furthermore, the Tianshan Mountains are a classical
resurgence orogenic belt resulting from the collision of the Indian and Eurasian continents.
This collision has led to complex geomorphological conditions, diverse bedrock types,
and active tectonic movements in the region [40]. The relationship between mountain
ecosystems and the geoenvironment is complex, involving mutual feedback. Currently, it
remains unclear how forest ET and its sensitivity to climatic conditions vary in the Tianshan
Mountains. Additionally, investigating the connections between these changes in sensitivity
and regional conditions such as topography, geology, and soils is essential. Addressing
these questions is crucial for understanding the response of hydrological processes in
mountain forests to environmental changes and for developing restoration measures at
different elevations with varying hydrothermal conditions.

This study aims to explore the significance of incorporating elevation gradients and
geological elements to understand changes in ET in dryland mountain forests. Specifically,
the research in this study focuses on the forested areas within the mid-altitude zone
(1000–3500 m) of the Chinese Western Tianshan Mountains. To analyze spatiotemporal
variations in ET, a high-spatial-resolution gridded remote sensing ET product based on the
Penman–Monteith–Leuning equation version 2 (PML-V2) is utilized, along with gridded
P and PET data. Spearman’s correlation coefficient, the moving-window method, and
the Kendall test are used to investigate the multi-year mean and trend of ET sensitivity
to climatic conditions at the pixel level. Finally, the machine learning algorithm eXtreme
Gradient Boosting (XGBoost) is used to evaluate the impact of environmental variables
such as topography, geology, soil, and vegetation on variations in sensitivity.

2. Materials and Methods
2.1. Study Area

The Tianshan Mountains, a large mountain range in Central Asia, stretch approx-
imately 2500 km in length and 200–400 km in width. They are considered the world’s
largest and most isolated east–west mountain range in the temperate arid zone and are
a significant part of the southern Central Asian Orogenic Belt. In northwestern China’s
Xinjiang Uygur Autonomous Region, also known as the Chinese Tianshan Mountains, the
eastern part extends 1700 km from east to west, with an average elevation of approximately
2300 m above sea level (asl) [39]. The Chinese Tianshan Mountains are divided into eastern
and western sections by the Urumqi-Korla line. This study specifically focuses on the
Western section of the Chinese Tianshan Mountains, CWTM (79◦45′ E to 86◦58′ E, 41◦46′ N
to 45◦24′ N; see Figure 1), which covers approximately 248,000 km2 and consists of diverse
landforms such as high mountains, steep hills, wide basins, and river valleys. Within the
borders of China, the highest elevations typically range between 4500 and 5500 m, although
towards the western parts of this range, peaks higher than 7000 m are found. The boundary
zone between the basin and the mountains is characterized by numerous active faults and
folds, leading to fragmented rocks and a series of thrust earthquakes in the area [40]. The
CWTM spans different bioclimatic zones, all falling within the semi-arid climate range
between the warm temperate desert of the Tarim Basin to the south and the temperate
desert of the Junggar Basin to the north.
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Figure 1. (a) Location and spatial pattern of elevation of the Chinese Western Tianshan Mountains 
(CWTM), the mid-altitude zone (1000–3500 m asl.) was selected as the study area; spatial pattern of 
(b) land use/land cover in CWTM and (c) normalized difference vegetation index (NDVI) of mid-
altitude forest in CWTM; (d) elevational distribution (in 200 m band) of forest mean NDVI (during
the period of 2000–2020, with error bars indicating the standard deviation) and forest area.

The CWTM is a significant part of the Tianshan Mountains, showcasing a variety of 
natural landscapes including glaciers, permanent snow cover, virgin forests, grasslands, 
and deserts. It exhibits the most comprehensive mountain elevation vegetation belts in a 
globally temperate arid region, transitioning through a montane steppe belt, a coniferous 
forest belt, an alpine meadow belt, an alpine cushion vegetation belt, and a nival belt. The 
mountain forest is predominantly composed of the boreal tree species Picea schrenkiana 
var. tianshannica and is mainly distributed in the mid-altitude zone (1000–3500 m asl), cov-
ering approximately 4600 km2. Therefore, this region was chosen as the study area for 
forest ET research. The average annual temperature in this region ranges from −6 to 8 °C, 
with an average annual precipitation varying from approximately 200 mm to 600 mm, 
most of which falls during the rainy season (June–September) [37]. The mid-altitude 
CWTM is characterized by two main soil types: chernozems and kastanozems, with a 
thickness generally less than 80 cm. These soils are formed from a parent material consist-
ing of unevenly thick loess-like substances. 

