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Abstract: Probabilistic risk methods are becoming increasingly accepted as a means of carrying out
risk-informed decision making regarding the design and operation policy of structures such as dams.
Probabilistic risk calculations require the quantification of epistemic and aleatory uncertainties not
investigated through deterministic methodologies. In this hydrological study, a stochastic sampling
methodology is employed to investigate the joint failure probability of three dams in adjacent
similarly sized watersheds within the same hydrologic unit code (HUC) 6 basin. A probabilistic flood
hazard analysis (PFHA) framework is used to simulate the hydrologic loading of a range of extreme
precipitation events across the combined watershed area of the three studied dams. Precipitation
events are characterized by three distinct storm types influential in the Tennessee Valley region
with implications for weather variability and climate change. The stochastic framework allows for
the simulation of hundreds of thousands of spillway outflows that are used to produce empirical
bivariate exceedance probabilities for spillway discharge pairs at selected dams. System response
curves that indicate the probability of failure given spillway discharge are referenced for each dam
and applied to generate empirical bivariate failure probability (joint failure probability) estimates.
The stochastic simulation results indicate the range of spillway discharges for each pair of dams
that pose the greatest risk of joint failure. The estimate of joint failure considering the dependence
of spillway discharges between dams is shown to be three to four orders of magnitude more likely
(7.42 × 102 to 5.68 × 103) than estimates that assume coincident failures are the result of independent
hydrologic events.

Keywords: stochastic hydrology; regulated rivers; flood analysis; reservoir management; climate change

1. Introduction

The design of a structure within the flood plain may be dangerous or overly con-
servative if the uncertainty associated with risk factors is not quantified. Risk-informed
decision making requires the quantification of uncertainties associated with calculation
assumptions and the inherent variability of natural processes not investigated through
deterministic methodologies [1]. Conventional methods for determining hydrologic criteria
are often limited to observations at a single location in the case of risk studies at dams [2–4].
This research demonstrates an approach to extend conventional methodology for risk
studies by evaluating the risk posed by a system of multiple dams in adjacent similarly
sized watersheds through a single risk study; moreover, by using stochastic sampling
to evaluate factors that contribute to hydrologic risk, the influence of dominant storm
types on the hydrologic response is considered. Understanding the response of a system
of dams to extreme storm events could improve risk estimates, inform reservoir storage
regulation policies, and provide increased resiliency in response to weather variability and
climate change.

The extension of conventional probabilistic flood hazard methodology to incorporate
joint failure probabilities at multiple dams is a novel contribution to the stochastic flood
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modeling literature, although many studies have been conducted on multivariate flood
frequency analysis and the use of a bivariate return period for hydrologic dam design
applications [5,6]. Research on the hydrologic response of a system of dams indicates that
overtopping and failure are significantly influenced by factors other than inflows due to
interconnected system components such as initial reservoir levels, storage availability, and
reservoir operations and discharge capabilities [7]. This research aims to build upon previ-
ously completed stochastic hydrological studies and demonstrate the interconnected nature
of risk factors for a system of dams in parallel, namely the impact of coincident discharges
that can occur at multiple dams during large storm events that impact adjacent watersheds.

1.1. Background

Routine risk assessments are implemented to determine, in part, whether dams are
hydrologically adequate and how likely they are to fail under given conditions [1]. These
assessments support risk-informed decision-making efforts related to the design, modifi-
cation, and operation of dams by considering the frequency of hazardous events such as
floods and earthquakes, the response of a dam to a hazard (failure mode), and the potential
consequences of failure [8]. Hydrological adequacy is often defined based on reasonably
conservative deterministic analysis methods, such as probable maximum flood (PMF),
but such deterministic methods do not provide decision makers with critical information
related to the likelihood of extreme events. Hydrologic loading probabilities are necessary
to estimate failure likelihoods associated with potential failure modes that may be related
to structural, geotechnical, or other related components of a dam. Hydrologic loading
probabilities are therefore a critical component in the risk assessment of dams because
they provide data used to evaluate the likelihood of hydrologically dependent potential
failure modes. Hydrologic loading criteria that are often considered when assessing the
risk of potential failure modes include the duration and frequency of inflows to a reservoir,
the duration and frequency of pool elevations upstream of a dam, and the duration and
frequency of outflows from a dam [1,8]. It is important to obtain an accurate estimate of
the probability of these hydrologic loading variables, especially for loading conditions that
could pose significant risk.

