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Abstract: The present work presents a methodology based on the use of stochastic weather generators
(WGs) for the estimation of high-return-period floods under climate change scenarios. Applying
the proposed methodology in a case study, Rambla de la Viuda (Spain), satisfactory results were
obtained through the regionalization of the bias-corrected EUROCORDEX climate projections and
the integration of this information into the parameterization of the WG. The generated synthetic data
series fed a fully distributed hydrological model to obtain the future flood quantiles. The results
obtained show a clear increase in the precipitation extreme quantiles for the two analyzed projections.
Although slightly reducing the annual amount of precipitation, variations between 4.3% for a return
period of 5 years in the mid-term projection and 19.7% for a return period of 100 years in the long-term
projection have been observed. In terms of temperatures, the results point to clear increases in the
maximum and minimum temperatures for both projections (up to 3.6 ◦C), these increases being
greater for the long-term projection, where the heat waves intensify significantly in both magnitude
and frequency. Finally, although rivers may present, in general, with lower flows during the year,
flood quantiles experience an increase of 53–58% for high return periods, which reach values of up to
145% when we move to smaller catchments. All this combined translates into substantial shifts in the
river flow regimes, increasing the frequency and magnitude of extreme flood events.

Keywords: weather generator; climate change; quantile; regional extreme precipitation study

1. Introduction

Ensuring the accurate estimation of high-return-period flood quantiles is paramount
for appropriately dimensioning infrastructure and establishing effective flood warning
systems [1,2]. Despite the emergence of novel methodologies for estimating these quantiles
in recent years, the prevailing estimates still harbor substantial uncertainties. The limited
temporal length of available time series data and the sparse deployment of rain gauges and
monitoring stations stand out as primary sources of uncertainty, presenting formidable chal-
lenges within Flood Frequency Analysis (FFA). This challenge is particularly accentuated
in arid and semi-arid regions [3], which are often poorly monitored.

Rapid advancements in computing capabilities have paved the way for the widespread
adoption of Synthetic Continuous Simulation (SCS) within the scientific community: a
hybrid methodology blending statistical and deterministic techniques for FFA studies.
Leveraging a stochastic weather generator (WG) in tandem with a hydrological model
(HM), SCS facilitates the generation of synthetic data series spanning a wide range of
hydrometeorological variables. However, to ensure the robust performance of WGs, it
is necessary to feed them with adequate input information, particularly when modeling
extreme events [4]. Nevertheless, the duration of current observational records, typically
limited to around 100 years at most, proves insufficient for optimal WG performance.
Consequently, addressing this data deficiency necessitates the incorporation of additional
flood information [5,6]. This may encompass non-systematic data sources, including
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historical and palaeoflood records, as demonstrated by Benito et al. [7], regional maximum
precipitation studies, as exemplified by Evin et al. [8], or a blend of both approaches, as
showcased by Beneyto et al. [9].

Furthermore, climate studies predict an increase in the frequency and magnitude of
extreme events (e.g., [10,11]), which, combined with the global socioeconomic development,
will lead to an increase in flood losses resulting from extreme precipitation events in the
near future [12]. All this further highlights the need to develop methodologies that reduce
the uncertainty in the flood estimates, especially those associated with a low probability of
occurrence. Generally, most of the studies currently carried out to estimate future flood
quantiles are broadly based on the use of the available products from Global Circulation
Models (GCMs), downscaling the outputs of these to finer scales and obtaining the flow
series through an HM (e.g., [13–15]). Downscaling methods to obtain observed small-scale
variables and those from GCMs can be based on the use of either RCMs, analog methods
(circulation typing), regression analysis, or neural network methods [16]. However, down-
scaled data present large biases that need to be corrected. Over the past decades, various
bias correction methods have been proposed. Main examples include delta change [17,18],
direct statistical downscaling [19,20], quantile mapping (QM) [21], Nested Bias Correction
or its multivariate counterpart Multivariate Bias Correction [22]. A more extensive review
of bias correction methods can be found in Themeßl et al. [23] and Maraun [24].

