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Abstract: In this study, a method was introduced to validate the presence of a Representative
Elementary Volume (REV) within marine clayey sediment containing cracks during cyclic loading
and unloading of confinement pressure. Physical testing provided the basis for this verification.
Once the existence of the REV for such sediment was confirmed, we established a machine-learning
predictive model. This model utilizes a hybrid algorithm combining Particle Swarm Optimization
(PSO) with a Support Vector Machine (SVM). The model was trained using a database generated from
the aforementioned physical tests. The machine-learning model demonstrates favorable predictive
performance based on several statistical metrics, including the coefficient of determination (R2), mean
residual error (MSE), mean relative residual error (MRSE), and the correlation coefficient R during the
verification process. Utilizing the established machine-learning predictive model, one can effortlessly
obtain the permeability tensor of marine clayey sediment containing cracks during cyclic loading and
unloading of confinement pressure by inputting the relevant stress condition parameters. The original
research cannot estimate the permeability tensor under similar loading and unloading conditions
through REV. In this study, the physical model test was used to determine the REV of marine cohesive
sediments with cracks by cyclic-constrained pressure loading and unloading. Referring to the results
of physical tests, we developed a machine-learning prediction model that can easily estimate the
permeability tensor of marine cohesive sediments with cracks under cyclic loading and constrained
pressure unloading conditions. This method greatly saves time and computation and provides a
direct method for engineering and technical personnel to predict the permeability tensor in this case.

Keywords: marine clayey sediment; cyclic loading and unloading; machine learning; predictive
model; permeability tensor

1. Introduction

Marine clayey sediment is extensively distributed worldwide [1–4]. The unfavorable
behavior of marine clay deposits has been exposed over the past few years during the build-
ing of marine engineering indicates which has a detrimental impact on the dependability
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of engineering projects by causing issues such as sliding and splitting [5–9]. Consequently,
it is critical to fully understand the marine clay deposits’ geological characteristics. This
investigation’s findings serve as critical guidelines for formulating construction strategies
and implementing safeguard measures, mitigating the risk of the engineering catastrophes
associated with marine clay sediments.

Currently, the predominant focus of research endeavors concerning the geotechnical
attributes of marine clay sediments has centered on their mechanical behavior [10–15]. It
is rare to investigate their permeability properties. In particular, there is no report on the
permeability behavior of marine clay sediments throughout the cyclical loading and un-
loading of confining pressure. Because marine clay sediments contain cracks, these fissures
act as the main pathways for aqueous seepage, and unbroken marine clay sediments have
substantially less permeability than these fissures [16]. Under extreme circumstances, fluid
easily infiltrates marine clay sediments, significantly reducing their strength. Particularly in
ocean engineering, the permeability characteristics of marine clay sediments substantially
impact their equilibrium [17]. Additionally, in practical engineering, marine clay sediments
must withstand cyclic loading and unloading of confining pressure due to repeated sea
waves [18]. Cyclical loading and unloading of confinement pressure result in the repeated
opening and closing of cracks in marine clay sediments, which significantly affect the
permeability properties of these sediments. Consequently, investigating the permeability
characteristics of marine clay sediments has become a critical research direction for un-
derstanding their geotechnical behavior, particularly throughout the cyclical confinement
pressure loading and unloading.

At present, there are two main types of research methodologies used to determine
the porousness characteristics of marine clay sediments with cracks: discrete approaches
and analogous continuous methods. The comparison of the two methods is shown in
Table 1 [19]. When employing the discrete approach for seepage analysis, it is essential to
account for each crack’s precise location, orientation, and geometric configuration. Con-
versely, the equivalent continuum approach treats marine clay sediments containing cracks
as homogeneous continuum media, disregarding the details of individual cracks [20]. Gen-
erally speaking, the discrete method often yields superior outcomes in the seepage analysis
of marine clay sediments containing cracks. However, for marine clay sediments with
cracks, the number of cracks is significant, and the geometric form of these cracks is so-
phisticated [21]. Due to challenges such as complex pre-processing, extensive calculations,
intricate modeling, and convergence difficulties, the discrete method is impractical for ana-
lyzing the permeability properties of marine clay sediments containing cracks. Conversely,
the equivalent continuum approach is straightforward, well-established, and practical,
making it the most commonly used method for analyzing the permeability properties of
marine clay sediments containing cracks [22]. Especially for marine clayey sediment with
large quantities of complex cracks, the application of the equivalent continuum approach in
analyzing their permeability characteristics is time- and calculation-saving [23,24]; thus, for
marine clay sediments containing cracks, it is essential to employ the equivalent continuum
method for conducting seepage analysis. The fundamental challenge in using this approach
lies in verifying the existence of REV and determining the permeability tensor [25]. REV
represents the Representative Elementary Volume. It is a mathematical model used to
describe the physical properties of porous media. In the fields of earth science, material
science, and engineering, the REV model can divide complex porous materials (such as
rock, soil, and porous materials) into a series of small units, and each unit is regarded as
an equivalent continuous medium. In this way, we can use the mathematical model of
continuous medium to describe the behavior of the whole porous material. REV is the
smallest sampling region volume beyond which the hydraulic features of a sample remain
constant. Additionally, the permeability tensor is an advantageous tool for representing
the anisotropic permeability properties of the studied object [26]. Adopting the equivalent
continuum technique requires the presence of an REV [27]. Generally, there is no assurance
that the REV will always be present for a given marine clay sediment containing cracks.
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If an REV is absent, the permeability tensor of such marine clay sediment becomes mean-
ingless [28]. For marine clay sediments containing cracks, the presence of REVs primarily
hinges on the characteristics of these cracks, including their geometric morphology. This
is because cracks are the primary conduits controlling the hydraulic behavior of marine
clay sediments [29]. The geometric morphology of cracks can change significantly due
to loading effects, thereby impacting the existence of an REV for marine clay sediments
containing cracks as well as their permeability tensors [30]. Therefore, the existence of
an REV for marine clay sediments and their permeability tensors is dependent on stress.
As mentioned earlier, in practical engineering, marine clay sediments containing cracks
experience cyclic loading and unloading due to the confining pressure from sea waves. The
existence of an REV for marine clay sediments with cracks and their permeability tensors
would fluctuate throughout the cyclic loading and unloading of confinement pressure due
to the extensively broken nature of these sediments [31]. Nevertheless, more information is
needed about the permeability tensors of maritime clay sediments with fractures and the
presence of REVs for these materials. Therefore, it is essential to look into the existence of
REVs for such sediments and to determine their permeability tensors during cyclic loading
and unloading of confinement pressure to apply the equivalent continuum approach in the
seepage analysis of marine clay sediments containing cracks in practical engineering.