Early approaches for estimating hydrologic loading were limited to deterministic
methods and the extrapolation of observed data. In an effort to promote uniform and
consistent methods for determining flood flow frequency, the U.S. Water Resources Council,
the Interagency Committee on Water Data, and U.S. Geological Survey published several
bulletins, starting in 1967 and culminating most recently with Bulletin 17C “Guidelines
for Determining Flood Flow Frequency” published in 2018 [3]. Early flood frequency
estimation methods were proposed using the method of moments to fit the log-Pearson type
III distribution to annual peak flow data. Later updates considered regional skew, outliers,
and historical floods [9,10]. Following Bulletin 17B from the Interagency Committee on
Water Data [10], the use of a conditional probability adjustment was introduced in separate
studies [11,12]. Bulletin 17C provided updates to the generalized representation of flood
data, an extension of the method of moments to accommodate interval data, and an
approach for identifying low outliers in flood data [3,13].

1.2. Probabilistic Flood Hazard Analysis (PFHA)

Hydrologic hazard curves plot a hydrologic loading variable (peak discharge from a
dam, total flood volume, peak reservoir stage, etc.) versus the annual exceedance probabil-
ity (AEP) (the likelihood of that hydrologic loading variable value being met or exceeded in
a given year). The process of developing hydrologic hazard curves for various hydrologic
loading variables is referred to as probabilistic flood hazard analysis (PFHA). There are
numerous approaches for developing hydrologic hazard curves. For example, the AEP may
be calculated by statistical analysis of stream gage data [14], estimates from rainfall–runoff
hydrologic models can be assessed with the assumption that the return period of a flood
is equal to the return period of a precipitation event [15,16], stochastic rainfall–runoff
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modeling may be implemented to explicitly model hydrological responses [17,18], and
paleo-flood records may be analyzed [19]. It is important to note that many of the methods
mentioned here rely on the assumption that a rainfall event has an AEP value similar to an
associated flood event; however, this assumption is often not verifiable [20,21].

Working from the concepts and procedures outlined in Bulletin 17C, entities such as
the U.S. Army Corps of Engineers (USACE) have developed methodologies for determining
hydrologic loading probabilities and assessing hydrologic hazards at dams, considering
the variability associated with reservoir operations. The hydrologic hazard methodology
outlined by USACE categorizes uncertainty as “natural variability” and “knowledge un-
certainty” [1]. Natural variability associated with hydrological processes is modeled by
sampling from a range of input parameters using a stochastic methodology as discussed in
Section 1.3.1, while knowledge uncertainty is quantified through sampling uncertainty and
model uncertainty. Hydrologic hazard studies carried out by USACE and others often aim
at limiting uncertainty by obtaining as large a sample as possible for a hydrologic variable
and ensuring that mathematical models fit available data sufficiently well. The sampling
uncertainty decreases as the hydrologic variable period of record (sample size) increases,
and the model uncertainty decreases if analytical probability distributions fit data well.
The reduction of uncertainty serves to reduce the size of confidence intervals and produce
more accurate hydrologic hazard curves [4].

1.3. Stochastic Modeling
1.3.1. Stochastic Modeling Overview

The lack of sufficient historical data, changes in reservoir storage regulation policies,
climatic variability, and the need to assess extreme events has led to the widespread im-
plementation of stochastic modeling. As mentioned in Section 1.2 above, the assumption
that a precipitation event will have an AEP similar to an associated flood event (known as
AEP neutrality) is often not verifiable or justifiable, but stochastic rainfall–runoff modeling
offers a way to address this issue [4,20,21]. Stochastic modeling allows for inputs into a
deterministic flood model to be treated as uncertain variables rather than fixed values.
Estimates of flood frequency may be determined by randomly selecting model param-
eters, initial conditions, and precipitation inputs from defined precipitation frequency
distributions [16,20]. Monte Carlo sampling techniques simulate the natural variation in
hydrometeorological inputs and generate probability distributions associated with sets
of model inputs. Consequently, a probability can be associated with a calculated hydro-
logic variable, since the impact of initial conditions, model parameters, and precipitation
inputs that drive hydrologic risk are accounted for through the stochastic sampling. Key
advantages of this stochastic sampling methodology include the ability to account for epis-
temic and aleatory uncertainties and estimate the likelihood of extreme loading conditions
without relying on extrapolation from observed data or the assumption of AEP neutrality.