2.2. Data Sources and Processing 
PML-V2 was used to evaluate ET from the ET product [41]. The PML-V2 ET product 
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Figure 1. (a) Location and spatial pattern of elevation of the Chinese Western Tianshan Mountains
(CWTM), the mid-altitude zone (1000–3500 m asl.) was selected as the study area; spatial pattern
of (b) land use/land cover in CWTM and (c) normalized difference vegetation index (NDVI) of
mid-altitude forest in CWTM; (d) elevational distribution (in 200 m band) of forest mean NDVI
(during the period of 2000–2020, with error bars indicating the standard deviation) and forest area.

The CWTM is a significant part of the Tianshan Mountains, showcasing a variety of
natural landscapes including glaciers, permanent snow cover, virgin forests, grasslands,
and deserts. It exhibits the most comprehensive mountain elevation vegetation belts in a
globally temperate arid region, transitioning through a montane steppe belt, a coniferous
forest belt, an alpine meadow belt, an alpine cushion vegetation belt, and a nival belt. The
mountain forest is predominantly composed of the boreal tree species Picea schrenkiana var.
tianshannica and is mainly distributed in the mid-altitude zone (1000–3500 m asl), covering
approximately 4600 km2. Therefore, this region was chosen as the study area for forest
ET research. The average annual temperature in this region ranges from −6 to 8 ◦C, with
an average annual precipitation varying from approximately 200 mm to 600 mm, most
of which falls during the rainy season (June–September) [37]. The mid-altitude CWTM
is characterized by two main soil types: chernozems and kastanozems, with a thickness
generally less than 80 cm. These soils are formed from a parent material consisting of
unevenly thick loess-like substances.

2.2. Data Sources and Processing

PML-V2 was used to evaluate ET from the ET product [41]. The PML-V2 ET product
provides data at 8-day temporal and 500 m spatial resolutions, incorporating vegetation
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transpiration and gross primary productivity through a biophysical canopy conductance
model in the PML model. This model also considers the impact of changes in CO2 con-
centration. The accuracy of the product was validated against ground observations from
95 flux towers representing ten plant functional types globally, showing high accuracy.
Among five process-based ET algorithms, the PML-V2 product was found to be the most
important at the site scale for integrating ET across China [31]. The spatiotemporal variation
of terrestrial ET and its components has been demonstrated by the wide use and verification
of the PML-V2 ET dataset [42]. In this study, we analyzed the spatiotemporal variation
in annual ET in the CWTM region from 2000 to 2020. Annual climatic data, including P,
temperature, and PET, were obtained from a 1 km monthly meteorological dataset covering
China from 2000 to 2020 [43,44].

Land cover data were sourced from the China National Land Use and Cover Change
(CNLUCC) dataset, with a spatial resolution of 30 m (http://www.resdc.cn/, accessed on
25 July 2023) [45]. This dataset was chosen for its suitability in conducting long-term time
series research in China compared to other land cover products [46]. The CNLUCC consists
of six major land cover categories, namely farmland, forestland, grassland, water, urban
land, and unused land. In this study, a sub-group within the “forestland” category named
“natural and plantation forests with canopy density >20%”, which plays a significant role
in local environments, was selected to represent the mountain forests. To emphasize the
sensitivity of forest evapotranspiration to climatic variations (atmospheric water input
and demand) and minimize the impact of land use change, we chose the grid where the
predominant land use category based on CNLUCC data for the years 2000, 2005, 2010, 2015,
and 2020 was “forestland” (the mode).

A total of 14 environmental variables were used to predict the ET pattern, encompass-
ing geological, topographic, soil, and vegetation variables. Detailed information regarding
the resolution and sources are presented in Table 1.

Table 1. Description and sources of the environmental data.

Attribute Variable Abbreviation Temporal Range and
Spatial Resolution Source

Geology

Distance to faults DTF 500 m

Spatial Database of
1:250,000 Digital

Geologic Map
of Xinjiang

Depth to bedrock DTB 100 m
Depth-to-bedrock map

of China at a spatial
resolution of 100 m

Regolith porosity RPO 1 km
GLHYMPSRegolith permeability RPE 1 km

Topography
Elevation Elev

90 m ASTER Global Digital
Elevation Model

Slope Slope
Aspect Aspect

Soil

Volumetric fraction of
coarse fragments (>2 mm) VFCF

250 m SoilGrids 2.0Proportion of sand
particles (>0.05 mm) in the

fine earth fraction
Sand

Soil organic carbon content
in the fine earth fraction SOC

Soil depth SD

Basic soil property
dataset of

high-resolution China
Soil Information Grids

http://www.resdc.cn/
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Table 1. Cont.