Table 1. Comparison between discrete approaches and analogous continuous methods.

Comparison Discrete Approaches Analogous Continuous Methods

Principle

By analyzing the contact between the blocks of the
discrete element, the constitutive relationship of the

contact is found to establish the physical and
mechanical model of the contact, and the

discontinuous and discrete elements are simulated
according to Newton’s second law.

The complex geometric region of the medium is
discretized into elements with simple geometric shapes.

The equations are obtained by element integration,
external load, and constraint conditions, and then the

approximate expression of the behavior of the medium
can be obtained by solving the equations.

Solution process

It is divided into explicit solution and implicit
solution. The discrete element method regards the
rock mass cut by the weak plane as a collection of

complex blocks, allowing each block to move, rotate
or even separate from each other.

It is expressed in matrix form. First, the solution region is
divided into grids. Then, the difference equation is used

to approximate the differential equation on the grid
nodes, and the approximate solution on the grid nodes is
solved. If there are more grid nodes, the accuracy of the

approximate solution can be improved.

Method

Discrete element method, rigid body spring element
method, discontinuous deformation analysis method,

lattice model (LM), lattice discrete particle model
(LDPM), etc.

Finite difference method, finite element method,
boundary element method, and meshless method.

Dominance

The nonlinear large deformation characteristics in a
jointed rock mass can be simulated more realistically.
It is convenient for dealing with the problem of rock
mass failure in which all nonlinear deformation and

failure are concentrated on the joint surface.

It has high programmability and can be used to solve the
problem of irregular shape or complex distribution of

regional physical properties with limited and
interrelated elements.

Inferiority
Due to the limitation of conditional convergence, the

calculation step size cannot be too large, which
increases the calculation time.

The lack of internal length size leads to the basic
mathematical problems becoming ill-posed; localization
occurs in a zero-thickness region and causes the physical
mesh-sensitivity problem. Element interpolation easily
causes grid distortion in large deformation problems,

and the accuracy is relatively large.

Engineering application

It is widely used to simulate mechanical processes
such as slope, landslide, and groundwater seepage in

jointed rock masses. This method is widely used
because it is not only suitable for simulating the

cracking, sliding, and crushing process of blocks but
is also suitable for calculating the deformation and

internal force of blocks.

For any complex structure, it is always theoretically
possible to obtain a sufficiently approximate simulation
by subdividing the element. A large number of long-term

engineering applications have accumulated rich
experience, especially regarding the fluid flow problem,
which is still dominant in the field of fluid mechanics.