Although it is true that to properly capture extreme convective precipitation episodes a
sub-daily modeling time step is required for most applications [25], and that climate model
outputs are now increasingly available at sub-daily time steps, a very limited number of
studies have looked at the bias correction of sub-daily climate model outputs [26] and the
focus has been on correcting sub-daily annual maximum values (e.g., [27]). Instead, daily
climate projections of 30 years in length are usually used in climate change studies that,
although according to the “World Meteorological Organization”, are of sufficient length to
smooth out the variations from one year to the next [28], in the opinion of the authors of
this work, they are insufficient for the adequate estimation of extreme flood quantiles. In
fact, in the analysis conducted by Beneyto et al. [29], in which different sample data lengths
(i.e., 60, 90, and 120 years) were analyzed, it was concluded that no significant reduction in
the uncertainty of the estimations was found compared to the reduction obtained when
incorporating additional information. Although a 30-year data series could be enough
for specific studies and some meteorological variables, flood quantile estimation requires
longer datasets, especially if we are focused on adequately modeling extreme events, which
could be achieved with an effectively parametrized WG.

In this context and following the steps of the previous works of Beneyto et al. [9,29,30],
this study presents a new methodology that integrates different sources of information
generated from hydrometeorological models fed with the amount of information necessary
to achieve an adequate characterization of the main variables that must be considered in
the FFA under climate change scenarios of only 30 years in length. This methodology has
been applied in a case study: Rambla de la Viuda (Spain) (Figures 1 and 2).

Building upon previous research, this study addresses the critical gap in flood estima-
tion methodologies by proposing an innovative approach that integrates diverse sources of
hydrometeorological information. By leveraging this approach, which focuses on accurately
characterizing key variables within the FFA under climate change scenarios, this study
contributes significantly to enhancing the precision and reliability of flood quantile estima-
tions. Unlike previous studies limited by short observational records and methodological
constraints, this research provides a novel framework capable of effectively utilizing climate
data spanning just 30 years, thereby offering a practical solution to the pressing need for
improved flood risk assessment in the face of evolving climatic conditions.
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2. Case Study
2.1. Study Area

The methodology outlined in this study was implemented and evaluated in the setting
of the Rambla de la Viuda (Castellón), a typical Mediterranean ephemeral river located
in eastern Spain (Figure 1). Stretching over a distance of 36 km and covering a drainage
area of 1513 square kilometers, this river originates from the junction of the Montlleó River
and the Rambla Carbonera, eventually joining the Millars River near its endpoint at the
Mediterranean Sea.

Annual precipitation averages approximately 550 mm, although the majority of this
rainfall is concentrated in isolated episodes, especially during the autumn months, asso-
ciated with mesoscale convective systems. Consequently, the river sustains flow for an
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average of 31 days annually, often persisting for as briefly as 2 or 3 days, and is correlated
with cumulative rainfall surpassing 70 mm [31].

2.2. Hydrometeorological Information

Meteorological data were obtained from different sources. Observed daily precip-
itation and maximum and minimum temperatures were obtained from the Spain02-v5
dataset [32,33]. A total of 20 pluviometers and thermometers covering the basin with daily
records from 1951 to 2015 (66 years) were selected (Figure 2).

Climate projections were obtained from the “Coordinated Regional Downscaling
Experiment for Europe” experiment (EURO-CORDEX) (https://www.euro-cordex.net/
(accessed on 15 February 2024)). A total of 12 different combinations of Global Circulation
Models (GCMs) and Regional Circulation Models (RCMs) were used in this study (Table 1),
including daily precipitation and minimum and maximum temperature with a spatial reso-
lution of 0.11◦. These data included a control period (1971–2000), a medium-term projection
(2035–2064), and a long-term projection (2065–2094). The projections used in this study cor-
respond to the Radioactive Concentration Pathway (RCP) 8.5, which represents a scenario
with continuous emissions of CO2 throughout the 21st century [34]. Additionally, tempera-
ture data (bias-corrected) were used to create time series of Potential Evapotranspiration
(ET0), which were estimated with the Hargreaves–Samani equation [35].

Table 1. EUROCORDEX models.

