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Abstract: The scarcity of natural resources makes it essential to develop products that meet environ-
mental requirements. This is also true for the water and wastewater treatment business, where even
consolidated processes, such as coagulation and flocculation, must be improved, opening opportu-
nities for searching for alternative options to conventional processes. Among the existing options,
tannin-based agents (TBAs) have been highlighted in recent years due to their biodegradability
and proven efficiency. However, little is known about the impacts of the production process of
these agents on an operational/industrial scale. In this study, an examination of the environmental
impacts of the full-scale production (more than 500 tons yearly) of a TBA from Acacia spp. (known
as black acacia or mimosa) was carried out. To accomplish this, a life cycle assessment (LCA) was
developed using openLCA version 2.0.0 to assess a cradle-to-gate system of 1 kg of packed TBA
produced. Additionally, a comparison was made between the impacts of the production of TBA
and a conventional water treatment agent, aluminum sulfate, to verify the benefits of producing the
former. The most relevant impacts resulting from the production of 1 kg of TBA are observed in
the following categories: global warming (1.52 kgCO2-eq); terrestrial (7.67 kg1.4-DCB-eq), freshwater
(0.06 kg1.4-DCB-eq), and marine (0.08 kg1.4-DCB-eq) ecotoxicities; carcinogenic (0.10 kg1.4-DCB-eq) and
non-carcinogenic (1.36 kg1.4-DCB-eq) human toxicities; and water use (0.02 m3). The main contributors
to the impacts were the chemicals ammonium chloride and formaldehyde used, the transport of
inputs, and the energy used. The aluminum sulfate showed better performance than the TBA for
a greater number of categories; however, the normalization of the impacts showed the TBA as a
very interesting option. The results obtained here can be used by TBA producers to act on the most
impactful categories so that the production process becomes increasingly sustainable.

Keywords: LCA; coagulation/flocculation; green chemistry; circular economy; acacia

1. Introduction

Industrial development is directly related to water resource availability since these
are essential to most production processes. Thus, the increased demand for water in our
society emphasizes the need for development and improvement in its treatment processes.
The search for these new technologies is highly linked to maintaining the technical viability
of industrial processes and is increasingly a requirement due to the increased rigor of
environmental standards [1].

Given the justified relevance attributed to water treatment, the importance of the
coagulation/flocculation stages in this process stands out. Traditionally, inorganic metallic
coagulant agents, such as iron chloride and especially aluminum sulfate, have emerged
as the main choices for application in water and wastewater treatment, generally based
on the cost–benefit evaluation of treatments. However, these coagulants have limited
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pH applications and residual metals from these products have been recently pointed out
as harmful to human health and related to several diseases [2,3]. Moreover, the sludge
generated in large volumes by treatment with these agents presents difficulties regarding
the destination in landfills or agricultural lands, generating environmental problems [4,5].

Consequently, there are increasing studies regarding applying organic agents, usually
polymers, during treatment processes. These polymers, including tannin-based ones, aim to
mitigate the problems related to the bioaccumulation of metals and pH restrictions [4,6]. The
application of these organic agents, compared to metallic products, presents several benefits
related to the biodegradability of the sludge formed in a possible smaller volume, associated
with an efficiency compatible with that of traditional alternatives [3,4]. However, little is
known about the comparative relationship between the impacts of the production process
of these, for which industrial implementation is recent, and the consistent manufacturing
process of metallic coagulants, such as aluminum sulfate, which is globally structured
through bauxite extraction and reaction with sulfuric acid.