Traditional methods for investigating the existence of REVs for marine clay sediments
containing cracks and for determining their permeability tensors are inadequate for study-
ing the properties of marine clay sediments. This inadequacy is primarily due to the
unique geo-structural characteristics of marine clay sediments. Moreover, a significant
limitation of most existing approaches is their failure to account for the effects of cyclic
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loading and unloading of confinement pressure [32–35]. Field tests pose challenges for
quantifying the permeability anisotropy of marine clay sediments containing cracks, let
alone determining their stress-dependent permeability tensors. Alternatively, analytical
solutions offer alternative methods for assessing the permeability tensor [36–38]. According
to the analytical solution, the permeability tensor of marine clay sediments with cracks may
be obtained by superimposing each crack’s permeability onto the sediment as a whole [39].
While traditional approaches need to pay more attention to the interconnectivity of cracks
and the fluid flow exchange between cracks and the sediment, this oversimplification falls
short when dealing with marine clay sediments containing cracks. The complex geometric
morphology of these cracks, coupled with the significant fluid exchange occurring between
them, profoundly influences the permeability tensors of marine clay sediments, rendering
it unignorable. Furthermore, it is challenging to use in situ investigations and analytical
techniques alone to confirm the presence of REVs in such sediments and to calculate their
permeability tensors. Therefore, to handle this complexity and evaluate the REV and the
permeability tensor, researchers have recently adopted numerical modeling approaches,
such as the Finite Element Method (FEM) and the Discrete Element Method (DEM) [40–43].
However, marine clay sediments with fractures show significant breakage, which makes
using the FEM difficult because mesh creation has intrinsic limits [44]. Many mechanical
factors unique to coastal clay sediments with cracks are needed to apply the DEM to
analyze the permeability qualities of these sediments. However, current research on the
mechanical properties of marine clay sediments containing cracks is scarce. Obtaining
the necessary mechanical parameters for DEM modeling marine clay sediments is chal-
lenging. Furthermore, both the FEM and DEM encounter computational difficulties when
conducting numerical simulations to analyze the permeability characteristics of marine
clay sediments containing cracks due to the interconnectivity between the cracks and the
geological complexities associated with discontinuities in these sediments [45,46]. For
marine clay sediments with fractures under cyclic loading and unloading of confinement
pressure, it is essential to provide a successful approach for measuring the permeability
tensors and verifying the presence of REVs.

In order to close such an opening, our work suggests using laboratory model ex-
periments to establish the presence of REVs for marine clay sediments that have frac-
tures throughout cyclic loading and unloading of confinement pressure. We employed
machine-learning techniques to quantitatively relate the permeability tensors of marine
clay sediments containing cracks to the corresponding stress state, based on the outcomes
of physical tests and empirical equations. As a powerful tool, machine learning is fre-
quently employed as a practical methodology for predicting the properties of geotechnical
materials, taking into consideration the intricate interactions among numerous influencing
factors [47–50]. For the permeability tensors of marine clay sediments with fractures during
cyclic loading and unloading of confinement pressure, we suggest a machine-learning
prediction model in this context. We used a database generated by mathematical models by
implementing a hybrid PSO-SVM technique. The permeability of marine clay sediments
with different crack dip angles was first tested physically before the confinement pressure
was cycled, loaded, and unloaded. Subsequently, we confirmed the existence of a Repre-
sentative Elementary Volume (REV) for marine clay sediments, including cracks under
cyclic loading and unloading of confinement pressure, using the permeability tensor’s
principles and the outcomes of the physical tests. Consequently, we provide a hybrid
PSO-SVM algorithm-based machine-learning prediction model based on the results of
empirical equations and physical model testing. When the parameters corresponding to
the specified stress conditions are included in this machine-learning prediction model, it
becomes easy to compute the permeability tensor of marine clay sediments throughout the
cyclic loading and unloading of confinement pressure. This approach offers a time-saving
and efficient method for engineering personnel to predict the permeability tensor of marine
clay sediments under varying cyclic loading and unloading conditions.
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2. Description of Physical Tests

The soil samples were taken from a sea area in the western part of the South China
Sea based on the shared voyage of the South China Sea Scientific Expedition, 2020, Jiaqing.
The natural density of the sediments in the area is ρ = 1.39 g·cm−3, the water content is
w = 110.21%, the relative mass density is Gs = 2.65, the void ratio is e = 3.01, the liquid limit
is wL = 67.29, the plastic limit is wp = 67.29, the plastic index is Ip = 21.13, the permeability
coefficient is k = 5.36 × 10−8, and the organic matter content is 8.21%. The permeability
coefficient was measured by the variable head method on the Jiaqing sampling ship. After
the undisturbed marine sediments were transported back to the laboratory, the remolded
samples were obtained by applying the overlying load consolidation to the mud according
to the method of Burland to ensure that the samples had a strength [50,51], as shown
in Figure 1.
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Figure 1. Samples of marine clayey sediment.

In the experiments, the marine clayey sediment contained seven different crack angles:
0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. Three cycles of loading and unloading confinement
pressure were used to determine the permeability of the marine clayey sediment materials
with different crack dip angles, using the argon-based permeability test apparatus shown
in Figure 2. In the gas permeability test, the inert gas argon was used. Adopting gas
as media for measuring sample permeability has the advantages of avoiding a chemical
reaction between the measurement media and concrete, a weaker interaction between
gas and concrete, and a shorter measurement duration compared with adopting liquid as
seepage media [52,53]. The experimental setup comprised an upstream and downstream
gas pressure control panel, a sediment core pressure cell, a confining pressure regulation
gadget, a seepage pressure regulation apparatus, a pressure monitor, and a high-accuracy
gas pressure gauge. Computing the permeability of the sample involved utilizing computer-
generated data. The gas flow approach was used to determine the permeability of marine
clayey sediment materials to ensure accurate testing. Each confinement pressure cycle
comprised 11 different pressures: 0.3 MPa, 0.8 Mpa, 1.5 Mpa, 2.5 Mpa, 3 Mpa, 3.5 Mpa,
3 Mpa, 2.5 Mpa, 1.5 Mpa, 0.8 Mpa, and 0.3 Mpa, respectively. A seepage pressure of
0.1 Mpa was established. There were 231 experimental sets in all. These pressure values
can simulate the pressure changes faced by marine clay sediments in the actual environment
and the periodic pressure changes caused by water flow velocity, which helps us to better
understand the behavior of marine clay sediments under cyclic loading and more accurately
study their mechanical responses.
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3. Verifying the Existence of REV