Model GCM RCM Institute

1 MPI-M-MPI-ESM-LR COSMO-crCLIM-v1-1 CLMcom-ETH
2 CNRM-CERFACS-CNRM-CM5 CCLM4-8-17 CLMcom
3 CNRM-CERFACS-CNRM-CM5 RACMO22E KNMI
4 ICHEC-EC-EARTH COSMO-crCLIM-v1-1 CLMcom-ETH
5 ICHEC-EC-EARTH RACMO22E KNMI
6 IPSL-IPSL-CM5A-MR RACMO22E KNMI
7 MOHC-HadGEM2-ES CCLM4-8-17 CLMcom
8 MOHC-HadGEM2-ES RACMO22E KNMI
9 MPI-M-MPI-ESM-LR CCLM4-8-17 CLMcom

10 MPI-M-MPI-ESM-LR KNMI-RACMO22E KNMI
11 MPI-M-MPI-ESM-LR REMO2009 MPI-CSC
12 NCC-NorESM1-M COSMO-crCLIM-v1-1 CLMcom-ETH

Lastly, discharge data for the HM implementation were obtained from the Júcar River
Basin Water Authority (CHJ) through its Automatic System of Hydrological Information
(SAIH): two gauges located at Vall d’Alba and Montlleó Rivers; and two stations located
in Alcora and Maria Cristina reservoirs, where the flows were estimated from the balance
between the reservoir levels and their releases.

3. Methodology

Following in the footsteps of a previous work by Beneyto et al. [9], the proposed
methodology encompasses undertaking the following procedures: (1) correct the bias of
climate models; (2) perform (if not available) a regional study of maximum daily precipita-
tion of the bias-corrected climate models (both for control period and for the projections);
(3) implement a stochastic multi-site WG incorporating the information from the ad hoc
regional studies and generate very long series (i.e., 5000 years) of precipitation and tem-
peratures; and (4) implement a fully distributed HM and feed it with the outputs from the
WG to generate series of synthetic discharges. Figure 3 shows an outline of the proposed
methodology, the steps of which are developed in the following sections.

https://www.euro-cordex.net/
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3.1. Bias Correction of Climate Series

The temperature and precipitation time series of the 12 climate models were bias-
corrected relative to the observed climate data (Spain02 dataset). The bias correction was
based on the non-parametric statistical transformation of empirical quantiles or “quantile
mapping” [36] and was implemented for each season of the year separately (December–
February, March–May, June–August, and September–November). The bias correction
procedure applied in this study also considered the adaptation of the frequency of wet/dry
days proposed by Themeßl et al. [23]. Bias correction functions established in the control
period were applied to future climate projections assuming stationary biases.

3.2. Regional Study of Maximum Daily Precipitation

The second phase of the methodology, if not available, entails conducting a com-
prehensive regional study of maximum daily precipitation, encompassing both historical
control period data and projections previously bias-corrected. This in-depth analysis aims
to expand the available information and capture a holistic understanding of precipitation
patterns across the region. The insights gleaned from this study serve as crucial inputs for
the effective implementation of the WG, which is explained in the following subsection. A
comparison of regionalization methods to improve in situ estimates of daily precipitation
can be found in Haruna et al. [37].

In our study, the regional analysis followed the methodology developed by Hosking
and Wallis [38,39], employing the Index Variable method [40] alongside linear moments. As
recommended by the authors, a Discordance and Homogeneity test based on L-moments
was conducted to identify homogeneous regions, resulting in the identification of a single
homogeneous region.

Finally, once the homogeneous regions were identified and following the premise of the
Index Variable, the probability function that best fit (i.e., Generalized Pareto Distribution)
was selected according to the criterion developed by Akaike [41] and the local quantiles
were deregionalized for each of the models and grids of the basin.

3.3. Weather Generator: GWEX

The WG employed in this study was GWEX [8], a multi-site stochastic model designed
specifically to accurately model extreme events. Noteworthy among its many features is
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the incorporation of the Extended Generalized Pareto Distribution (E-GPD) function, as
described by Papastathopoulos and Tawn [42]. This distribution is essentially derived by
raising the Generalized Pareto Distribution to a power k > 0. This unique characteristic
enhances the WG’s capability to effectively simulate extreme weather phenomena, which
is particularly relevant for the objectives outlined in this study.

