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Abstract: In the design of furrow irrigation, and in general in surface irrigation, the reliable estimation
of the advance time at the furrow end (tL) is a key issue for improving the efficiency and uniformity of
irrigation. In this study, three methods are used for estimating the tL, and their results are compared
with the experimental data of fifteen different furrows from the international literature. These methods
are as follows: (a) the Valiantzas equation, (b) the method presented by Walker and Skogerboe, based
on solving the volume balance equation by the Newton–Raphson iterative procedure and (c) the
method of Philip and Farrell. The first two methods assume that the infiltration is described by
the Lewis–Kostiakov equation and the extended Lewis–Kostiakov equation, respectively, while in
the case of the Philip and Farrell method, the infiltration is described by the Philip equation and
the Lewis-Kostiakov equation. The results showed that in most cases of the first two methods, the
absolute relative error value of the predicted time tL was less than 10%. The Philip and Farrell method
using the Lewis–Kostiakov infiltration equation underestimates the time tL and fails especially in the
case where the volume of the surface water is not negligible compared to the total volume of water
entering the system. The Valiantzas method is recommended because it was simpler and easier to
use and showed greater prediction accuracy of tL, resulting in better planning of irrigation systems
and contributing to water saving, which is currently a big issue.

Keywords: furrow irrigation; advance time; infiltration; Lewis–Kostiakov equation

1. Introduction

The main characteristic of surface irrigation is the simultaneous advance and infil-
tration of water from the inlet to the end of a field. Part of the total water moves on the
surface of dry soil as a thin surface layer, while at the same time the other part infiltrates
into the soil when a soil surface comes into contact with water [1]. The shorter the advance
time along the system, the greater the uniformity of the water depth infiltrating along the
system [2]. However, this is very difficult to achieve, because the advance phase and in
particular its completion time (tL) are affected by the water supply at the inlet of the system,
the roughness coefficient, the longitudinal slope of the system and the infiltration rate.

In the design of surface irrigation systems, the accurate estimation of the time tL, i.e.,
the time that the advancing water front has reached the system end, plays a decisive role,
because conventionally the irrigation time is usually taken as the sum of the time tL and
the time that is required to infiltrate a water depth equal to the irrigation dose at the lower
end of the field (ta). Thus, in the case where a water depth equal to the net irrigation dose
(Zn) has been infiltrated at the lower end of the system, the degree of storage will be Es = 1
and the degree of efficiency Ea will be equal to Ea = ZnL

qotδ
, where qo is the inlet water rate, L

is the furrow length and tδ is the total irrigation time, which is equal to tδ = tL + ta.
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To predict the advance phase, several models have been proposed based on numerical
solutions of surface flow models (e.g., kinematic wave model, zero inertia model, etc.)
or the volume balance equation [3,4]. The zero-inertia model and the kinematic wave
model have been found to reliably predict the advance phase in furrow irrigation [5–7].
However, the application of these models is not always easy, due to the complexity and
difficulties related to the various numerical optimization techniques as well as the large
number of their parameters. Such techniques are not easily adopted for routine furrow
design applications.

Philip and Farrell [8] showed that by using the Laplace transformation, the general
analytical solution of the Lewis and Milne [9] equation, which describes the infiltration–
advance of water in surface irrigation when there is a constant inflow, can be obtained. Fur-
thermore, by applying various infiltration equations, such as the Lewis–Kostiakov [10,11],
Philip [12] and Horton [13] equations, into the general analytical solution, they obtained
specific analytical solutions for the advance phase x(t) for each infiltration equation when
the amount of surface water is considered negligible. However, in most cases, the in-
filtration equations used are empirical, and therefore their parameters have no physical
meaning. In addition, the two-term infiltration equation of Philip [12] is only appropriate
for infiltration at short to medium infiltration times [14].

The U.S. Soil Conservation Service (SCS) [15] has proposed an empirical equation to
predict the duration of the advance phase, the application of which requires the classifica-
tion of the soil in the appropriate permeability group.