The process for confirming the presence of an REV in marine clayey silt that has
cracks throughout the cyclic loading and unloading of confinement pressure is described in
this subsection. The verification is predicated on theoretical derivations and examination
findings. The seepage concept and tensor principles state that the analogous continuum
technique may be used for seepage analysis of marine clayey silt in a polar coordinate
system because the trajectory given by Equation (1) closely approaches an ellipse, thereby
verifying the presence of an REV [51]. In this scenario, leveraging data from physical tests,
we determined the permeability of marine clayey sediment materials with varying crack
dip angles: 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. These measurements were made when the
confinement pressure was being loaded and unloaded cyclically. Equation (1) is used in the
fitting procedure, and Table 2 provides a summary of the fitting degrees that are produced.

r =
1√
k

, (1)

where r represents the radius vector and k denotes the permeability coefficients in various
directions of hydraulic gradient.

Table 2. The approximation degree of the curves to ellipse R2/%.

Confinement Pressure (Mpa) 0.3 0.8 1.5 2.5 3 3.5

The initial loading and unloading process’ loading phase 97.99 99.49 98.00 93.30 95.39 99.01
The initial loading and unloading process’s unloading phase 98.95 96.97 98.30 90.51 75.29

The second loading and unloading step of the process 94.08 94.34 95.05 90.93 52.29 49.07
The second loading and unloading cycle’s unloading phase 94.85 95.20 94.89 90.88 58.69

The third loading and unloading cycle’s loading phase 96.62 91.75 90.09 95.11 55.27 49.32
The third loading and unloading cycle’s unloading phase 98.32 98.12 93.04 90.58 77.45

Considering the information shown in Table 2, except for a few tests, the fitting degrees
for each test exceed 90%, indicating a high level of fit. Consequently, the REV of marine
clayey sediment containing cracks is confirmed to exist under cyclic loading and unloading
of confinement pressure. When the confinement pressure is 3 Mpa and 3.5 Mpa, the fitting
degree does not exceed 90%. This is because the seabed sediment is a porous medium as
a test material, and the discrete type is large, so the fitting degree is low. Furthermore,
the permeability properties of coastal clayey silt with fissures may be examined using the
equivalent continuum technique. This observation also underscores the significance of
the permeability tensor for marine clayey sediment containing cracks throughout cyclic
loading and unloading of confinement pressure.
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4. Mathematical Models for Permeability Tensor Calculation in Marine Clayey
Sediment under Cyclic Loading and Unloading of Confinement Pressure

Based on the research above, the permeability characteristics of coastal clayey silt with
fractures may be examined using the equivalent continuum technique. Furthermore, the
marine clayey sediment’s permeability tensor is essential throughout the periodic loading
and unloading of confinement pressure. The permeability anisotropy of the marine clayey
sediment is specially investigated in the direction of the crack dip angle. Therefore, we
regard the material as transversely isotropic. This suggests that only the permeability
anisotropic over the dip direction for fractures should be considered, and that the perme-
ability anisotropy along the sediment plane should be ignored. When fissures are present
in marine clayey silt, transverse isotropy indicates that the material has an axial line across
it where the permeability characteristics of locations within a plane vertical to the axial
column are constant. As such, the marine clayey sediment permeability tensor with fissures

is essentially transformed into a two-dimensional permeability tensor [K] =
[

k1k2
k3k4

]
. In

accordance with the permeability tensor law, where Kxx, Kxy, and Kyy, this relationship
can be exemplified by the permeability of marine clayey sediment materials at 0◦, 45◦,
and 90◦ crack dip angles, respectively [52]. The independent variables x are 0.3, 0.5, 0.8,
1, 1.25, 1.5, 2, 2.25, 2.5, 3, 3.25, 3.5, 3.25, 3, 2.5, 2.25, 2, 1.5, 1.25, 1, 0.8, 0.5, and 0.3 Mpa,
respectively. Due to the symmetry of the permeability tensor, namely Kxy = Kyx, and the
tensor invariance principle, the two dimensional permeability tensor can be expressed as:

K =

(
Kxx Kxy
Kxy Kyy

)
[54].