F(x; λ) =

[
1 −

(
1 +

ξx
σ

)
+

−1/ξ
]κ

, x > 0 (1)

The parameter vector λ = (k, σ, ξ) comprises the parameters controlling various aspects
of the distribution. Specifically,
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governs the shape of the lower tail, σ represents the scale
parameter, and ξ regulates the decay rate of the upper tail, as described by Naveau [43].
In a similar way to the proposed methodology in Beneyto et al. [9], the value of this
latter parameter was adjusted for each model with the regional X100, thus reducing the
uncertainty in the estimates as demonstrated in Beneyto et al. [29,30].

3.4. Ecohydrological Model: TETIS

The fully distributed ecohydrological model TETIS was used [44,45]. This model
had already been implemented in a previous work by Beneyto et al. [9]. In this study,
slight modifications to the correction factors were made, which improved the results in
terms of the Nash–Sutcliffe efficiency [46] both in calibration and in temporal, spatial, and
spatio-temporal validation. For more information regarding the model’s implementation,
refer to Beneyto et al. [9].

4. Results
4.1. Temperatures

Although the analysis of the temperatures is not within the main objectives of the
present study, it is evident that the potential change in the temperature trends resulting
from the effects of climate change will lead to alterations to the discharge regimes. That
is, temperature has a clear impact on the initial conditions of the basin: apart from higher
evapotranspiration, higher temperatures would potentially increase the soil aridity, result-
ing in higher volumes of infiltration at the initial moments of the storm, thus, supposedly
resulting in lower initial flows.

Figure 4 below shows the comparison of the mean daily maximum and minimum tem-
peratures of the observations and the 12 GCM–RCM combinations for both the mid-term
and the long-term projection. It is worth mentioning that, in the case of the temperatures,
the analysis has been carried out comparing the data purely from the observations and
from the climate projections (bias-corrected). That is, the use of a WG was considered not
necessary for this analysis given that the length of the data series was enough to capture
the trend and the potential variations.

From this figure, it can be appreciated that there is a clear increasing trend for both the
maximum and minimum temperatures for all the projections. This increase ranges from
1.9 ◦C for the mid-term projection to 3.4 ◦C for the long-term projection in the case of the
minimum temperature and from 2.0 ◦C to 3.6 ◦C, respectively, in the case of the maximum
temperature. If we look at the monthly variations (Table 2), it can be observed that, for
both variables, the greater increases occur over the summer months, whereas the lower
increases take place during the winter months.
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Figure 4. Mean minimum (top) and maximum (bottom) daily temperature of the observations
and the 12 climate projections (black line denotes the separation between mid-term and long-term
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Table 2. Average monthly increase in maximum and minimum temperatures for mid-term and
long-term projections.

∆T (◦C)
Minimum Temperature Maximum Temperature

Mid-TERM Long-Term Mid-Term Long-Term

January 2.43 2.55 2.25 2.25
February 1.90 1.93 2.17 1.98

March 2.41 2.61 2.27 2.56
April 2.39 2.98 2.76 3.55
May 1.34 2.61 1.51 3.08
June 3.02 5.32 3.34 6.04
July 2.04 5.04 1.80 5.11

August 1.06 4.26 1.35 4.73
September 0.41 3.19 0.34 3.18

October 1.47 3.68 1.43 3.67
November 2.71 4.28 2.73 4.18
December 1.67 2.59 1.56 2.40
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Finally, an analysis of the percentage of the days with temperatures under or over
certain thresholds was conducted. The results of this analysis are shown in Figure 5 below.

Water 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

June 3.02 5.32 3.34 6.04 
July 2.04 5.04 1.80 5.11 

August 1.06 4.26 1.35 4.73 
September 0.41 3.19 0.34 3.18 

October 1.47 3.68 1.43 3.67 
November 2.71 4.28 2.73 4.18 
December 1.67 2.59 1.56 2.40 

Finally, an analysis of the percentage of the days with temperatures under or over 
certain thresholds was conducted. The results of this analysis are shown in Figure 5 below. 