Attribute Variable Abbreviation Temporal Range and
Spatial Resolution Source

Vegetation

Normalized difference
vegetation index NDVI 2000–2020, 500 m MOD15A2H

(Terra MODIS)

Rooting zone water storage
capacity RZWSC 0.05◦ (~5 km)

Global patterns of
water storage in the

rooting zones
of vegetation

Rooting depth RD 1 km Hydrologic regulation
of plant rooting depth

(1) Geological data include distance to faults (DTF), depth to bedrock (DTB), re-
golith porosity (RPO), and regolith permeability (RPE). DTF data were calculated using
the Euclidean Distance tool in ArcGIS Desktop 10.8 (Esri Co. Ltd., Redlands, CA, USA)
based on geological fault line data from the spatial database of the 1:250,000 Digital Geo-
logic Map of Xinjiang, provided by GeoClound3.0 (https://geocloud.cgs.gov.cn, accessed
on 16 July 2023). DTB data were extracted from high-resolution (100 m) DTB maps of
China [47], computed based on 6382 DTB observations from the Chinese National Impor-
tant Geological Borehole Database. RPO and RPE data were obtained from the Global
HYdrogeology MaPS (GLHYMPS), providing the permeability and porosity of consolidated
and unconsolidated geologic units beneath soil horizons, with an average polygon size of
approximately 100 km2 [48]; this was converted to a regular grid with a spatial resolution of
500 m for usage. The correlation coefficient between RPO and RPE was only 0.03, indicating
that these two variables in this dataset represented independent information [32].

(2) Topographic information, including elevation (ELE), slope (SLP), and aspect (ASP),
was obtained from the ASTER Global Digital Elevation Model with a spatial resolution of
90 m (http://www.gscloud.cn/, accessed on 16 July 2023) and processed using the spatial
analyst tool in ArcGIS Desktop 10.8.

(3) Soil information was obtained from SoilGrids2.0 250 m (https://soilgrids.org/,
accessed on 16 October 2023) [49], which provided a global dataset of soil properties at
six standard depths from 0 to 200 cm. Three soil properties related to hydraulic conductivity
were selected: coarse fragments fraction, sand particles proportion, and organic matter
content [50], and the multi-layer values were averaged for use. Soil depth data with
a spatial resolution of 250 m were extracted from the basic soil property dataset of the
high-resolution China Soil Information Grids [51].

(4) Vegetation variables comprised the normalized difference vegetation index (NDVI),
rooting zone water storage capacity (RZWS), and rooting depth (RD). NDVI during the
growing season (April to October) was derived from the MOD15A2H product with a spatial
resolution of 500 m for the years 2000 to 2020, obtained from Google Earth Engine (https:
//code.earthengine.google.com/, accessed on 7 July 2023) [37]. RZWS data, which quantify
the amount of water accessible to plants, were extracted from a global dataset derived
using mass-balance approaches with a spatial resolution of 0.05◦ × 0.05◦ (~5 km) [52]. RD
data were extracted from a global dataset of the maximum depth of root water uptake,
computed from inverse modeling of root water uptake profiles with a spatial resolution of
1 km [53].

Using ArcGIS Desktop 10.8, all the data were resampled to a spatial resolution of
500 m using the nearest-neighbor interpolation and projected in the WGS 1984 coordinate
system using the Mercator projection (Universal Transverse Mercator, UTM). The index
band selected was 45◦ N. Extraction tools in the ArcGIS Desktop 10.8 were used to generate
multiple attributes for individual grids, which were then analyzed, processed, and plotted
using Microsoft Excel and Python software (version: 3.11). Maps were created using
ArcGIS software.

https://geocloud.cgs.gov.cn
http://www.gscloud.cn/
https://soilgrids.org/
https://code.earthengine.google.com/
https://code.earthengine.google.com/
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2.3. Methodology

In this study, the inter-annual trend of annual ET, P and PET from 2000 to 2020 was
examined using a linear regression model with time (year) as the independent variable.
ET sensitivity was calculated by determining Spearman’s correlation coefficient between
annual ET data and meteorological factors (P and PET) on a per-pixel basis. Furthermore,
changes in ET sensitivity were analyzed using Kendall’s τ with sliding 7-year windows of
inter-annual series. The relative importance of multiple factors contributing to ET sensitivity
and its trend was estimated using machine learning algorithms (XGBoost models). The
technical flowchart in Figure 2 illustrates this process.
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Figure 2. Schematic flow chart of this study. The brown numbers in the parentheses indicate the
numbers of variables in each category.

2.3.1. Sensitivity Analysis and Its Trend

Spearman’s correlation coefficient was used in this study to assess the sensitivity of ET
to meteorological factors. While the Pearson correlation coefficient is effective in identifying
linear relationships, the Spearman rank correlation coefficient is more suitable for variables
with non-normal distributions, homoscedasticity, and linear or small sample sizes; it can
also detect monotonic relationships [54,55]. The sign of the Spearman’s coefficient indicates
the direction of the relationship. A larger value (positive or negative) suggests a stronger
response of the flux to variability in the variable. A coefficient close to zero indicates that
the flux did not respond significantly to the variable.