1.3.2. Stochastic Modeling Applications

The USACE has developed a methodology for implementing stochastic modeling
for PFHA studies at dams using Risk Management Center Reservoir Frequency Analysis
software (RMC-RFA). A stochastic approach is followed by allowing for variability through
the sampling of inflow volume, inflow hydrograph shape, flood season, and reservoir
starting stage. A two-looped nested Monte Carlo simulation is employed that simulates
natural variability in the inner loop as a realization comprising thousands of flood events [1].
The result is a suite of hydrologic hazard curves useful for estimating probability across a
range of hydrologic loading variables (peak discharge, total flood volume, peak reservoir
stage, etc.). Many other examples of stochastic methodologies have been developed for
risk studies at dams as well as other applications [4]. Stochastic simulations are used to
extend reservoir pool stage frequency curves to peak elevations not previously recorded
by evaluating the impact of initial reservoir conditions paired with extreme storm events.
Lower stage values may be observed at a given AEP when compared with deterministic
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estimates with high levels of conservatism [2]. Similarly, stochastic storm generation
techniques are used to estimate flood maps via Monte Carlo-based simulations, with
results indicating that non-stochastic design storm events may overestimate flood maps
in comparison with stochastic techniques that better characterize the spatial variability of
rainfall [22]. Stochastic models incorporating historical river flows from global rainfall–
runoff models may be used to compare relative flow exceedance probabilities rather than
volumetric flow values from gage observations, better capturing the spatial patterns of
flood events [23]. An increase in stochastic modeling has resulted in better understanding
of the sensitivities in flood frequency analyses associated with components of the modeling
framework. Precipitation inputs have been shown to contribute the most to variance in the
case of rare floods, while initial conditions are the most influential as events become more
frequent; moreover, the structure of the hydrologic model, as well as interactions between
the hydrologic model structure and model parameters, play a significant role for specific
basin characteristics and flood metrics [4].

1.3.3. The Stochastic Event Flood Model (SEFM)

Tennessee Valley Authority (TVA) has developed a PFHA system for use in risk studies
at dams that employs the basic stochastic modeling approach outlined in the stochastic
event flood model (SEFM) developed by MGS Engineering [18,24]. A detailed description
of SEFM can be found in Section 2.2, and an overview is provided here. The approach
detailed by the SEFM is extended and optimized to address the complexity of the TVA
reservoir system made up of 49 dams in the Tennessee River watershed. This approach uses
regional point precipitation frequency analyses for a given storm type over the study area
containing the watershed of interest. Stochastic storm generation and storm transposition
methods are used to develop precipitation frequency relationships with uncertainty bounds
for a given storm type. Watershed conditions that influence the response to extreme events
are sampled from a long-term simulation of synthetic hydrology and reservoir operations.
A date from the long-term simulation is selected, and the watershed conditions associated
with the date are used to define the starting conditions of the synthetic event. Monte
Carlo sampling procedures are used to allow variation in hydrometeorological inputs
like soil moisture content, reservoir starting elevation, sampled storm depth, and storm
spatiotemporal characteristics. The stochastic framework uses a suite of hydrologic models
representing the studied watershed in the stochastic flood routing and reservoir operations
simulations [18,24]. An overview of the TVA PFHA system framework is shown in Figure 1.

1.3.4. Advantages of SEFM

There are three primary advantages regarding the use of SEFM for the TVA system
when compared with other stochastic methods for developing hydrologic hazard curves.
First, the SEFM approach offers a more computationally efficient solution, as it does not
require the characterization of all aspects affecting a continuous time series of precipitation;
rather, individual events expected to produce rare hydrologic responses can be selectively
simulated through SEFM, as discussed in Section 2.3.1. This contrasts with the common
approach of extracting annual maxima from a long-term simulation of a synthetically
derived continuous precipitation time series run through watershed models such as by
Steinschneider and Brown [25]. Second, the sampling of initial conditions from a long-term
simulation in the SEFM framework eliminates the need for complicated statistical methods
that may not sufficiently characterize the relationship between starting pool elevations
and watershed moisture conditions in large watersheds with many reservoirs [26]. Finally,
SEFM can be tailored to capture the influence of distinct storm types that are influential
in the Tennessee Valley. Stochastic sampling of the spatial and temporal characteristics
of different storm types produces a range of flood hydrograph shapes, runoff durations
and volumes, and resulting peak discharges. Sampled storm types include mid-latitude
cyclones (MLCs), tropical storm remnants (TSRs), and mesoscale storms with embedded
convection (MECs), as discussed in Section 2.2.1.
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1.4. Study Objectives