Based on existing research, the relationship between the permeability of marine clayey
sediment materials with varying crack dip angles and the confinement pressure during
different loading and unloading phases of the confinement pressure cycle follows an
exponential function. Consequently, a quantitative relationship between Kxx, Kxy, and Kyy,
as well as their dependence on confinement pressure during the loading and unloading
phases of three consecutive confinement pressure cycles, is derived and presented in Table 3.

Table 3. The relationship functions between Kxx, Kxy, and Kyy confinement pressure under the
loading and unloading phase of three times confinement pressure cycle (the variables represented by
x represent the x-axis).

The Initial
Loading and
Unloading
Process’s

Loading Phase

The Initial
Loading and
Unloading
Process’s

Unloading Phase

The Second
Loading and

Unloading Step of
the Process

The Second
Loading and

Unloading Cycle’s
Unloading Phase

The Third
Loading and

Unloading Cycle’s
Loading Phase

The Third
Loading and

Unloading Cycle’s
Unloading Phase

Kxx = 11.18x−0.68 Kxx = 0.99x−0.13 Kxx = 0.99x−0.13 Kxx = 0.95x−0.63 Kxx = 0.9x−0.12 Kxx = 0.99x−0.18

Kxy = 131.16x−0.81 Kxy = 12.1x−0.38 Kxy = 11.76x−0.34 Kxy = 13.55x−0.85 Kxy = 13x−0.4 Kxy = 11.85x−0.41

Kyy = 129.56x−0.7 Kyy = 34.92x−0.5 Kyy = 33.65x−33.29 Kyy = 33.29x−0.5 Kyy = 32.17x−0.46 Kyy = 30.28x−0.48

Utilizing the equations from Table 3, we have established a comprehensive database
comprising Kxx, Kxy, and Kyy values for marine clayey sediment containing cracks under
cyclic loading and unloading of confinement pressure. The cyclic loading and unloading
process occurs three times, with each cycle encompassing 23 distinct confinement pressures:
0.3, 0.5, 0.8, 1, 1.25, 1.5, 2, 2.25, 2.5, 3, 3.25, 3.5, 3.25, 3, 2.5, 2.25, 2, 1.5, 1.25, 1, 0.8, 0.5, and
0.3 Mpa, respectively. By adhering to the tensor principle and the coordinate transformation
rule, we calculated the Principal Permeability Angle (PPA), the major Principal Permeability
Component (PPC), and the Minor PPC for marine clayey sediment containing cracks under
specified stress conditions, based on the Kxx, Kxy, and Kyy values stored in the database.
Building upon the computed results, we have augmented the database, encompassing the
confinement pressure, the cyclic loading and unloading time, and the loading or unloading
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phase, as well as the corresponding Major PPC, Minor PPC, and PPA for marine clayey
sediment containing cracks. The loading or unloading phase is numerically represented
(0 for unloading and 1 for loading). The database comprises a total of 69 datasets, as
illustrated in Table 4.

Table 4. The database for machine-learning modelling.

Confinement
Pressure/Mpa Cycle Time Loading/Unloading Major PPC/10−17 m2 Minor PPC/10−17 m2 PPA/◦

0.3 1 1 90.6801 26.8828 58.5568
0.5 1 1 73.2943 43.1398 59.1183
0.8 1 1 63.7161 35.2674 61.0994
1 1 1 59.5646 25.8290 61.0306

1.25 1 1 41.7710 21.9192 61.3317
1.5 1 1 36.8615 18.0365 61.8812
2 1 1 22.3417 15.5369 61.9772

2.25 1 1 20.4579 14.2578 62.1413
2.5 1 1 15.5537 2.8657 62.6754
3 1 1 12.5467 1.9142 64.0616

3.25 1 1 15.5455 1.9122 64.6592
3.5 1 1 10.6677 1.4282 65.1471
3.25 1 0 7.6129 1.6827 65.2248

3 1 0 9.5998 0.8977 67.1136
2.5 1 0 9.8196 1.0264 66.9785
2.25 1 0 9.0076 0.8002 66.0570

2 1 0 9.5084 1.2054 66.3184
1.5 1 0 9.9103 1.1429 66.0731
1.25 1 0 11.8117 1.0909 66.3382

1 1 0 13.1001 1.1592 66.8097
0.8 1 0 12.0609 1.3210 66.7569
0.5 1 0 18.1068 3.3796 64.2258
0.3 1 0 27.3945 5.4554 63.9720
0.3 2 1 24.6956 2.7565 66.9720
0.5 2 1 17.1700 2.3669 66.3112
0.8 2 1 14.2693 1.4150 66.3491
1 2 1 5.7048 1.9709 66.0474

1.25 2 1 5.3009 1.5880 66.9540
1.5 2 1 10.9919 1.2282 66.6112
2 2 1 10.5425 0.8719 66.7426

2.25 2 1 10.3703 0.7099 66.6863
2.5 2 1 10.0652 1.0491 66.7788
3 2 1 9.6246 0.9339 66.4138

3.25 2 1 9.8742 1.2446 66.5015
3.5 2 1 9.0795 0.9104 66.1721
3.25 2 0 5.9243 0.7594 67.1125

3 2 0 9.0889 0.8946 67.8325
2.5 2 0 9.2750 0.8976 67.7377

2.25 2 0 7.1497 0.8963 67.2031
2 2 0 7.5952 1.3046 67.8896

1.5 2 0 9.5498 0.9945 67.0514
1.25 2 0 9.6801 1.1802 67.5247

1 2 0 10.8712 1.2263 67.8104
0.8 2 0 11.3316 1.2422 67.3963
0.5 2 0 15.6647 1.2608 67.3091
0.3 2 0 22.5904 2.6112 68.3951
0.3 3 1 22.5904 2.6112 68.3951
0.5 3 1 18.0395 1.1017 68.4562
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Table 4. Cont.