  

 

Figure 5. Variation in the number of days with extreme mean daily temperatures. 

In the case of the minimum temperature, the percentage of days with a mean mini-
mum temperature lower than 10 °C, 5 °C, 0 °C, and −5 °C was analyzed, observing a clear 
decrease in the number of cold days compared to the observations and which was more 
pronounced in the case of the long-term projection. Similarly, in the case of the maximum 
temperature, the percentage of days with a mean maximum temperature higher than 25 
°C, 30 °C, 35 °C, and 40 °C was examined, suggesting a significant increase in the number 
of warm days and, again, this increase being more marked in the case of the long-term 
projection. 

4.2. Precipitation 
The results in terms of the precipitation are shown in Figure 6, where the boxplots of 

the estimated precipitation quantiles (standardized with the homologous quantiles in the 
control period) from the 5000 years generated for both the mid-term projection and the 
long-term projection are represented for one of the grids of the basin (i.e., grid 03759). 
Similarly to what occurs with the rest of the grids, the low-return-period quantiles expe-
rience small differences with their corresponding quantiles in the control period. The fu-
ture quantiles tend to increase systematically with the return period, this increase being 
more evident in the case of the long-term projection. Additionally, the uncertainty of these 
estimations broadens with the quantile (wider boxplots). 

61.5%

33.7%

7.3%
0.3%

51.7%

22.2%

3.3%

0.1%

45.2%

18.2%

3.7% 0.3%

0%

10%

20%

30%

40%

50%

60%

70%

% days with
Tmean < 10ºC

% days with
Tmean < 5ºC

% days with
Tmean < 0ºC

% days with 
Tmean < −5ºC

Minimum Temperature

28.3%

8.5%

0.3% 0.0%

36.1%

16.2%

1.7% 0.1%

42.9%

24.9%

7.4%

2.4%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

% days with
mean T > 25ºC

% days with
mean T >30ºC

% days with
mean T > 35ºC

% days with
mean T > 40ºC

Maximum temperature

Figure 5. Variation in the number of days with extreme mean daily temperatures.

In the case of the minimum temperature, the percentage of days with a mean minimum
temperature lower than 10 ◦C, 5 ◦C, 0 ◦C, and −5 ◦C was analyzed, observing a clear
decrease in the number of cold days compared to the observations and which was more
pronounced in the case of the long-term projection. Similarly, in the case of the maximum
temperature, the percentage of days with a mean maximum temperature higher than 25 ◦C,
30 ◦C, 35 ◦C, and 40 ◦C was examined, suggesting a significant increase in the number
of warm days and, again, this increase being more marked in the case of the long-term
projection.

4.2. Precipitation

The results in terms of the precipitation are shown in Figure 6, where the boxplots of
the estimated precipitation quantiles (standardized with the homologous quantiles in the
control period) from the 5000 years generated for both the mid-term projection and the long-
term projection are represented for one of the grids of the basin (i.e., grid 03759). Similarly
to what occurs with the rest of the grids, the low-return-period quantiles experience small
differences with their corresponding quantiles in the control period. The future quantiles
tend to increase systematically with the return period, this increase being more evident
in the case of the long-term projection. Additionally, the uncertainty of these estimations
broadens with the quantile (wider boxplots).

Considering the mean quantile of all the grids and all the models (in the control period,
mid-term projection, and long-term projection), we could obtain the expected differences in
the future quantiles (∆%), which applies to the observed quantile results in the estimated
future precipitation quantiles (Table 3).

These increases in the precipitation quantiles range between 4.3% for a return period
of 5 years in the mid-term projection and 19.7% for a return period of 100 years in the
long-term projection. While it is clear that the increase is proportional to the return period
in the case of the mid-term projection, for the long-term projection, this increase seems to
be quite stable for all return periods except for a return period of 5 years.
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Table 3. Estimated future precipitation quantiles (mean of all models and all grids).