In parallel, the production of tannin-based agents (TBAs) considers the extraction
of tannin from trees. After that, the solution is exposed to an organic synthesis reaction
called the Mannich reaction [7,8]. Unlike aluminum sulfate’s primary source, tannins
are bioproducts (phenolic compounds) present in plants resulting from their secondary
metabolism [9]. In complement to that, there is a scarcity of studies that use life cycle
assessment to evaluate the impact of TBAs production. One can cite the study by Carlqvist
et al. [10], whose objective was to assess the environmental effects of the production of
grafted tannin-based agents. However, no data from the manufacturing process already
implemented on an industrial scale were used. Thus, the development of this evaluation
on a manufacturing scale, which has not yet been performed, would allow for a more
consistent verification of the environmental performance of TBAs, providing knowledge
about the extent or otherwise of the beneficial effects of its application, as previously
indicated, also for its industrial production. Given this scenario, the present work aimed to
evaluate the environmental impacts arising from the production of a TBA through a life
cycle assessment.

2. Materials and Methods

This work was developed using the LCA methodology, standardized in ISO 14040
and ISO 14044 [11,12], to evaluate the environmental impacts arising from the production
of a coagulant/flocculant based on tannins.

2.1. Definition of the Goal and Scope of the Life Cycle Assessment

The goal of the LCA was to assess the environmental impacts of TBA production in
in the Brazilian industry and compare it to aluminum sulfate. The reason for conducting
this analysis is to understand the hotspots in the production of TBAs at an industrial
scale, which is not available in the literature yet, and investigate the advantages and
disadvantages of this organic agent compared to an ordinary inorganic/metallic coagulant
used in water and wastewater treatment.

The production system under study is TBA production, which generates the product to
be transported to retail application settings. To calculate the flows related to the production
system, we considered the production of 565,250 kg of the packaged product, referring to the
yearly total produced by the Brazilian manufacturer. However, the functional unit used for
the impact assessment was 1 kg of packaged TBA produced, for which each of the inputs and
outputs was weighed by the openLCA version 2.0.0 software used for the analyses.

The system boundary of the assessment was cradle to gate for the TBA production
process. This means that all stages of obtaining raw materials, such as planting trees, were
considered in the impact assessments. However, the destination of the product after the
factory, as well as the solid waste disposal from the production process, were not included
in this analysis. Internal shifts in the factory were also not considered due to their relatively
low impact.



Water 2024, 16, 1007 3 of 13

Furthermore, no divisions were made between production steps. That is, the entire
production process up to the packaging/bagging stage is treated as a single block in the
system, as shown in Figure 1. The inputs are all of the entries that are necessary to produce
the TBA, including energy, and the outputs are, in addition to the final packaged product,
the wastes from the entire process. The production block included the reception of the black
acacia bark in natura, the step of processing and extracting the tannin, the evaporation stage,
subsequent chemical reactions, and, finally, the atomization and bagging/palletization.
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Figure 1. Tannin-based agent (TBA) production system.

The transportation of each of the inputs to the main city of the factory was included in
the analysis. Although the use of electricity is dominant in Brazil, in the case of transport,
the use of liquid fossil fuels persists, and these differences regarding energy sources are
considered in the allocations. It is also noteworthy that the internal treatment of production
effluents, from which water is reused in production, was included in the analysis.

2.2. Allocation, Limitations, and Life Cycle Inventory

The TBA manufacturer works in a plant which is divided into three production units,
with TBA belonging to one unit. At the time of this study, the company lacked a tracking
mechanism for certain shared flows among the three systems. This absence of data makes it
challenging to precisely ascertain the exact amounts of these inputs and outputs of the TBA
system. Considering this, to build the life cycle inventory, it was necessary to allocate data
whose values provided did not refer only to the production of the TBA and for which values
were not possible to obtain in a more specific way. Based on ISO 14044, since the allocation
could not be avoided through the expansion of the system, the physical mass allocation was
used for its execution, since this is preferable when compared to economic allocations [13].