Walker and Skogerboe [3], using the two-point volume balance equation and assuming
that the advance phase is described by an exponential form equation, proposed an iterative
procedure (Newton–Raphson method) to estimate the time tL from the furrow distance.
Valiantzas [16] proposed algebraic equations to calculate the advance time as a function
of inflow rate, without requiring iterative calculation procedures. A disadvantage of the
method is perhaps that the time of advance versus distance relationship is described by
three equations of different mathematical form [16].

Also, Valiantzas [17], based on the volume balance equation, proposed an equation
to calculate the advance time as a function of the inflow rate and the parameters of the
Lewis–Kostiakov infiltration equation, which gives similar results as the zero-inertia model.
The equation was obtained by linear superposition of the two advance solutions for short
times and the asymptotic solution for a longer time. This equation can also be applied to
any form of the infiltration equation. Compared to the empirical SCS [14] equation, the
Valiantzas [17] equation predicts the advance time much better.

Cook et al. [14] introduced into the Lewis and Milne [9] equation the two-parameter
infiltration equation for linear soils presented by Philip [18]. This infiltration equation is
based on physically meaningful parameters such as sorptivity (S) and saturated hydraulic
conductivity (Ks) and is able to give adequate infiltration and advance behavior over all
time scales.

From the abovementioned information, it appears that if we exclude the various
simulation models of the duration of the advance phase, several analytical solutions and
methodologies have been proposed that may be sufficient for routine furrow irrigation
design applications. However, these solutions and their different methods rely on different
assumptions and use different infiltration equations. However, a comparative evaluation
of them, as far as we know, is absent from the literature.

The purpose of this paper is to compare (1) the Newton–Raphson iterative process
proposed by Walker and Skogerboe [3], (2) the Valiantzas [17] equation and (3) the Philip
and Farrell [8] method in predicting the advance time tL, as well as a comparison of their
results with the experimental data from 15 experimental fields presented in the international
literature. In the first two methods, it is assumed that the infiltration follows the Lewis–
Kostiakov equation, while in the third method, both the infiltration equations described
by Philip [12] and Lewis–Kostiakov are examined. The comparison of the three methods
predicting the water advance in furrow irrigation could help irrigation system designers
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to choose the most suitable method each time. The choice of a reliable, easy and quick
estimation of tL will help, among other things, to save water, which is currently a big issue.

2. Materials and Methods
2.1. Philip and Farrell Method [8]

The equation of Lewis and Milne [9] can describe the advance of water along a
furrow as

q0t = cx +
∫ x

0
i(t − ts)ds (1)

where q0 (L3/T) is the constant inflow rate per furrow, c (L2) is the average section area of
the stream flow, x (L) is the distance water has advanced along the field at time t, ts (T) is
the value of t when water has arrived at location s behind the advancing front and i (L3/L)
is the infiltration volume per unit length of furrow as a function of opportunity time t − ts.

An equivalent equation of (1) is Equation (2):

q0t = cx +
∫ t

0
i(t − ts)x/(ts)dts (2)

where x/ = ds
dts

is the advance rate at time ts corresponding to location s.
Philip and Farrell [8] presented a solution of Equation (2) in series form, which gives

the advance equation x(t) for short and long times via the Laplace transformation without
assuming a functional form of x(t) before the integration of Equation (2).

If the Philip [12] equation (Equation (3)) is used as the infiltration equation

i(t) = St0.5 + At, (3)

where S (L2/T0.5) is the soil sorptivity and A (L2/T) is related to saturated hydraulic
conductivity Ks (L2/T) and varied 1/3 Ks < A < 2/3 Ks [18], then the solution of Equation [2]
for c = 0 is

x(t) =
q0
A

[
1 − exp

4A2t
πS2 erfc

2At0.5

π0.5S

]
(4)

According to Philip and Farrell [8], the case c = 0 is of particular interest because
it shows in a simple way the dependence of x(t) on i(t) when the surface water volume
relative to cumulative infiltration is small.

It should be noted that Equation (3) is valid for short to medium infiltration times [19].
Knowing the values of q, S and A of Equation (4), the value of tL can be calculated by using
any generalized unconstrained technique in which f(tL) is minimized to zero. In this study,
the tL was estimated using Excel Solver provided with Microsoft Excel 365 [20,21]. Excel
Solver is an easy-to-use tool because it requires no programming knowledge.