The trends of the 7-year window Spearman’s correlation over the two-decade study
period were assessed using Kendall’s τ, a ranked correlation coefficient that ranges from
−1 to 1 and incorporates nonparametric hypothesis testing. This was accomplished by
utilizing sliding multi-year sequences (2000–2006, 2001–2007, . . ., 2014–2020) of Spearman’s
correlation coefficients at the pixel level. To validate the robustness of the findings, sensitiv-
ity analyses were conducted using different time windows (W = 7, 9, 11, 13 years), and a
7-year window was determined to be the optimal length for analysis [56]. A positive value
of Kendall’s τ indicates an increasing trend in sensitivity to environmental variables, while
a negative value indicates the opposite trend. Due to its ability to account for temporal
dependence, Kendall’s τ is recognized as a reliable and robust index that represents the
rate of change in correlations. It identified significant trends in the trend analysis at the
P < 0.05 level [57].
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2.3.2. Attribution Analysis

To evaluate the relative importance of various environmental variables influencing
long-term mean values and trends in ESP or ESPE (targets), eXtreme gradient boosting
machine learning models (XGBoost) were utilized. The XGBoost method is capable of
capturing nonlinear relationships and interaction effects in the data, making it suitable for
complex prediction problems [58]. Additionally, its built-in regularization term can control
the complexity of the model and effectively prevent overfitting. The XGBoost method
enables parallel data processing and further enhances model performance by including
regulatory factors to prevent overfitting; these factors have been widely implemented in
attribution analysis [56–58]. To directly compare the sensitivity to environmental variables,
we standardized the original environmental data as the “standardized anomaly” (also
known as z-score) by subtracting the mean and then dividing by one standard devia-
tion. Randomized searches was used to determine the optimal parameter combinations
(training size: 30%, learning rate: 0.1, number of estimators: 400, maximum depth of tree:
10, minimum value of the loss function: 0, sum of weights of the smallest leaf node samples:
10). The data were split into testing and training parts, and fivefold cross-validation was
additionally performed to avoid overfitting. These processes were executed using the
Python packages “xgboost”, “sklearn.model_selection”, and “sklearn.metrics”.

3. Results
3.1. Spatiotemporal Patterns of Evapotranspiration and Climatic Factors

Annual ET, P, and PET in the study area exhibited distinct inter-annual trends from
2000 to 2020, with some existing correlations (Figure 3). The multi-year mean PET was
648.4 mm, indicating a non-significant increasing trend of 1.21 mm/yr (p = 0.08) according
to the linear regression. It increased from a mean of 643.4 mm in 2000–2010 to 654.0 mm
in 2011–2020, reaching its peak value in 2008 at 679.2 mm. The average annual P was
506.3 mm, showing a non-significant increasing trend of 0.64 mm/yr (p = 0.76). The lowest
value was recorded in 2008 (418.4 mm), which is consistent with the year of the highest
PET, while the highest value was recorded in 2016 (647.6 mm). Considering the combined
influence of P and PET, the multi-year average ET was 463.3 mm, indicating a significant
increasing trend of 5.81 mm/yr (p < 0.01). It increased from an average of 433.4 mm in
2000–2010 to 496.3 mm in 2011–2020, reaching its peak in 2016 at 562.8 mm, which aligns
with the year of the highest P.
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From 2000 to 2020, PET, P, and ET exhibited distinct distribution patterns along the ele-
vation gradient (Figure 4). Multi-year mean annual PET generally decreased monotonously
with the increasing elevation, with a median decrease from 976.8 mm at elevations of
1000–1200 m to 477.7 mm at elevations of 3500 m. In contrast, multi-year mean P did not
show significant changes with elevation, remaining around 500 mm. ET remained relatively
stable at elevations of 1000–2500 m, with a median of 474.5 mm. However, at elevations of
2500–3500 m, ET significantly decreased with an increasing elevation, reaching the lowest
median value of 300.8 mm at the highest elevations of 3400–3500 m. The multi-year trends
of these three variables along the elevation gradient also differed. For any elevation and
from 2000 to 2020, PET showed a consistent increase of ~0.33 mm. In contrast, the trend in P
decreased at lower elevations and increased at upper elevations. As a result of these trends,
ET at elevations of 1000–2000 m showed no significant trend, whereas in most forests above
2000 m, there was an increasing trend.
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3.2. Spatiotemporal Patterns of Evapotranspiration Sensitivity and Its Trend

During the period 2000–2020, the ET in mountain forests displayed distinct spatial
variations in sensitivity to both P and PET (Figure 5). The sensitivity of ET to precipitation
(ESP) was mostly positive, covering approximately 93.5% of all forested areas. This sensi-
tivity was primarily concentrated in the range of 0.3–0.4. In contrast, the sensitivity of ET
to PET (ESPE) was comparatively lower, with approximately 70.0% of mountain forest ET
exhibiting positive sensitivity, primarily falling within the range of 0.1–0.3. Notably, ESP
and ESPE demonstrated opposing trends. For example, in the southern region of the study
area, mountain forests displayed a positive ESP (as indicated by the blue color in Figure 5),
while their ESPE was negative (as indicated by the yellow or orange color in the figure).