The allocation was used for these specific flows: water consumption, steam, wastewa-
ter treatment, and outputs (wood ashes, wastewater sludge, wood sawdust, wood waste,
packaging waste, and plastic). This allocation factor is 3% and comes from the division
of the total 565,250 kg of the TBA by 18,588,000 kg of the other products produced in the
factory. For electricity, the allocation was not used; instead, it was calculated based on the
time of use of machines used in the process, multiplied by their power, and the days of
operation on a yearly basis.
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According to the system boundaries (Figure 1), the study carried out did not include
the treatment and disposal of production waste since its focus is on the production plant of
the tannin-based agent. Furthermore, the analysis was limited to a single “production block”
without specifying each of the production stages with their respective inputs and outputs.

In addition, the stages of assembly and future closure of the factory, as well as equip-
ment maintenance, were not considered, since they have little importance given the pro-
duction volume over the entire useful life of the factory or specific equipment. Internal
transportation in the plant was also not incorporated into the model. The generation of
waste or rejects arising from human and/or administrative activities not directly related to
factory production were not considered as well.

The information collected from the company’s employees, referring to the mass and
energy flows associated with the process, was organized and analyzed to build the life cycle
inventory. In addition to all the inputs (incoming material flows), energy flows (electricity
and steam) and external transport were also considered in this LCA. As a product output
in the process, a mass of 565,250 kg of the TBA was considered and built into the software.

After consolidating the data related to the total amount of TBA produced, we were
able to start building the life cycle inventory for the product system (Table 1). To include
the cradle-to-gate perspective in the inventory, process providers from the ecoinvent 3.7.1
database were used for each flow included in the life cycle assessment (Table 2). For cases
in which the life cycle inventory of specific inputs used in the production of the TBA were
not available in the ecoinvent 3.7.1 database, an appropriate process provider substitute
was selected to represent the input. That approach was used for soy lecithin and the
anti-foaming agent. For soy lecithin, a process with a similar function was used, namely
soybean meal and crude oil production. Lecithin is one of the byproducts produced during
the production of soybean oil. For the anti-foaming agent, the criteria used to define the
best process provider was the major component in the formula of the product used in the
factory, which is ethylene glycol. To assess the influence of the inputs on the overall system
impact, a sensitivity analysis was performed to verify the impact of these substitutions on
the results. For the evaluation, a cut-off criterion of 1% relevance was defined.

Table 1. Life cycle inventory for the system of tannin-based agent production.

Flow Unit Quantity Transportation * Transport Type

Inputs

Bark chips kg 1,578,206 246,064 Freight, lorry
Activated silica kg 183 3 Freight, lorry
Anti-foaming kg 137 201
Ammonium chloride kg

147,555
3,014,468 Freight, sea

168,877 Freight, lorry
Formaldehyde ** kg 246,732

687,885 Freight, lorry
Deionized water ** kg 420,113
Water kg 22,764
Soy lecithin kg 1131 159 Freight, lorry
Electricity MWh 140
Heat GJ 5860
Sacks kg 2261 1826 Freight, lorry
Pallets unit 943 2096 Freight, lorry

Output

Wastewater m3 2322
Wastewater sludge *** ton 117
Boiler ashes *** ton 22
Other residues *** ton 19
Plastic sacks *** kg 700
TBA coagulant/flocculant kg 565,250

Notes: * values in ton-km; ** the values used for deionized water and formaldehyde are the same because they
were transported as a solution; *** Outputs presented to understand the process but not included in the inventory.
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Table 2. Life cycle inventory flows and their respective process providers obtained from ecoinvent.

Flow Ecoinvent Process Providers Used

Inputs

Bark chips Bark chips production, hardwood, at sawmill|Cutoff, U—RoW
Activated silica Activated silica production|Cutoff, U—GLO
Anti-foaming Market for ethylene glycol|Cutoff, U—GLO
Ammonium chloride Ammonium chloride production|Cutoff, U—GLO
Formaldehyde Oxidation of methanol|Cutoff, U—RoW
Deionized water Water production, deionized|Cutoff, U—RoW

Water Tap water production, underground water with
disinfection|Cutoff, U—BR

Soy lecithin Soybean meal and crude oil production, mechanical
extraction|Cutoff, U—RoW