More specifically, if Equation (4) is applied at the furrow distance x=L, where L is the
furrow length, and the infiltration parameters A and S are known, then the only unknown
parameter is the advance time t = tL. Equation (4) can be transformed into the following
equation where the only unknown parameter is tL:

f(tL) =
q0
A

[
1 − e

4A2tL
πS2 erfc

(
2At0.5

π0.5S

)]
− L = 0 (5)

The following steps were taken to solve Equation (5) and to estimate the tL by using
the Solver tool:

Step 1: Enter the values of the parameters q0, A, S and tL into an Excel worksheet. The
value tL = 5A0L/q0 can be used as an initial value of tL, where A0 is the wetted
cross-sectional area of a furrow.

Step 2: In a new cell, calculate the f(tL) using Equation (5).
Step 3: Go to the tools menu and click the Solver tool.
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Step 4: In “set objective”, set the cell created in step 2, then set it to receive the value zero
according to Equation (5), and set the cell containing the value of tL as the Solver
optimization variable. GRG nonlinear is chosen as the solution method.

Step 5: Press OK and obtain an optimal value of tL.

Accordingly, if the infiltration equation used in Equation (2) is the Lewis–Kostiakov
equation

i = ktα, (6)

where k (L2/Ta) and α (-) are empirical coefficients, then the following analytical solution
for c = 0 is obtained:

x(t) =
q0t1−α

kΓ(1 + α)Γ(2 − α)
(7)

where Γ is the gamma function and k and α the parameters of the Lewis–Kostiakov equation.
The calculation of time tL from Equation (7) is easier compared to Equation (4) since the
calculation of tL can be performed explicitly from Equation (7) if the values of q0, k and α

are known.

2.2. Newton–Raphson Iterative Procedure

The volume balance equation is based on the law of conservation of mass and was
first applied by Lewis and Milne [9] (Equation (2)). It shows that the total volume of water
at the inlet of the furrow at time t ≤ tL is expressed as q0t and is equal to the sum of the
water volume flowing on the furrow surface and the water volume infiltrating into the soil
according to the following relationship [3,22,23]:

q0t = σyA0x + σZktαx (8)

where q0 (L3/T) is the inflow rate, x (L) is the distance of the advance water front at each
time t (T), σy (-) is the surface profile shape factor, usually equal to 0.77 [24], σZ (-) is the
subsurface shape factor, which ranges from 0.6 to 1, and the infiltration was assumed
to follow the Lewis–Kostiakov equation, which is the most commonly used infiltration
equation in surface irrigation models. A0 is the cross-sectional area of the inlet flow and is
calculated from the Manning equation [3]:

A0 =

(
q0

2n2

3600ρ1S0

) 1
ρ2

(9)

where n (-) is the Manning roughness coefficient, ρ1 and ρ2 (-) are furrow shape parameters
and S0 (-) is the longitudinal slope of the system (m/m).

Factor σZ is calculated by the following equation [25]:

σZ =
α+ r(1 − α) + 1
(1 + α)(1 + r)

(10)

where the advance curve is described by a power function of the form

x = ptr (11)

where p and r are empirical adjustment coefficients. The introduction of this relationship
over-conditions the problem by defining the advance relationship before the integration of
Equation (2).

Equation (9) includes the furrow shape parameters ρ1 and ρ2, the advance distance x
at time t, the longitudinal slope of the system (m/m) S0, the Manning roughness coefficient
n, the inflow rate q0, the coefficients k and α of the Lewis–Kostiakov equation and the two
unknown parameters tL and r. The parameter r is included in the calculation equation of
the parameter σz (Equation (10)). Equation (8) can be solved using the Newton–Raphson
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iterative process to estimate the advance time tL, as well as the coefficient r. The steps
followed are as follows:

(i) First, an initial value of the parameter r is entered, which varies between 0.3 and 0.9.
The value ri = 0.5 is usually chosen.

(ii) Then, the value of the parameter σz is calculated, as mentioned in Equation (10). It
should be noted that the value of σz is recalculated every time the value of r changes.