Similarly, the ESP and ESPE in mountain forests exhibited an elevation-dependent distri-
bution pattern (Figure 6a). ESP decreased approximately between elevations of 1000–2200 m,
increased between 2200–3200 m, and then decreased again between 3200–3500 m. In con-
trast, ESPE showed a pattern of initial increase, followed by a decrease, and then a slight
increase within the same elevation intervals. The former fluctuated within an average
range of 0.25 to 0.35, while the latter fluctuated within an average range of −0.2 to 0.2. The
relationship between both sensitivities and the NDVI was inversely proportional. As the
NDVI increased, ESP decreased and stabilized at a low level, while ESPE increased and then
stabilized (Figure 6b). Mountain forests with low vegetation coverage (NDVI < 0.35) dis-
played both positive and negative ESPE, whereas those with high coverage (NDVI > 0.35)
demonstrated positive ESP and ESPE.
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During the period from 2000 to 2020, there was clear spatial variability in the multi-year
trend in the ESP and ESPE in mountain forests (Figure 7). Approximately 64.5% of mountain
forest ET showed an increasing trend in ESP, with a relatively scattered distribution, mainly
within the range of 0–0.06. In contrast, approximately 88.1% of mountain forests exhibited
an increasing ESPE, with a more concentrated distribution, primarily falling within the
range of 0.4–0.7. Notably, a considerable number of mountain forests showed contrasting
trends in ESP and ESPE. For example, in the southern part of the study area, mountain
forests exhibited a decreasing trend in ESP (indicated by the deep orange color in Figure 7)
but an increasing trend in ESPE (indicated by the deep blue color in the figure).

Both the ESP and ESPE in mountain forests displayed contrasting patterns along
the elevation gradient (Figure 8). ESP generally decreased with elevation, with positive
average values at elevations of 1000–2800 m, which then turned negative at 2800–3500 m.
In contrast, ESPE significantly increased with elevation. The average value increased
from 0.21 to 0.64 at elevations of 1000–3500 m, accompanied by a decrease in the standard
deviation. The relationship between these two sensitivity trends and the NDVI was also
contrasting. Mountain forests exhibited an increasing trend in ESP as the NDVI increased,
eventually stabilizing at high levels. Conversely, ESPE values decreased and stabilized
at low levels as the NDVI increased. Mountain forests with low vegetation coverage
(NDVI < 0.4) showed a positive ESP trend (>0.4) and a negative ESPE trend. In contrast,
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mountain forests with a high coverage (NDVI > 0.5) showed a similar positive trend in ESP
and ESPE.
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ESP and ESPE, along with their trends, in mountain forests exhibit significant diversity
across different elevations and growth conditions (Figure 9). A significant proportion
(63.5%) of the mountain forests exhibited positive ESP and ESPE values, primarily located
at elevations of 2000–3000 m. Notably, ET in forests at higher elevations of 2500–3000 m
was generally less sensitive to PET but more susceptible to P. As illustrated in Figure 9b,
the majority (52.8%) of mountain forests showed an increasing trend in both ESP and ESPE,
with an average elevation of 2000–3000 m and an average NDVI of 0.56. It is particularly
noteworthy that the ESPE trend in forests at higher elevations of 2500–3000 m is higher.
Approximately 34.9% of mountain forests showed a trend of decreasing ESP and increasing
ESPE, with an average elevation of 2000–2500 m and an average NDVI of 0.49.
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3.3. Attribution of Sensitivity Trends

The influence of environmental variables on ESP and ESPE shows significant variation
across different elevation bands. Figure 10 illustrates that DTB and RPO are the predom-
inant factors affecting ESP. Specifically, the relative importance of DTB peaks at a value
of 0.36 at low elevations of 1000–1500 m, while its influence is significantly reduced in
higher elevation bands. Conversely, the relative importance of RPO peaks with a mean
value of 0.28 at elevations of 3000–3500 m. Similarly, for ESPE, the pattern is similar, with
DTB’s relative importance being most pronounced at the lower elevations of 1000–1500 m,
averaging 0.39, and decreasing in other zones. The maximum relative importance of RPO
is observed at 0.43 at elevations of 3000–3500 m. These findings underscore the significance
of DTB and RPO, both geological variables, as the primary driving factors influencing ESP
and ESPE, with their impact varying across different elevation levels. In the case of ESP, the
relative importance of elevation (ELE), slope (SLP), RPO, and RPE increases with elevation.
In contrast, the relative importance of DTF, DTB, and rooting zone water storage capacity
(RZWSC) shows a declining trend in increasing elevation. The environmental variables
influencing ESPE and ESP showed a consistent pattern along the elevation gradient.