Confinement
Pressure/Mpa Cycle Time Loading/Unloading Major PPC/10−17 m2 Minor PPC/10−17 m2 PPA/◦

0.8 3 1 12.6946 1.4289 67.2153
1 3 1 13.2806 1.2564 66.6665

1.25 3 1 12.0366 1.2599 66.4009
1.5 3 1 10.0730 1.1511 66.7560
2 3 1 9.7886 1.4705 66.8207

2.25 3 1 9.2952 1.0801 66.6704
2.5 3 1 9.2457 0.9351 66.7557
3 3 1 8.9632 0.8322 66.9193

3.25 3 1 7.9115 0.9901 67.1875
3.5 3 1 8.8115 0.8774 67.4699
3.25 3 0 6.9530 1.2606 67.1244

3 3 0 8.4932 0.8984 67.1408
2.5 3 0 8.6194 0.8786 66.7460
2.25 3 0 8.2214 1.2636 66.6439

2 3 0 8.6755 1.6246 66.8068
1.5 3 0 9.3268 0.8930 67.3927
1.25 3 0 10.7559 1.2894 67.4414

1 3 0 11.9142 1.2230 67.7345
0.8 3 0 11.4516 1.1431 68.1857
0.5 3 0 16.3833 1.8616 68.6148
0.3 3 0 21.5004 2.1232 69.2395

5. Machine-Learning Algorithms

In order to forecast the permeability of coastal clayey sediments with fractures under
cyclic confinement pressure loading and unloading, we developed a machine-learning
model using the dataset given in Section 4. In this machine-learning framework, input
parameters include confinement pressure, cyclic duration of pressure loading and unload-
ing, and the loading or unloading period. The corresponding major PPC, minor PPC, and
PPA of marine clayey sediments containing cracks serve as the output parameters. To train
the machine learning model, the dataset was randomly divided into 49 training samples
(70%) and 20 validation samples (30%). The purpose of the validation samples was to
evaluate the model’s performance. The hybrid PSO-SVM approach was used to build the
machine-learning prediction model using Matlab software (Version 9.2, R2017a) and the
following SVM and PSO concepts.

5.1. The Principles of SVM

The SVM is a model used for binary classification and regression. It can divide and
predict sample data while achieving structural risk minimization based on the principles of
maximum margin [55]. The SVM effectively addresses regression problems. The goal of
SVM regression is to create a regression model that characterizes the connections among a
specified sample of data [56], as depicted in Equation (2).

L = {(x1, y1), (x2, y2), . . . . . . . . .}, (2)

where L represents the regression model, xi (i = 1, 2 . . .n) denotes the x value of the sample
data, and yi (i = 1, 2 . . .n) corresponds to the y value of the sample data.

Under the tenet of structural risk reduction, the SVM efficiently uses a small sample
size to build a model using regression [57]. The SVM regression model aims to minimize the
difference between the predicted function f (x) and the actual observed values y. Expressly,
the SVM assumes that deviations between f (x) and y that are smaller than a constant
threshold (denoted as ‘s’) can be safely disregarded when calculating the overall discrepancy
between the predicted and observed values [58]. As shown in Figure 3, only the deflections
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arising from points outside the zone are taken into consideration; the deviations occurring
from locations within the region are excluded.
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Hence, regression problems can be reformulated as minimizing a convex quadratic
programming issue, as demonstrated in Equation (3) and referred to as the s-insensitive
loss function [57].

min
v,b

1/2∥v∥2 + s
n

∑
i=1

ℓ( f (xi)− yi), (3)

where s is constant.
To simplify the computing process in linear regression, the primal issue is converted

into the twofold counterpart using the Lagrange Multiplier Method [59]; the resulting dual
problem is illustrated in Equation (4).

max
α,
∧
α

n
∑

i=1
yi(

∧
αi − αi)− ε(

∧
αi + αi)− 1/2

n
∑

i=1

n
∑

j=1
(
∧
αi − αi)(

∧
αj − αj)xT

i xj

s.t.
n
∑

i=1
(
∧
αi − αi) = 0, 0 ≤ αi,

∧
αi ≤ b,

(4)

Upon solving Equation (4), we obtain the optical regression model as illustrated in
Equation (5).

f (x) = ∑VM (bc − b∗c )(x∗xi)− b, (5)

The SVM includes a kernel function for handling nonlinearity in nonlinear regression
situations. By efficiently mapping samples between a space with low dimensions and
a higher-dimensional space, the kernel function converts nonlinear problems into linear
problems [60]. Subsequently, the same procedure for solving linear problems is applied to
identify the optimal regression model.