(iii) The Newton–Raphson iterative procedure is then applied to find the advance time tL
using the initial value ri as follows:

1. An initial estimate of tL0 is created. The value tL0 = 5A0L/q0 is usually considered
as an initial value.

2. A better estimate of tL is tL1 given by the Newton–Raphson method using the
relationship

tL1 = tL0 −
f(tL0)

f′(tL0)
= tL0 −

c1tL0
a + c2tL0 + c3

c1atL0
a−1 + c2

(12)

where
f(tL) = c1tL

a + c2tL + c3 = 0 (13)

and c1 = σZkL, c2 = −q0 and c3 = σyA0L.
3. Equation (13) is a transformed form of Equation (8) when x = L and t = tL. The

initial estimate tL0 is compared with the value tL1. If the values tL0 and tL1 do
not differ greatly, the next step, step 4 is applied; otherwise, step 2 is repeated
and the tL2 value is calculated using tL1. The iterative process stops when two
consecutive values converge. Empirically, three to four repetitions are sufficient.

4. The advance time at the distance x = L/2 is calculated accordingly for the initial
value ri as described in steps 2 and 3, and the volume balance equation is applied
by using the value L/2 instead of L.

(iv) The value ri+1 is calculated using the advance times tL and tL/2 calculated from the
previous steps 3 and 4 as follows:

ri+1 =
ln L

L/2

ln tL
t L

2

(14)

or
ri+1 =

ln 2

ln
(

tL
tL/2

) (15)

(v) The initial estimate ri is compared with the value ri+1 (Equation (15)). If the values
converge, then it is assumed that the time tL is the estimated one. Otherwise, steps 2
to 4 are repeated using as a new initial value the value ri+1.

All the abovementioned steps of the Newton–Raphson iterative process can also be
presented by the following flowchart (Figure 1).

It should be noted that if the inflow rate q0 in the furrow is too small and the length L
is too long, then there is a failure to converge the values in the iterative process in step iii.
In this case, when designing furrow irrigation, either q0 must be increased or the furrow
length L must be reduced. Also, if the value of the coefficient r is known from some other
method, then only steps ii and iii are applied to calculate tL.
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2.3. Valiantzas Method [17]

The equation of Valiantzas [17] calculates, directly and algebraically, the advance time,
as long as the inflow rate, the cross-sectional area of the inlet flow and the parameters k and
α of the Lewis–Kostiakov equation of the corresponding soil are known (Equation (16)).
Equation (16) was obtained by linear superposition of the solutions of the volume balance
equation in dimensionless form for short and long times.

tL = (1 + 0.15α)
A0L
q0

+

(
σZF

kL
q0

) 1
1−α

(16)
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where k (L2/Ta) and α (-) are parameters of the Lewis–Kostiakov equation, A0 (L2) is the
inlet flow area, L (L) is the length of the furrow, q0 (L3/T) is the inflow rate and σZF (-) is the
value of parameter σZ (subsurface shape factor) at long times proposed by Hart et al. [26]:

σZF =
απ(1 − α)

sin(απ)
(17)

The first term on the right-hand side of Equation (16) reflects the volume of surface
water, while the second term reflects the volume of infiltrated water. At short times, the
first term is important, while at the long times the first term becomes negligible, and the
second term dominates.

Valiantzas [17] reported that the maximum error in the estimation of time tL generally
does not exceed ±7%, while in exceptional cases where the advance time is less than 30 min,
the maximum error can exceed 10%.

2.4. Experimental Data

For the evaluation and comparison of the three methods, experimental data (data sets)
from 15 different furrow irrigation experiments known from the international literature
were used. More specifically, we used five series of experimental data derived from Walker
and Busman [27], nine series from Wilson and Elliot [28] and one series from Camacho
et al. [29]. The selected tests covered a wide range of soil infiltration parameters, inflow
rates, furrow section shape parameters, field slopes and roughness coefficients. These data
are presented in detail in Table 1. In all cases of experimental data, the authors present the
parameters of k, α and f0 of the extended Lewis–Kostiakov infiltration function:

i = ktα + f0t (18)

where f0 (L2/T) is the steady infiltration rate.
The k and α parameters of the Lewis–Kostiakov formula, which are used in the three

methodologies, were estimated using the Solver tool in Excel (Table 2). Excel Solver mini-
mizes the objective function between the measured (extended Lewis–Kostiakov infiltration
function) and predicted cumulative infiltration values (Lewis–Kostiakov infiltration func-
tion) at given times and then predicts the k and α parameters of the Lewis–Kostiakov
formula [30]. As the initial values of k and α parameters, we consider the values of the k
and α parameters from the extended Lewis–Kostiakov infiltration function.