T (Years)
Observations Mid-Term Projection Long-Term Projection

XT ∆% XT ∆% XT

5 80 4.3% 83 12.8% 90
10 99 6.0% 105 16.7% 116
25 125 8.4% 136 18.6% 148
50 145 11.5% 162 19.3% 173
75 158 13.5% 179 19.7% 189

100 167 14.4% 191 19.4% 199
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4.3. Discharges

The 25 WG implementations (i.e., observations, 12 mid-term projections, and 12 long-
term projections) fed the fully distributed HM TETIS, obtaining the discharges shown
in Figure 7, represented by their plotting positions obtained with the Cunnane formula-
tion [47].
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Figure 7. Plotting positions of the observed daily discharges and the simulated discharges from the
climate models (both for the mid-term and for the long-term projection) at Maria Cristina reservoir.

As expected with the results obtained for the precipitation, the plotting positions of the
generated discharges are clearly higher than those observed for both the mid-term and the
long-term projection. Notwithstanding, it is also clear the uncertainty surrounding these
estimates depending on the model, presenting flood quantiles that range from 180 m3/s to
810 m3/s for a return period of 100 years, for example. Despite variations across scenarios,
an increase is evident in all cases; Table 4 presents the estimated percentage increase in the
flood quantiles at the Maria Cristina reservoir, calculated as the difference between those
obtained during the control period and those projected by each model. Additionally, the
table includes the anticipated future flood quantile, derived by applying this percentage
increase to the observed quantiles.

The increase is systematic for all the quantiles and for both projections, ranging from 8
to 12% for the low return periods to 53 to 58% for the high return periods, where increases
in the flood quantiles are more pronounced. Finally, and exploiting the benefits of using a
fully distributed HM, the same analysis was conducted for an additional two flow gauges
located at Vall d’Alba (906 km2) and Montlleó (501 km2) (Table 5). The results in both flow
gauges presented increases for all the flood quantiles; however, it can be observed that,
compared to Maria Cristina, these increases are higher in Vall d’Alba (ranging from 10% to
80%) and especially in Montlleó (ranging from 5% to 145%). That is, future flood quantiles
appear to exhibit higher increases as the catchment becomes smaller.
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Table 4. Estimated future flood quantiles at Maria Cristina (catchment area: 1447 m2).

T (Years) Observed
(m3/s)

Climate Projections (m3/s)
∆% Mid-Term ∆% Long-Term

5 20 12% 22 8% 21
10 38 12% 43 16% 44
25 68 22% 83 33% 91
50 101 38% 140 54% 155
75 130 48% 192 56% 202

100 147 53% 225 58% 232

Table 5. Estimated future flood quantiles at Vall d’Alba and Montlleó (catchment areas: 906 km2 and
501 km2, respectively).

Vall d’Alba
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5. Discussion

SCS, a widely embraced hybrid methodology for flood quantile estimations, addresses
the limitations of purely statistical or deterministic approaches in estimating flood quantiles.
By effectively characterizing the initial conditions of a basin and adequately representing
the spatio-temporal distribution of precipitation, SCS offers significant advantages in
flood estimation [48]. Despite these advancements, uncertainty persists in estimating
low-frequency flood quantiles.

The primary source of this uncertainty stems from the length of existing hydrom-
eteorological series and the sparse distribution of monitoring stations [49], particularly
pronounced in arid and semi-arid regions. The scarcity of data poses a formidable challenge
in accurately estimating flood quantiles. While longer input data sets could potentially
mitigate uncertainty, this remedy relies solely on the passage of time for data accumulation.

Addressing the challenges of uncertainty in flood quantile estimation requires con-
certed efforts in data collection and analysis [50]. Strategies to enhance monitoring networks
and extend data collection periods can contribute to reducing uncertainty [51]. Addition-
ally, advancements in modeling techniques and the integration of remote sensing data can
provide valuable insights into hydrological processes [52], aiding in more accurate flood
quantile estimation. Despite the inherent challenges, ongoing research and technological
innovations hold promise for improving the reliability of flood quantile estimates and
enhancing our ability to manage flood risks effectively. Additionally, climate patterns
are no longer as we used to know them; they are rapidly changing as a consequence of
the effects of climate change. Practically all the available research points to alterations in
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river flow regimes resulting from the changes in temperature and precipitation patterns
(e.g., [53–55]). This adds even more uncertainty to the estimation of future flood quantiles,
and is certainly a challenge to be faced for the correct sizing of infrastructures and for
protecting those areas now vulnerable to being affected by floods.