Electricity Market for electricity, medium voltage|Cutoff, U—BR-Southern
grid

Heat Heat and power co-generation, wood chips, 6667 kW |Cutoff,
U—RoW

Sacks Textile production, non-woven polypropylene, spun bond|Cutoff,
U—RoW

Pallets EUR flat pallet production|Cutoff, U—RoW
Transport by ground Market for transport, freight, lorry, unspecified|Cutoff, U—RoW
Transport by sea Market for transport, freight, sea, container ship|Cutoff, U—GLO

Output

Wastewater treatment Treatment of wastewater, average, capacity
1E9l/year|Wastewater, average|Cutoff, U—RoW

2.3. Performing the Life Cycle Impact Assessment

We used the software openLCA version 2.0.0 to perform the study. The method
used was ReCiPe 2016 Midpoint (H) with the following environmental categories: fine
particulate matter formation; fossil resource scarcity; freshwater ecotoxicity; freshwater
eutrophication; global warming; human carcinogenic toxicity; human non-carcinogenic
toxicity; land use; marine ecotoxicity; marine eutrophication; mineral resource scarcity;
ozone formation, human health ozone formation, terrestrial ecosystems; stratospheric
ozone depletion; terrestrial acidification; terrestrial ecotoxicity; and water consumption.
The use of this impact assessment methodology is due to their use in previous works that
performed an LCA of tannin-based materials [10,14,15].

2.4. Comparison between TBA and Traditional Coagulant

As part of the goal of the LCA, in this work, we also carry out a comparative as-
sessment of the environmental impacts related to the production of tannin-based agents
and traditional coagulants, represented here by aluminum sulfate. For this second LCA
model, a new system was defined, in which the study boundary no longer encompassed
the product packaging phase. Thus, this evaluation used a perspective from the cradle to
the final product, in powder form.

As a functional unit, it was understood that, ideally, the mass values of the two
products that result in equivalent treatments should be used, which allow the same final
quality for a given volume of treated water/wastewater. However, the recommended
dosages of TBAs reported in the literature depend on the water type to be treated (Table 3).
Therefore, seeking a broader and more generic analysis, it was decided to use the amount
of 1 kg of each of the evaluated products as a functional unit, understanding, however, the
need to include this discussion in view of the conclusions obtained. The same approach
was performed by Carlqvist et al. [10] who argue that this FU could facilitate the future use
of their LCA and comparison with other agents.
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Table 3. Dosages of tannin-based agents for treatment of different types of waters.

Water TBA Dosage
(mg/L)

Turbidity
Removal (%) Source

Surface water (river) 20 90.0 Sanchez-Martin et al. [16]
Surface water (river) 2 50.0~60.0 Sanchez-Martin et al. [17]

Industrial wastewater 375 95.0 Lugo et al. [18]
Landfill leachate 1460 53.5 * Banch et al. [19]

Domestic wastewater 15 80.0 Singh et al. [20]
Dairy wastewater 200 86.6 Justina et al. [21]

Note: * Removal of total suspended solids.

The considerations described previously, as well as the mass allocation procedures for
the TBA data provided by the Brazilian manufacturer, were maintained. However, since
it was not possible to obtain actual production data for sulfate aluminum, the ecoinvent
3.7.1 database was used to evaluate its production process. Given the available options, we
opted to use the process “aluminum sulfate, powder {RoW}| market for aluminum sulfate,
powder|APOS, U”. This process, for instance, does not take into account waste transport
and water and waste treatment. Therefore, the relevant limitation is highlighted in that the
data referring to aluminum sulfate were based on a global average, while the actual TBA
data considered a perspective from a Brazilian region.