To calculate the sorptivity S and the parameter A of Equation (3) to be introduced as
input parameters in Equation (4), first a check was conducted to see if the experimental in-
filtration data (extended Lewis–Kostiakov infiltration function) of all tests can be described
by the Philip [12] infiltration equation. With a suitable transformation of the experimental
data of each case, it was examined whether the relationship i/t0.5(t0.5) is linear. In this linear
relationship, the slope of the line is equal to A and the constant term is equal to S [31]. From
this analysis, it appeared that only in six cases the above relationship was linear. Then, for
these six cases, the values of S and A were calculated using the Solver tool. As the initial
values of S and A, we considered the values S = i1/t1

0.5 and A = (in − in−1)/(tn − tn−1),
where n is the last value of the data. It should be noted that the values of S and A were
almost the same with both the linearization method and the Excel Solver procedure.
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Table 1. Furrow data.

Data Series

Walker and Busman [27] Camacho et al. [29]

Flowell Wheel Flowell Non-Wheel Kimberly
Wheel

Kimberly
Non-Wheel Greeley Wheel Cordoba

Inflow rate q0 (m3/min) 0.12 0.12 0.09 0.048 0.114 0.09
Furrow slope S0(m/m) 0.008 0.008 0.0104 0.0104 0.008 0.003

Manning roughness coefficient n 0.04 0.04 0.04 0.04 0.04 0.04

Furrow shape parameters ρ1 0.3269 0.3269 0.6644 0.6644 0.369 0.39
ρ2 2.734 2.734 2.8787 2.8787 2.81 2.797

Furrow length L (m) = x2 360 274 360 112 411 200
Advance time tL (min) = t2 400 432 208 560 63 51.5

Advance distance and
corresponding time

x1 (m) 180 140 160 60 205.5 100
t1 (min) 41 40 48 120 26 20.25

Surface profile shape factor σy 0.77 0.77 0.77 0.77 0.77 0.77

Extended Lewis–Kostiakov
parameters

α 0.534 0.673 0.212 0.533 0.45 0.4550
k (m2/minα) 0.0028 0.0022 0.0088 0.007 0.0021 0.0033
f0 (m2/min) 0.00022 0.00022 0.00017 0.00017 0.0000 0.0000

Data Series

Wilson and Elliot [28]

Benson
B-1 Benson B-2 Benson

B-3 Matchett M-1 Matchett M-2 Matchett M-3 Printz P-1 Printz P-2 Printz P-3

Inflow rate q0 (m3/min) 0.1668 0.0684 0.0702 0.051 0.0552 0.0264 0.2886 0.2094 0.1662
Furrow slope S0 0.0044 0.0044 0.0044 0.0092 0.0095 0.0095 0.0023 0.0025 0.0025

Manning roughness coefficient n 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02

Furrow shape parameters ρ1 0.46 0.58 0.34 0.3 1.35 2.12 0.92 0.615 0.73
ρ2 2.86 2.91 2.84 2.73 3 3.15 2.91 2.924 2.98

Furrow length L (m) = x2 500 500 500 400 400 400 200 300 300
Advance time tL (min) = t2 175 344.5 247 124.3 232.2 213 178 45.5 73

Advance distance and
corresponding time

x1 (m) 300 300 300 200 200 200 100 100 200
t1 (min) 84.5 159 123.5 38 70.5 88.2 13.5 15 43

Surface profile shape factor σy 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Extended Lewis–Kostiakov
parameters

α 0.02 0.02 0.01 0.48 0.4 0.16 0.4 0.02 0.02
k (m2/minα) 0.0252 0.018 0.0173 0.0011 0.0033 0.0039 0.0078 0.013 0.0161
f0 (m2/min) 0.00023 0.0001 0.00008 0.00003 0.00003 0.00002 0.00141 0.00049 0.0004
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Table 2. Parameters of Lewis–Kostiakov equation (α and k) and Philip [12] equation (S and A)
calculated with Solver tool.