Numerous studies can be found in the literature assessing the impacts of climate
change on hydrology and water resources in many regions (e.g., [56–58]). They all start
from the same source of information: GCMs. These are the most advanced tools currently
available for simulating the response of the global climate system to increasing greenhouse
gas concentrations [59]. Notwithstanding, these models inevitably simulate large biases
in temperature, precipitation, and humidity at regional scales and at individual grid
points [60,61] and their resolution is too coarse for undertaking reliable flood studies at a
local scale. Downscaling methods to obtain observed small-scale variables and from GCMs
can be based on the use of either RCMs, analogue methods (circulation typing), regression
analysis, or neural network methods [16].

Many projects are now under way, offering a wide range of climatic data, mostly based
on combinations of GCMs and RCMs, such as the EUROCORDEX project, the data of which
have been used in the present study. These climate projections include a 66-year control
period for correcting the potential biases and 95 years of future projections. Although
95 years could be a reasonable data length for certain studies employing specific climatic
variables, in the opinion of these authors, it is not enough in the case of precipitation,
specifically if we are focusing on estimating extreme events. WGs, however, fed by these
climate projections, can generate long data series in multiple realizations, reducing the
uncertainty of future quantile estimations. Nevertheless, it has been demonstrated that WGs
need robust information to perform adequately [9,29,30]. Incorporating additional sources
of information or improving model implementation can lead to considerable improvements
in the reliability of flood quantile estimates.

The present work tries to contribute in this sense, establishing a new methodology
for the estimation of extreme floods in climate change scenarios through the use of WGs.
Similarly as in Beneyto et al. [9,29,30], we perform an ad hoc regional study of the annual
maximum daily precipitation, the results of which are incorporated in the WG parametriza-
tion for better reproduction of the precipitation quantiles in both the present and the
future climate.

The results obtained applying this methodology in terms of temperatures show a
substantial increase in relation to current observations for both the medium-term projection
(35–64) and the long-term projection (65–94), with the increase being considerably greater
for the long-term projection, with mean maximum temperature values of up to 6 ◦C higher
for the month of June. These results follow the same trend as the results obtained by other
authors such as Wuebblles et al. [62] or Zubaidi et al. [63], predicting warmer summers and
milder winters. Furthermore, as can be seen in Figure 5, the number of days with a mean
maximum temperature above 35 ◦C and 40 ◦C increases considerably, which means that the
number of heat waves will intensify in the future, as other studies have already highlighted
(e.g., [64,65]). Similarly, the mean minimum temperature also increases in both projections,
although this is slightly less pronounced than in the case of the maximum temperature.
Furthermore, the percentage of intense cold days reduces systematically for all the analyzed
temperatures in the case of the medium-term projection, although it increases again for the
long-term projection when looking at a mean temperature below 0 ◦C and −5 ◦C, which
means that cold waves could intensify in the future, even though this increase could also
be caused by the models’ variability.

When we look at the precipitation, the results obtained show a substantial increase for
all quantiles, both in the medium-term projection (35–64) and in the long-term projection
(65–94) with respect to the control period regional quantiles. Despite the higher variability
between the models with the return period evidenced by the width of the boxplots in
Figure 6, the upward trend is clear for all of them, being more pronounced for the highest
return period quantiles, where the increases in the precipitation quantiles reach 15% to 20%.
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Again, these results align with studies from other authors (e.g., [66–68]) that predict an
increase in the magnitude and frequency of extreme precipitation episodes as a consequence
of climate change.