3. Results and Discussion
3.1. Life Cycle Impact Assessment of TBA Production

Table 4 shows the environmental impact results of the TBA production. In complement
to that, Figures 2 and 3 illustrate the relevance of each process to all impact categories.
Ammonium chloride production was the process that had the greatest effect on the different
impact categories, followed by the oxidation of methanol to produce formaldehyde, the
transportation of inputs, and the energy supply chain.

Table 4. Life cycle impact assessment of a tannin-based agent.

Impact Category

Fine particulate matter formation 2.7 × 10−3 kgPM2.5-eq
Fossil resource scarcity 673.1 × 10−3 kgoil-eq
Global warming 1518.6 × 10−3 kgCO2-eq
Ozone formation, Human health 6.2 × 10−3 kgNOx-eq
Mineral resource scarcity 4.5 × 10−3 kgCu-eq
Land use 1.0 m2acrop-eq
Water consumption 18.9 × 10−3 m3

Human carcinogenic toxicity 104.8 × 10−3 kg1,4-DCB-eq
Terrestrial ecotoxicity 7673.8 × 10−3 kg1,4-DCB-eq
Terrestrial acidification 6.3 × 10−3 kgSO2-eq
Ozone formation, Terrestrial ecosystems 6.3 × 10−3 kgNox-eq
Freshwater eutrophication 0.3 × 10−3 kgP-eq
Marine ecotoxicity 83.6 × 10−3 kg1,4-DCB-eq
Marine eutrophication 1.10 × 10−3 kgN-eq
Ionizing radiation 50.4 × 10−3 kBqCo-60-eq
Human non-carcinogenic toxicity 1364.3 × 10−3 kg1,4-DCB-eq
Stratospheric ozone depletion 92.9 × 10−6 kgCFC11-eq
Freshwater ecotoxicity 61.8 × 10−3 kg1,4-DCB-eq
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Figure 2. Relative contributions of the processes involved in the TBA production.

Two-thirds of the impact’s attributed to the TBA for global warming are linked to
processes related to the chemicals used in the production. Ammonium chloride represented
40% of the total global warming impact, whereas methanol oxidation to produce formalde-
hyde offered 28% of the impact. Transportation was the third process with substantial
influence (21%). In a previous ex ante LCA work, Carlqvist et al. [10] showed that chemical
processes can have a great influence on the global warming impact category. These authors
highlight the fact that a great part of these chemicals’ impacts come from fossil fuel con-
sumption, which influences the overall impact. These statements were confirmed in our
analysis of TBA production at the industrial operation level.

The energy supply (Figure 3) was the fourth impact. Radovic et al. [22], in Serbia,
reported that the greatest impact of the production of coagulants from common bean
seeds originated from electricity consumption, mostly within the spray drying phase. It
is important to mention that the European electricity grid is different from the renewable
hydropower-dominated Brazilian grid. Moreover, the processes for producing agents from
acacia and bean seeds are reasonably different.
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Analyzing the human carcinogenic toxicity category, based on Figure 2, it can be
observed that the inputs that contribute most to the associated impacts are ammonium
chloride (38%) and formaldehyde production (26%), followed by transportation (18%) and
energy production (8%). Since the former are essential for obtaining the desired TBA, as
they are the essential reagents for the Mannich reaction, the simple substitution of these
components aiming at reducing their potential associated impacts does not prove to be a
viable alternative, and in-depth studies of the chemical reactions involved are necessary.
For human non-carcinogenic toxicity, similar behavior was observed. Ammonium chloride
(45%) and formaldehyde (22%) again stand out among the inputs that contribute the most
to the impacts associated with this category, and the strategies to minimize such impacts
are analogous to those associated with human carcinogenic toxicity.