5.2. The Principle of PSO

Kennedy and Eberhart first presented the PSO algorithm, which was inspired by the
way birds hunt [61]. When tackling optimization issues, PSO is often used. It is made up of
a population of particles, each of which stands for a possible fix for the issue. The corre-
sponding fitness function establishes each particle’s fitness value. Each particle’s velocity
governs its direction and movement distance within the solution space. This velocity is dy-
namically adjusted based on the particle’s historical movement experiences and interactions
with other particles, ultimately facilitating the optimization of individual solutions [62].

The following is the PSO’s operational procedure: To begin, a collection of particles
is started in the solution space, each denoting a possible best solution. The three primary
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markers of a particle’s properties are its location, velocity, and fitness value. As a measure
of a particle’s quality, the fitness value is calculated using the fitness function [63]. The
particles then move over the solution space, and each particle’s location is constantly
updated by keeping an eye on the global optimal location (extremum) for the entire
population and the ideal position for each individual particle. The place with the highest
fitness value that a particle has encountered throughout its travel corresponds to the
extremum of that particular particle.

Conversely, the population extremum represents the particle with the highest fitness
value throughout the population. Every time a position is updated, all particles’ fitness
values are recalculated. Consequently, an individual particle’s extremum and the popula-
tion extremum are continually refined based on the fitness values of the newly evaluated
particles. This iterative procedure continues until the predefined termination condition
is met [64].

X = (X1, X2, . . ., Xn) represents the number of n particles in a D-dimensional data
domain. Every particle is encoded by a D-dimensional vector Xi = [xi1, xi2, . . ., xiD], indexed
by i-th. This vector reflects a possible solution to the current issue and indicates the location
of the i-th particle in the D-dimensional region. The i-th particle’s velocity is represented by
the letter V = [ Vi1, V i2, . . ., ViD]T. Furthermore, each particle has an individual extremum
represented by P = [Pi1, Pi2, . . ., PiD]T, whereas Pg = [Pg1, Pg2, . . ., PgD]T represents the
global extremum for the entire population. The fitness value of each particle, evaluated at
position Xi, is computed using the fitness function. Particle position and speed are revised
according to the global extremum and each particular extremum during every iteration.
Equation (6) displays the revised equations.

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id),

Xk+1
id = Xk

id + Vk+1
id ,

(6)

where ω represents the inertia weight; d = 1, 2, . . ., D; i = 1, 2, . . ., n; k denotes the current
iteration number; Vid denotes the velocity of the particle; C1 and C2 are non-negative
constants referred to as acceleration factors; and random numbers r1 and r2 are drawn
from a uniform distribution within the interval [0, l]. To prevent blind search behavior, it
is advisable to constrain a particle’s position and velocity within the specified intervals
[−Xmax, Xmax], [−Vmax, Vmax], respectively.

5.3. The Parameters of the Hybrid PSO-SVM Model

This study uses the PSO to improve the developed SVM model’s predictive accuracy.
The PSO fitness function aggregates the MRSE to estimate the principal permeability angle,
the major PPC, and the minor PPC. The hybrid PSO-SVM model uses PSO based on the
K-fold Cross-Validation (K-CV) approach to estimate the penalty parameter (c) and the
kernel function parameter (g) in the SVM model. In K-CV, the initial dataset is partitioned
into K subsets (typically equal in size). Each subgroup is independently validated, while
the additional K − 1 subsets serve as the training set. The average predictive accuracy
across the K models serves as the performance metric for this K-CV predictor [65]. In this
study, we consider K = 10. The SVM model employs the Radial Basis Function as its kernel
function. The flowchart illustrating the optimized process, utilizing both GA and PSO, is
depicted in Figure 4.
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5.4. Quality Assessment

Four primary metrics were used to assess the machine-learning model’s predictive ac-
curacy: the correlation coefficient R, the MSE, the MRSE, and the coefficient of determination
R2. Equations (7)–(10) provide the mathematical equations for these four indications [66].

R2 = 1 −
∑
i
(yi − fi)

2

∑
i
(yi −

_
y)2 , (7)

where yi represents the measured value,
_
y denotes the average measured value, and fi

corresponds to the predictive value.

MSE =
|yi − fi|

n
, (8)

where n represents the number of sample data.

MRSE =

∣∣∣1 − fi
yi

∣∣∣
n

, (9)

R( fi, yi) =
cov( fi, yi)√
var[ fi]var[yi]

, (10)

5.5. Normalization

Because the machine-learning model’s parameters for entry have different dimensions,
it is impossible to ignore how they affect training time and prediction accuracy [67]. To
address the impact of these dimension discrepancies and improve the machine-learning
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model’s ultimate precision and effectiveness, we used Equation (11) to normalize the input
parameters to a range of zero to one.

xNormalised =
x − xmin

xmax − xmin
, (11)

where xNormalised represents normalized value, x denotes original value, xmin corresponds
to the minimum value, and xmax corresponds to the maximum value.