Parameters

Walker and Busman [27] Camacho
et al. [29]

Flowell Wheel Flowell
Non-Wheel

Kimberly
Wheel

Kimberly
Non-Wheel

Greeley
Wheel Cordoba

α 0.7534 0.7916 0.5143 0.6458 0.4500 0.4550
k (m2/minα) 0.0017 0.0018 0.0039 0.0050 0.0021 0.0033
S (m2/min0.5) 0.003105 0.003547 0.003916 0.007826 - -
A (m2/min) 0.000237 0.000355 0.000022 0.000205 - -

Parameters

Wilson and Elliot [28]

Benson
B-1 Benson B-2 Benson

B-3
Matchett

M-1
Matchett

M-2
Matchett

M-3
Printz

P-1
Printz

P-2
Printz

P-3

α 0.3533 0.3952 0.2767 0.5720 0.4731 0.2966 0.758 0.2929 0.3894
k (m2/minα) 0.0103 0.0051 0.0077 0.0009 0.0027 0.0027 0.00576 0.0100 0.0083
S (m2/min0.5) - - - 0.5720 - - 0.006103 - -
A (m2/min) - - - 0.000025 - - 0.001296 - -

3. Results and Discussion

Table 2 presents the values of the parameters k and α for all cases of furrows, which
were calculated using Solver and are used to calculate the tL values in Equations (7) and (16),
as well as in the iterative procedure. Also, Table 2 presents the values of the parameters S
and A for six cases of data sets (i.e., Flowell wheel, Flowell non-wheel, Kimberly wheel,
Kimberly non-wheel, Matchett M-1 and Printz P-1). In these data sets, the relationship
i/t0.5(t0.5) is strongly linear, and the calculated values of S and A from Solver are positive.
In the remaining cases, the relationship was not linear while the Solver calculated values
A = 0, which have no physical meaning. Thus, the remaining cases were not studied further
by applying Equation (4).

Table 3 presents the calculated values of coefficient r, which were obtained from the
experimental data of the advance phase presented by Wilson and Elliot [28], Walker and
Busman [27] and Camacho et al. [29] at two points of the furrows by applying Equation (11).
Usually, the two experimental advance points are at the middle (L/2) and the end (L) of
a furrow [32]. Thus, applying Equation (11) for two points, the following equations
are obtained:

L = ptr
L (19)

L
2
= ptr

L
2

(20)

If Equations (19) and (20) are divided by terms and the logarithm of the resulting new
equation is calculated, then the value of the parameter r is obtained as follows:

r =
ln(2)

ln
(

tL
t L

2

) (21)

Additionally, Table 3 presents the values of the coefficient r calculated from the
Newton–Raphson iterative procedure.

From the results presented in Table 3, it can be seen that the values of the coefficient r
calculated by the iterative procedure converge with the values calculated from the experi-
mental data using Equation (11). More specifically, the difference between the values of r
does not exceed 7.5%, with the exception of the data from the Printz P-2 furrow, where the
difference is 25.5%.
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Table 3. Calculated values of coefficient r from Equation (11) and the Newton–Raphson iterative
procedure [3].

Coefficient r

Experimental Furrows Equation (11) Newton–Raphson Iterative Procedure

Flowell wheel 0.304 0.354
Flowell non-wheel 0.282 0.297

Kimberly wheel 0.553 0.574
Kimberly non-wheel 0.405 0.382

Greeley Wheel 0.783 0.763
Cordoba 0.743 0.734

Benson B-1 0.702 0.701
Benson B-2 0.661 0.665
Benson B-3 0.737 0.764

Matchett M-1 0.585 0.606
Matchett M-2 0.582 0.582
Matchett M-3 0.786 0.749

Printz P-1 0.269 0.309
Printz P-2 0.990 0.735
Printz P-3 0.766 0.691

Table 4 shows the predicted values of tL from the three methods studied, as well as
the measured values for all experimental furrows. The absolute values of relative errors
(|RE|%) of the predicted values of tL with respect to the measured ones are presented in
Table 5.