Ecotoxicity refers to the emission of toxic substances to the ecosystem, be it terrestrial
or aquatic. For the freshwater and marine aspects of ecotoxicity, the main impacts can be
identified, in descending order, for formaldehyde and ammonium chloride, which together
account for 82% and 79% of the impacts for the respective areas, with small variations in the
individual proportions. It is understood that the reduction in impacts for the two chemical
inputs (ammonium chloride and formaldehyde) in aquatic aspects would be of greater
complexity since it would require product reformulation or investment in optimization
studies of the chemical reactions arising from the process. However, it is worth noting
that if faced with other coagulant options, the impact of these inputs for the tannin-based
product still stands out.
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For terrestrial ecotoxicity, the main contributors are transportation (66%), ammonium
chloride (13%), and energy (12%), which together correspond to more than 90% of the
impacts inherent in the production for this category. Most of the impacts of transportation
(in ton-km) come from the terrestrial logistics of formaldehyde (62%), bark (22%), and
ammonium chloride (15%). Thus, it can be said that the search for formaldehyde suppliers
closer to the factory location would represent an impactful environmental improvement
for the product.

Considering water consumption, four processes were important to defining the results:
ammonium chloride (64%), energy production (31%), formaldehyde production (14%),
and wastewater treatment (−20%). One way to improve this system’s environmental
performance is to utilize less water within these steps. Since TBA production utilizes a lot
of energy, decreasing water consumption can also be achieved through reducing energy
demand [23]. A negative contribution from wastewater treatment occurs because it is the
only process that considers not only the consumption of water but also the return of water
outside of the system boundary.

For land use and ozone formation impacts, a different pattern is present, where the
chemicals were not the main contributors. For land use, energy production (48%) and
bark production (41%) stood out. This is a result of land-producing biomass that is an
important input of these processes. Meanwhile, for ozone formation, both for human health
and for terrestrial ecosystems, transportation (40%) and energy production (~22.5%) were
the factors with a greater contribution of nitrous oxide emissions. The energy is mainly
composed of heat production in the factory, in this case.

Other processes such as silica production, pallet production, tap water production,
textile production, and deionized water production did not have a greater impact in the
analysis of the 18 categories. For the soybean meal and crude oil production and ethylene
glycol processes, the impact in the categories will be discussed in the following section.

3.2. Sensitivity Analysis for Soy Lecithin and Anti-Foaming Agent

As stated previously, our study found limitations related to the availability of some life
cycle inventories in the database. Considering this, we conducted a sensitivity analysis on
the processes that we selected as being the most appropriate process provider substitutes
for the cases where the specific process flows were not available. Based on the relative
contribution of the processes for the product system, the influences of the processes related
to soybean lecithin and the anti-foaming agent in the different impact categories were
verified. These two processes can be identified in Figure 2 as the crude soybean meal and
crude oil production process and the market for ethylene glycol process, respectively.

By verifying the relative contributions, it is evident that the anti-foaming agent has a
small contribution in face of the impact magnitude of the other processes. The maximum
influence was 0.047% for the ionizing radiation category, which represents an irrelevant
impact according to the 1% cut-off established previously. Differently from the previous
process, the process chosen to represent soybean lecithin was relevant for three of the
eighteen impact categories assessed: global warming (1.0%), land use (1.4%), and ozone
depletion (3.8%). Still, the process that represents soy lecithin is not close in magnitude to
the major impact contributors, as can be seen in Figure 3.

3.3. Comparative Life Cycle Assessment: Organic versus Inorganic Products

Comparing the results between TBA coagulant/flocculant and aluminum sulfate, the
former has a superior impact in most impact categories for the functional unit chosen in
this study (Figure 4 and Table 5). Land use, marine eutrophication, and fossil resource
scarcity were the categories in which TBA presented greater relative difference. This is
influenced by the agricultural component for land use and by the chemical’s components
for the two other categories. For marine eutrophication, for instance, 95% of the kgN-eq
were from NH4Cl production.
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Table 5. Absolute and relative results for the comparison between TBA and inorganic metallic coagulant.