The impact of each environmental variable on trends in ESP and ESPE varied signifi-
cantly across the different elevation bands, as shown in Figure 10. Interestingly, RPE and
NDVI emerged as the most influential variables for ESP trends, displaying significant rela-
tive importance across a wide range of elevations. Their effect was particularly pronounced
in the 1000–1500 m band, where their relative importance exceeded 0.20. This emphasizes
the crucial role of RPE and NDVI in shaping ESP trends, especially at lower elevations.
Moreover, for ESPE trends, NDVI and RZWSC were identified as the primary contributors,
exerting the most substantial influence at elevations of 1000–1500 m, with mean relative
importances of approximately 0.20 for NDVI and 0.41 for RZWSC. This suggests that NDVI
and RZWSC, both vegetation variables, are the dominant factors influencing ESPE trends,
particularly in lower elevation zones.

In the case of mountain forests, geological variables made the greatest contributions to
ESP and ESPE, with mean values of 0.47 and 0.48, respectively (Figure 11). Topographic
and vegetation variables showed similar contributions, with mean values ranging from
0.20 to 0.26. However, for trends in ESP and ESPE, the contributions of geological variables
were significantly reduced compared to the sensitivity, with values of 0.36 and 0.33, re-
spectively. On the other hand, the relative importance of vegetation variables increased
significantly, with mean values of 0.35 for both ESP and ESPE trends. The relative im-
portance of soil and topographic variables to the sensitivity and its trend did not change
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significantly, with mean values of around 0.21 and 0.08, respectively. Notably, topographic
variables had the smallest contribution to the sensitivity and its trend.
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4. Discussion
4.1. Elevation Variation of Climatic Conditions and Its Temporal Trend

Mountains are highly sensitive to climate change, experiencing more pronounced
climate variations compared to lowland regions worldwide [59]. This study showed a
significant increase in PET in the mid-altitude zone of the Chinese Western Tianshan
Mountains since 2000, as depicted in Figure 3, which is consistent with the trends in the
arid region of Northwest China [60]. Climatic warming and humidification have been
observed in arid Northwest China [61]. In contrast, annual precipitation in the study area
has fluctuated with no significant trends. Observation-based studies have indicated a
climatic shift from “warm-wet” to “warm-dry” around the year 2000 in the low-altitude
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zone, including the north and south slopes of the Tianshan Mountains and Yili Valley [62],
sparking a debate on regional variations in temperature and precipitation changes. To
examine the spatial and temporal patterns of temperature and precipitation trends, a
combined analysis of gridded observational, reanalysis, and modeled datasets would
be necessary [63].

The relationship between climatic conditions and elevation is well-established. PET,
which represents the maximum atmospheric evaporative capacity, is particularly influenced
by elevation. Its sensitivity varies with multiple meteorological factors such as temperature,
radiation, and relative humidity, along elevational gradients [44,64]. This study has demon-
strated a decline in average PET with increasing elevation, consistent with temperature
patterns [37]. The observed elevation-dependent pattern of PET is consistent with previous
studies on dryland mountains in Northwest China based on previous observations [65].
Previous studies have indicated that warming is more rapid at higher elevations, which is a
phenomenon referred to as elevation-dependent warming (EDW) [66]. However, this study
found a relatively stable PET increasing trend with elevation (around 0.33). In contrast, in
the Tibetan Plateau, the rate of change in PET declines with increasing elevation [67,68],
highlighting a complex connection between the PET and EDW.

The elevational patterns of precipitation in the study area were consistent with those
of adjacent arid mountain ranges, showing an increasing trend followed by a slight decline
with increasing elevation [69]. Due to the strong heterogeneity of climatic conditions,
sparse observations, and coarse resolution of data in complex terrains, as well as the
difficulties in measurements at high altitudes, accurate estimates of the spatial pattern of
mountain precipitation are still challenging [59]. This uncertainty can be reduced by using
downscaling approaches to precipitation products and integrating certain local covariates
in future studies [70].

4.2. Elevational Variation of Forest Evapotranspiration and Its Sensitivity to Climatic Conditions

ET is a highly complex variable in the water cycle, regulated by a combination of
internal (i.e., biological) and external (i.e., physical and climatic) processes [17]. Fac-
tors affecting ecosystems’ ET include climatic conditions (water demand and energy
supply) and surface characteristics (subsurface water supply capacity and water trans-
port capacity of vegetation). Surface characteristics traditionally include soil, topog-
raphy, and vegetation, with vegetation being the most dynamic and determining fac-
tor [23]. Changes in vegetation, such as vegetation greening associated with the imple-
mentation of ecological restoration projects, greatly affect ET, the extent of which varies
across different climates [71]. In humid regions, climate change dominates changes in ET
(contribution > 90%), while vegetation cover mainly impacts the changes in the proportion
of ET components (contribution ~60%) [26]. In contrast, in drylands, changes in vegeta-
tion type and increases in vegetation greenness contribute considerably to the increase in
ET [65,72]. Although most forest coverage in the study area showed no increasing trend [37],
forest ET showed a significant increasing trend for many years (5.81 mm/yr, P < 0.01). This
increase was higher than the average level of increased ET in arid Northwest China [65].
Additionally, it was mainly attributed to the increase in water demand, as the water supply
from precipitation in the study area showed no obvious trend (Figure 3). On the other hand,
the increasing trend of ET in other drylands has primarily been driven by an increase in
precipitation [27]. This suggests that while total vegetation growth in the Tianshan Moun-
tains is sensitive to moisture changes [39], forest water consumption in its middle-altitude
zone is more constrained by the water demand (closely related to temperature).