From Tables 4 and 5, it can be seen that both the Valiantzas [17] method and the
Newton–Raphson iterative procedure [3] satisfactorily approximate the measured values
of tL in most cases. In more than half of the experimental furrows, the relative error is less
than 10%, indicating that both methods predict the time tL fairly accurately. In general,
the two methods converge on the tL value, and thus their deviation from the measured
tL is approximately the same. The biggest differences in the two methods compared with
the experimental data are observed in the Matchett data sets, where in all three cases
(M1, M2 and M3) the RE values range from 11.96% to 25.81%. These deviations may be
due to experimental errors related to inflow rate, roughness or furrow shape parameters.
Possible problems with experimental measurements in these furrows were also reported by
Valiantzas et al. [7].

Regarding the application of the Philip [12] method using the Lewis–Kostiakov infil-
tration equation in the data sets presented by Wilson and Elliot [28], Camacho et al. [29]
and Walker and Busman [27] (Greeley Wheel data set), high RE values are shown, ranging
from 18.19% to 59.24%, while in the remaining four data sets presented by Walker and
Busman [27], the RE values are much smaller and closer to the values of the Valiantzas [17]
method and the Newton–Raphson iterative procedure. In general, the method, in most
cases, shows an underestimation of the time tL. To explain these findings, it was investi-
gated whether the amount of surface water is negligible. For this purpose, the index Vs,
which is equal to the ratio of the amount of surface water at the end of the advance phase
to the total amount of water applied, was estimated in the 15 data sets.

Vs =
σyA0x
q0tL

(22)

The calculated Vs values showed that the surface water was 5.1%, 3.6%, 9.7% and 1.4%
of the total application water for the Flowell wheel, Flowell non-wheel, Kimberly wheel
and Kimberly non-wheel furrows, respectively. That is, the surface water amounts are very
small, with the exception of the Kimberly wheel case (9.7%) where the corresponding RE
value is 16.55%. In the rest of the data sets, the values of the Vs index are quite large and
range from 7.1% to 40.9%. The highest RE values are observed in the cases of Greeley wheel
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and Cordoba, 59.24% and 51.59%, respectively, where the corresponding Vs index values
are 0.409 and 0.355. It may be assumed that the same causes play a role in the failure of the
Philip and Farrell [8] method in combination with the Philip [12] infiltration equation.

Table 4. Measured and predicted values of advance time tL from the (a) Valiantzas method [17],
(b) Newton–Raphson iterative procedure [3] and (c) Philip and Farrell [8] method using the Lewis–
Kostiakov and Philip [12] infiltration equations in all experimental furrows studied.

Advance Time tL (min)

Experimental Furrows Measured
Values

Valiantzas
Method

Newton–Raphson
Iterative Procedure

Philip and Farrell Method

Lewis–Kostiakov
Equation

Philip
Equation

Flowell wheel 400 386.70 340.53 357.10 397.80
Flowell non-wheel 432 479.51 404.48 456.86 616.97

Kimberly wheel 208 201.87 198.13 173.57 175.31
Kimberly non-wheel 560 558.46 534.69 547.60 577.78

Greeley Wheel 63 61.47 61.04 25.67 -
Cordoba 51.5 50.33 50.40 24.93 -

Benson B-1 175 181.86 180.44 143.07 -
Benson B-2 344.5 310.00 305.30 271.13 -
Benson B-3 247 235.54 231.84 195.37 -

Matchett M-1 124.3 92.22 94.11 60.41 59.44
Matchett M-2 232.2 204.44 202.08 181.33 -
Matchett M-3 213 176.85 174.30 143.13 -

Printz P-1 178 160.31 156.95 145.62 533.71
Printz P-2 45.5 52.22 51.25 32.53 -
Printz P-3 73 79.35 79.08 57.29 -