5.6. The Predictive Outcomes of the Machine-Learning Model

This section assesses the efficacy of the machine-learning architecture utilizing the
hybrid PSO-SVM algorithm. As depicted in Figure 5, the R2 coefficients of the model were
computed to predict the major PPC, the minor PPC, and the PPA.
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Based on the R2 coefficient analysis presented in Figure 5, the machine-learning model
demonstrates superior predictive performance for the major PPC of marine clayey sediment
(R2 = 0.9718), which is close to 0.9715 for the minor PPC [68]. It is followed by the principal
permeability angle, which is 0.9367.

Figure 6 illustrates that, based on the R coefficient analysis, the highest R-value (0.9872)
is achieved for predicting the major PPC. This value is approximately 0.0009 greater than
that obtained for the minor PPC. The R-value for predicting the principal permeability
angle also stands at 0.9696.

Based on Figure 7, both the optimal and average fitness gradually decrease in the
iteration process. For optimal wellness, it declines from about 1.8 to 0.515 after 20 times
iteration, and it remains stable in the following iteration. The utilization of PSO significantly
mitigates the forecasting error in the machine-learning predictive model, thereby enhancing
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the predictive accuracy [69–71]. Table 5 summarizes the R2, R, MSE, and MRSE metrics for
the machine-learning prediction models that were created.
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Table 5. The R2, R, MSE, and MRSE values of the developed machine-learning predictive model.

Major PPC Minor PPC PPA

R2 0.9718 0.9715 0.9367
R 0.9872 0.9863 0.9696

MSE 0.3693 0.1882 0.6615
MRSE 0.0056 0.1583 0.3516
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According to the statistical performance criteria presented in Table 5, the machine-
learning model yields satisfactory predictions for the major PPC, the minor PPC, and the
PPA of marine clayey sediment containing cracks under cyclic loading and unloading of
confinement pressure. Consequently, the machine-learning model is deemed feasible for
anticipating the permeability tensor of such sediment under similar conditions [53,72–84].
Specifically, the R2 values of the hybrid PSO-SVM model for predicting the major PPC,
the minor PPC, and the PPA are all higher than 0.93. All of the R values of the model
are above 0.969. Regarding the MSE, its value for predicting the minor PPC of marine
clayey sediment containing cracks is the lowest at 0.1882. The following is the significant
permeability component of marine clayey sediment (0.3693), which is 0.2922 lower than
that of the major PPC. Regarding MRSE, its value for the major permeability component is
the minimum (0.0056). The MRSE value for predicting the minor PPC is 0.1583, which is
about 0.1933 lower than the principal permeability angle.

6. Conclusions

This study proposes a methodology for ascertaining the REV of marine clayey sedi-
ment containing cracks through cyclic confinement pressure loading and unloading that
utilizes physical model tests. Following successfully verification of the REV’s existence
in such sediment, we developed a machine-learning predictive model to estimate the per-
meability tensor under similar loading and unloading conditions. This model is informed
by the results obtained from the physical tests. Effortlessly obtaining the permeability
tensor of marine clayey sediment containing cracks under cyclic loading and confine-
ment pressure unloading is achievable through our machine learning predictive model.
By inputting the relevant stress condition parameters, this model offers an efficient and
straightforward approach for engineering professionals to predict the permeability tensor.
Due to the obvious permeability anisotropy of marine clayey sediment, its permeability
has a significant impact on engineering safety. Therefore, it is of great theoretical value
and engineering significance to predict the permeability tensor of marine clayey sediment
in the process of confinement pressure cyclic loading and unloading by using physical
tests and machine-learning technology. The principal research conclusions are summed up
as follows:

1. The effects of confinement pressure on the permeability of marine clayey sediment
with different crack dip angles are most noticeable during the first loading phase,
which includes the first application and the subsequent unloading of confinement pres-
sure. However, in the subsequent cyclic loading and unloading stages, the influence
of confinement pressure on permeability diminishes.

2. The outcomes from the physical tests reveal an exponential relationship between
the permeability of marine clayey sediment, varying crack dip angles, and confine-
ment pressure during different loading and unloading phases of the confinement
pressure cycle.

3. Based on the proposed method, the existence of REV for marine clayey sediment con-
taining cracks during cyclic loading and unloading of confinement pressure is verified.

4. The hybrid PSO-SVM model, developed using a mathematical model database, accu-
rately predicts the permeability tensor of marine clayey sediment containing cracks
under cyclic loading and unloading of confinement pressure. This prediction aligns
with statistical performance criteria, including R2, R, MSE, and MRSE.

5. The utilization of PSO significantly enhances the predictive accuracy of the SVM
model for estimating the permeability tensor of marine clayey sediment containing
cracks throughout the cyclical confinement pressure loading and unloading.
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