The spatial variation of ET is sensitive to climatic factors such as precipitation, net
radiation, and temperature [18]. Generally, ET is highly positively correlated with precipi-
tation in water-limited regions, while it is primarily influenced by air temperature and net
radiation in energy-limited regions. Specifically, mountain ecosystems are water-limited
at low elevations and energy-limited at high elevations [73]. Studies have demonstrated
that the radial growth of forests in the Altay Mountains (located adjacent to the study area)
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at lower elevations (<1800 m asl.) was positively correlated with precipitation, whereas
at higher elevations (>1800 m asl.) it was positively correlated with temperature [74].
Similarly, our study revealed that annual forest ET decreased with elevation, but forest
ET at higher elevations (>2000 m asl.) exhibited a significant increasing trend. This trend
may be linked to the relief of low-temperature stress on plants in the energy-limited high-
elevation zones and the lengthening of the growing season due to warming [75,76]. Future
projections suggest that temperatures are expected to rise, while changes in precipitation
remain uncertain in arid Northwest China [61]. This is likely to further lead to an increase
in mountain forest ET at higher elevations, resulting in a decrease in runoff and streamflow,
which could impact downstream water supply [77].

Our study found that the ET in most areas of the forest in CWTM was increasingly
sensitive to P (64.5%) and PET (88.1%), indicating that these forests are indeed hotspots
of hydrological intensification under climate change [78]. A similar pattern has also been
observed in the alpine forests of northwest China’s Qilian Mountains [29,65] (Yang, L.,
2021; Yang, L., 2022). Further, a positive temporal trend of ecosystem sensitivity to climate
variability was observed in 61.28% of China from 2001 to 2021 [56]. Therefore, the pattern
of increased ecosystem sensitivity would be more extensive under global warming. The
increased sensitivity of ET to P, coupled with more frequent and severe climate extremes,
could further enhance the relative importance of dryland mountains in the terrestrial
carbon cycle [79]. Specifically, the heightened sensitivity of ET to PET at high elevations
(>2500 m asl.) could increase forest ET in a warming climate, potentially increasing plant
carbon uptake and growth [80]. However, this could lead to vegetation overgrowth and soil
moisture depletion surpassing the ecosystem’s carrying capacity, significantly expanding
the ecosystem’s water limitation and escalating the risk of vegetation degradation under
ongoing climate change (i.e., structural overshoot) [81]. Vegetation degradation associated
with structural overshoot accounted for over one-third of drought events and exhibited
increasing trends from 1982 to 2015 in arid Northwest China [82].

There is increasing scientific evidence that the increasing forest ET under global
warming has broader ecological implications. For example, the climatic factors, particularly
P and PET, profoundly explained the richness pattern in the Larch forests and threatened
plant species in the mountain regions of China [83,84]. Furthermore, ET is regarded as
the primary climatic predictor of biodiversity, influencing not only the quantity of plant
growth but also the environmental conditions it fosters [85]. Climate change influences
vegetation growth and also impacts the physical, chemical, and biological properties of soil,
consequently affecting soil health. Notably, PET greatly affects forest carbon use efficiency
and soil organic carbon in Xinjiang. In particular, an increase in winter temperatures has
significantly promoted the carbon sequestration capacity of Picea schrenkiana in the Tianshan
Mountains [86,87]. Moreover, increased PET and its ET sensitivity contribute to the loss
of resilience in forests, which is crucial for vegetation health [88]. Therefore, in the future,
greater attention should be paid to monitoring forest greenness and water conditions at
high elevations, and formulating forest management strategies that consider the impact of
the terrain.