Table 5. Absolute values of relative error (|RE|) between the measured and predicted values of
advance time tL from the (a) Valiantzas method [17], (b) Newton-Raphson iterative procedure [3] and
(c) Philip and Farrell [8] method using the Lewis–Kostiakov and Philip [12] infiltration equations in
all experimental furrows studied.

|RE| (%)

Experimental Furrows Valiantzas Method Newton–Raphson
Iterative Procedure

Philip and Farrell Method

Lewis–Kostiakov Equation Philip Equation

Flowell wheel 3.33 14.87 10.72 0.55
Flowell non-wheel 11.00 6.37 5.76 42.82

Kimberly wheel 2.95 4.74 16.55 15.72
Kimberly non-wheel 0.27 4.52 2.21 3.17

Greeley wheel 2.42 3.11 59.24 -
Cordoba 2.27 2.13 51.59 -

Benson B-1 3.92 3.11 18.25 -
Benson B-2 10.01 11.38 21.30 -
Benson B-3 4.64 6.14 20.90 -

Matchett M-1 25.81 24.29 51.39 30.83
Matchett M-2 11.96 12.97 21.91 -
Matchett M-3 16.97 18.17 32.80 -

Printz P-1 9.94 11.83 18.19 199.84
Printz P-2 14.76 12.63 28.50 -
Printz P-3 8.70 8.33 21.51 -

Figure 2 shows the relationships between the experimental values of time tL (tL,EXP)
and the predicted ones (tL,PRED) for the three methods. As can be seen, these relation-
ships are linear with a very high value of determination coefficient (R2 > 0.981). The
Valiantzas [17] method gave the best results, since the slope of the linear relationship had
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the higher value (0.98), i.e., it is closer to the 1:1 line. In addition, it should be mentioned
that this method is easy and simple to use, since the time tL is directly calculated from the
furrow length L.
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Figure 2. Comparative presentation between the measured values of advance time, tL,EXP, and the
predicted ones, tL,PRED, obtained from the (a) Valiantzas method [17], (b) Newton–Raphson iterative
procedure [3] and (c) Philip and Farrell [8] method using the Lewis–Kostiakov infiltration equation in
all experimental furrows studied.

To obtain safer conclusions for the prediction of tL, RMSE (Root Mean Square Error)
values for the three methods were also calculated. The RMSE values for the Valiantzas [17]
and Newton–Raphson iterative procedure [3] methods were 22.14 min and 26.66 min,
respectively, while for the Philip and Farrell [8] method in combination with the Lewis–
Kostiakov equation the value was 43.19 min, which is almost twice the value of the other
two methods.

4. Conclusions

To achieve maximum irrigation uniformity and efficiency in the design of surface
irrigation systems and especially furrow irrigation, the reliable prediction of advance time
tL is important. Especially currently, where water saving is a vital issue and the rational
design of irrigation systems is required, the reliable and fast prediction of tL under various
irrigation scenarios can help to optimize irrigation design.

In this context, a comparison of the three methods (Valiantzas [17] method, Newton–
Raphson iterative procedure [3] and Philip and Farrell ([8D] method) was conducted to
predict the completion time of the advance phase, tL, using experimental data of 15 different
furrows from the international literature.

Among the three methods, the Valiantzas method was simpler and easier to use and
showed greater prediction accuracy for experimental advance times from 45.5 to 560 min
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and for a wide range of values of the Lewis–Kostiakov equation parameters, i.e., under
different soil types.

A similar performance was observed from the application of the volume balance
equation in combination with the Newton–Raphson iterative procedure. Thus, this simple
procedure can contribute to the design and evaluation of furrow irrigation systems. In
most cases, the value of relative error for the Valiantzas method and the Newton–Raphson
iterative procedure was less than 10%.

The Philip and Farrell method using the Kostiakov infiltration equation underesti-
mated the time tL and failed especially in the case where the volume of surface water is not
negligible. This is expected since the corresponding equation is obtained by considering
the amount of surface water as negligible. These results can be very beneficial for irrigation
system designers to study the irrigation performance of systems that are already working
and to propose optimal solutions for each area.
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