Absolute Results Relative Results

Name Unit TBA Al2(SO4)3 TBA Al2(SO4)3

Fine particulate matter formation kgPM2.5-eq 2.7 × 10−3 2.6 × 10−3 100% 96%
Fossil resource scarcity kgoil-eq 673.1 × 10−3 218.1 × 10−3 100% 32%
Freshwater ecotoxicity kg1,4-DCB-eq 61.8 × 10−3 133.1 × 10−3 46% 100%
Freshwater eutrophication kgP-eq 335.1.3 × 10−6 453.9 × 10−6 74% 100%
Global warming kgCO2-eq 1518.6 × 10−3 793.9 × 10−3 100% 52%
Human carcinogenic toxicity kg1,4-DCB-eq 104.8 × 10−3 358.7 × 10−3 29% 100%
Human non-carcinogenic toxicity kg1,4-DCB-eq 1364.3 × 10−3 2673.9 × 10−3 51% 100%
Ionizing radiation kBqCo-60-eq 50.4 × 10−3 46.4 × 10−3 100% 92%
Land use m2acrop-eq 1.0 20.8 × 10−3 100% 2%
Marine ecotoxicity kg1,4-DCB-eq 83.6 × 10−3 173.9 × 10−3 48% 100%
Marine eutrophication kgN-eq 1109.7 × 10−6 23.4 × 10−6 100% 2%
Mineral resource scarcity kgCu-eq 4.5 × 10−3 26.3 × 10−3 17% 100%
Ozone formation, Human health kgNOx-eq 6.2 × 10−3 2.4 × 10−3 100% 39%
Ozone formation, Terrestrial ecosystems kgNOx-eq 6.3 × 10−3 2.4 × 10−3 100% 38%
Stratospheric ozone depletion kgCFC11-eq 92.9 × 10−6 28.2 × 10−6 100% 30%
Terrestrial acidification kgSO2-eq 6.3 × 10−3 6.4 × 10−3 98% 100%
Terrestrial ecotoxicity kg1,4-DCB-eq 7673.8 × 10−3 3333.9 × 10−3 100% 43%
Water consumption m3 18.9 × 10−3 12.4 × 10−3 100% 66%
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Considering the overall impact calculated through World 2010 H normalization, the
TBA has a lower environmental impact for the categories defined in this work (Figure 5).
The normalized results in the analysis are substantially affected by three impacts: marine
ecotoxicity, freshwater ecotoxicity, and human carcinogenic toxicity. Since the aluminum
sulfate had higher values for these environmental impacts, it ended up having a greater
environmental impact compared to the tannin-based agent.
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As stated previously, the Al2(SO4)3 data were based on a global average outside the
European perspective, whereas the current TBA data considered a perspective from a
Brazilian region. As a suggestion for future studies, a complete LCA (considering the same
country’s scenario) should be carried out for not only Al2(SO4)3 but also for other agents,
such as ferric chloride, polyaluminum chloride, and even organic polymers. Furthermore,
as stated by Bolton et al. [24] and Niquette et al. [25], the comparison should also consider
other criteria, such as cost, corrosiveness, product performance, and others.

4. Conclusions

The relevance of this first evaluation of the environmental impacts of an industrial
process to produce tannin-based agents for coagulation/flocculation is highlighted, as well as
its comparison with the production process of a traditional product used in the same market.
The most relevant impacts resulting from the production of TBA are observed in the following
categories: global warming; terrestrial, freshwater, and ecotoxicities; carcinogenic and non-
carcinogenic human toxicities; and water use. The use of chemicals (ammonium chloride
and formaldehyde) in the process of TBA production is the main source of environmental
impact on the system, followed by transport and energy production. The production of bark
was not a great burden for most of the categories, except land use. The inorganic coagulant
showed good performance for certain categories; however, the normalization of the impacts
showed the TBA as a very interesting option. It is recommended that future studies perform
an assessment of the use and waste production phases for organic and inorganic agents for
clarification. With this information, it will be possible to evaluate whether the organic agent
will remain promising compared to the inorganic one.
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