This increase in the magnitude and frequency of precipitation events is logically trans-
ferred to discharges, with these increasing significantly for all quantiles and, once again,
more evidently for low-frequency quantiles. This increase in flows, however, is slightly
compensated for by the decrease in the average annual precipitation and the increase in
temperatures, which translate into greater evapotranspiration and lower humidity in the
basin prior to storm episodes [69]. Even so, although there is a high variability between
climate models, all of them predict increases in the peak discharges, which means that
flood events will be more frequent and more extreme in the future.

Finally, it is worth noting the presence of the “dog-leg” effect in the flood plotting
positions, as demonstrated in Figure 7 of the simulations. This distinctive phenomenon,
originally described by Potter [70], is particularly evident in rivers in the Mediterranean
region and can be accurately reproduced using a TCEV distribution, as proposed by
Francés [71].

The escalating magnitude of extreme precipitation events underscores the imperative
to urgently address and prepare for potential amplification in the scale of future river
floods. As climate change continues to influence weather patterns, the heightened intensity
of precipitation poses an increased risk of severe flooding. To effectively mitigate and adapt
to these evolving challenges, proactive measures must be implemented. This involves
not only bolstering infrastructure resilience to withstand higher water levels but also
instituting comprehensive flood risk management strategies. Emphasizing the importance
of early warning systems, community preparedness, and sustainable land use practices
becomes paramount. Additionally, fostering international collaboration for data sharing,
research, and the development of adaptive policies can play a crucial role in building a
collective defense against the escalating threat of more substantial river floods. In this
context, a holistic and proactive approach is essential to navigate the complex dynamics of
climate-induced changes and their impact on the hydrological cycle, ensuring the safety
and resilience of communities in the face of future flood events.

6. Conclusions

The increasing adoption of the SCS approach for enhancing limited hydrometeorologi-
cal records relies heavily on comprehensive observational data, but often lacks temporal
depth, leading to significant uncertainties in estimating flood quantiles, especially in ex-
treme event modeling, further compounded by incorporating climate change scenarios,
necessitating correction methods like the delta method or quantile mapping, yet for the
accurate estimation of future flood quantiles, extending precipitation data series via a
well-parameterized WG is essential. The methodology presented in Beneyto et al. [9]
demonstrated that integrating additional information into the WG implementation con-
siderably reduced the uncertainty of high-return-period flood quantile estimates when
estimated by a WG. Furthermore, this was quantified under different information scenarios
in Beneyto et al. [29] and in Beneyto et al. [30]. The presented methodology applied in
the case study of Rambla de la Viuda draws from the premise of these studies to estimate
extreme floods under climate change scenarios. In this case, the information obtained
from the regionalization of the climate projections is integrated into the WG, obtaining
satisfactory results.

The results obtained from the EUROCORDEX project’s projections for an RCP8.5
emissions scenario in the study area analyzed show a clear increase in maximum and
minimum temperatures, with more frequent and severe hot waves, which will result in
increasing evapotranspiration rates. Precipitation quantiles experience similar increases
to those of temperatures, although the average annual precipitation is seen to be slightly
reduced. This will probably translate into a reduction in the average annual flow of rivers,
combined with increasingly frequent episodes of large floods, as numerous studies already
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remark. These results demonstrate the robustness of the presented methodology, being
able to obtain satisfactory results at any point of the study area.

The accurate estimation of flood quantiles under climate change scenarios is of
paramount importance for informed decision-making and effective water resource man-
agement. As climate patterns evolve, the frequency and intensity of extreme weather
events, including floods, are anticipated to undergo significant changes. The adequate
estimation of flood quantiles is crucial for assessing and mitigating the associated risks, par-
ticularly in the context of shifting precipitation patterns and altered hydrological regimes.
Precise quantification enables the identification of vulnerable areas, informs the design of re-
silient infrastructure, and aids in the formulation of adaptive strategies. Moreover, reliable
estimates are indispensable for developing robust floodplain management plans and opti-
mizing resource allocation for flood prevention and response efforts. Inaccuracies in flood
quantile estimation may lead to either underpreparedness or unnecessary investments,
emphasizing the critical role of precise assessments in enhancing resilience to the challenges
posed by climate change-induced variations in flood magnitudes and frequencies.
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