4.3. Geological Controls on Forest Evapotranspiration in Upland Landscapes

This study found that geological factors play a crucial role in determining the sensitiv-
ity of forest ET to climatic variations. The significance of the geological setting, including
bedrock lithology, saprolite properties, and distribution of faults, on vegetation growth and
ecohydrology on hillslopes has been increasingly emphasized in recent years [32,36,89]. A
global-scale study has highlighted the impact of bedrock lithology and weathering products
on the sensitivity of ecosystem productivity to changes in climate-related water deficits [32].
This influence is primarily exerted through their control over water holding capacity, with
the extent of the impact varying across different geographic regions. In upland landscapes
with shallow soils (typically less than 1 m), research at plot, slope, and regional scales
has shown that plants, particularly woody ones, can endure drought by extracting water
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stored in weathered bedrock layers, which may be tens of meters thick, beneath the soil
surface [42,90,91]. The uptake of water by deep roots of woody plants into weathered
bedrock or saprolite has been observed across diverse climatic and geological settings [34].
This study highlighted a regional-scale link between forest water uptake and the geological
setting of the region, demonstrating that water in weathered bedrock may be more vital for
plants than soil water, particularly in dry seasons in arid mountainous areas.

Moreover, empirical studies have indicated that the availability of water for moun-
tainous plants is not significantly linked to variations in rooting depth (RD) and soil depth
(SD) [33]. Consistently, this study proposed that the role of RZWSC is more crucial than
that of RD, suggesting that RZWSC better reflects water usage by mountain forests. Fur-
thermore, the contributions of geological factors such as DTB and RPE were found to be
more significant than SD, highlighting the potential role of weathered bedrock in supplying
water to plants. For example, bedrock permeability controls the seasonal fluctuations in
catchment water storage, and greater regolith permeability leads to a decrease in the water
holding capacity of the subsurface ecosystem [32,92]. Therefore, considering weathered
bedrock as a supplementary water source is beneficial for accurately modeling the seasonal
transpiration patterns of trees in the mountainous regions during dry seasons [35].

Vegetation in areas with higher weathered bedrock, such as near fault areas, may ex-
hibit higher productivity and water consumption under similar climatic conditions [37,93].
The presence of more fractured and highly weathered bedrocks in tectonic fault zones
enhances the water holding capacity and nutrient status of soils, leading to improved
vegetation growth in these areas [36]. However, vegetation in fault zones is also at a higher
risk of fault-induced landslides and ecological disturbances [94]. The relationship between
tectonic faults and vegetation growth is complex and varies depending on elevation [37].
Therefore, when conducting ecological restoration in dryland mountains with a complex
terrain situated in a tectonically active region such as the Tianshan Mountains, it is crucial to
consider the effects of elevation and local geological settings, including weathered bedrock
and fault properties.

4.4. Limitations and Future Work

This study integrated the PML-V2 ET dataset, gridded climate products (P and PET)
and multi-source environmental data to analyze the ET sensitivity to climate variation.
However, the data and methods used for this analysis had some uncertainties. Firstly, the
results in this paper are based on remote sensing data, and further validation is needed
in the future by combining field monitoring and process-based models. Secondly, the
sensitivity magnitude and variation of driving factors may differ for various sources of
data, potentially introducing uncertainty into the results. Robust accuracy assessments
of such data are essential [14]. Thirdly, Spearman’s correlation coefficient, the sliding
window method, and Kendall’s test are combined to estimate the multi-year variation of
sensitivity, and statistically based elasticity and variance analysis could be utilized in future
sensitivity analysis [56,65].

Furthermore, this study primarily focused on natural stable forests and climatic and
environmental variables. Over the past half-century, Xinjiang has experienced rapid popu-
lation growth and intensified human activities (e.g., cultivation, grazing, and ecological
projects), which account for over half of the variation in changes in each ecosystem indica-
tor [95]. Notably, increased vegetation from ecological projects may greatly impact regional
water cycles, especially in water-limited areas [71]. To comprehensively understand the ob-
served trends in ET sensitivity, it is necessary to further incorporate anthropogenic factors,
such as changes in land use and forest management practices, which could provide a more
holistic view. Future studies should evaluate the differences in remote sensing products
and enhance the temporal resolution of human activities data by conducting long-term
verifications using in situ observation data. In-depth exploration of forest sensitivity to
environmental change will need to consider the effects of these factors.



Water 2024, 16, 1252 17 of 21

5. Conclusions

In summary, this study revealed a broad increase in forest ET in the mid-altitude zone
of the Western Tianshan Mountains in China, driven primarily by rising water demand. A
contrasting trend in the sensitivity of ET to P and PET along an elevational gradient was
identified. Most forests displayed an increasing sensitivity to both P and PET, especially
at elevations above 2000 m. These findings highlight the elevation-dependent sensitivity
of dryland mountain forests to hydrothermal changes, with forests at higher elevations
(>2000 m) emerging as critical areas responding to intensified water cycles. Geological
factors, such as bedrock lithology and saprolite hydraulic properties, play key roles in
influencing forest ET sensitivity to climatic variations. Overall, the detected increase in
ET sensitivity suggests an enhanced response of mountain forest water cycles to climate
changes in the context of global warming. By identifying regions with strong and increasing
ET sensitivity at high elevations, this study underscores the importance of monitoring
vegetation growth dynamics and water status in these particular hotspots.
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