As the integration of risk-informed decision making has led to the increased imple-
mentation of PFHA for hydrologic hazard studies at dams, next steps are being taken to
expand the applications of PFHA and adapt calculation frameworks to better characterize
risk. The objectives of this study are to (a) use SEFM to assess the correlation of peak spill-
way discharges during individual storm events for three dams in adjacent similarly sized
watersheds in the Tennessee Valley; (b) determine the bivariate exceedance probability for
discharge pairs at associated dams, accounting for the influence of dominant storm types on
the hydrologic response; and (c) determine the probability of coincident dam failures (joint
failure probability) by taking into account the dependent response of dams to associated
discharge pairs, thereby expanding the conventional PFHA analysis to characterize the
risk posed by a system of dams versus an individual dam. By using PFHA to characterize
system risk, a more comprehensive understanding of the factors that influence hydrologic
response on a system level may be developed. Model parameters, initial conditions, and
precipitation inputs can be assessed not only by the induced hydrologic response at a single
location (e.g., [27]) but also by the correlation between responses at multiple locations. This
correlated response may be critical when assessing the impact of extreme storm events
on dams with adjacent drainage areas, especially in a resource constrained environment
where the same small pool of labor is responsible for the care of multiple projects; moreover,
understanding the response of a system of dams to extreme storm events could better
inform reservoir storage regulation policies and provide increased resiliency in response to
weather variability and climate change.
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2. Data and Methods
2.1. Study Area

Hydrologic hazards were evaluated at three dams in adjacent similarly sized water-
sheds located within the Tennessee Valley region. The exact location of the dams will
remain undisclosed; within this report the studied dams will be denoted as Dam A, Dam B,
and Dam C. Each watershed has a total drainage area of less than 500 square miles, and all
three watersheds are within the same hydrologic unit code (HUC) 6 basin. A generalized
depiction of the study area portraying watershed characteristics and the relative location of
each dam is shown in Figure 2.
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2.2. Input Data for Stochastic Simulations

Essential to the development of hydrologic hazard curves is the method of stochastic
sampling discussed in Section 1.3. This study used the TVA PFHA system to develop hydro-
logic hazard curves by employing the basic stochastic modeling approach of SEFM [18,24].
Initial conditions and model inputs were used to generate thousands of simulations, cap-
turing the influence of extreme storm events across a range of storm templates and initial
watershed conditions.

The following sections describe the inputs used for stochastic modeling. The five
primary inputs included in the SEFM sampling routine described in Section 1.3.3 were
as follows:

1. Watershed Precipitation Depth: The watershed precipitation depth was obtained from
the precipitation frequency curve for a given storm (see Section 2.2.3). Precipitation
sampling bins were specified across a defined sampling range for stratification of the
precipitation frequency curve as described in Section 2.3.1.

2. Storm Templates: The spatial distribution of rainfall was obtained from defined storm
templates for MLC, MEC, and TSR storms as described in Sections 2.2.1 and 2.2.2. An
AEP range was associated with each storm template, and relative weighting factors
were applied to storm templates to determine sampling frequency.

3. Seasonality: the probability of specific storm types occurring at specific times of
the year was defined based on historical observations within the Tennessee River
watershed, influencing the likelihood of certain types of storms being sampled at
specific dates in the long-term simulation.

4. Initial Conditions: soil moisture states, reservoir states, and river states were obtained
from the long-term simulation.

5. Storm Insertion Dates: valid dates to insert storms were identified within the long-
term simulation according to wet and dry periods and the storm type being sampled.
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2.2.1. Storm Types

A representative sample of storms was needed to provide an unbiased estimate of the
AEP for flood outputs, especially maximum releases from a spillway, which are directly
influenced by maximum flood discharges related to spatial and temporal characteristics
of storms at the scale of the studied watershed [28]. Different storm types are defined
and investigated based on historically observed meteorological patterns to represent the
spatial and temporal characteristics influencing the flood response for the watershed under
investigation [29]. The following storm types were considered in this study:

1. Mid-Latitude Cyclones (MLCs): synoptic scale storms most commonly occurring in the
winter period with extended durations and gradually varying precipitation gradients.

2. Tropical Storm Remnants (TSRs): decadent tropical storms that impact very large areas
with low-to-moderate precipitation intensities generating large total precipitation
volumes over several days, occurring during the Atlantic hurricane season.

3. Mesoscale Storms with Embedded Convection (MECs): commonly referred to as sum-
mer thunderstorms, smaller scale convective storms with high-intensity precipitation
clusters of convective cells in addition to low-to-moderate intensity precipitation in
areas surrounding convective cells, characterized by shorter durations and chaotic
spatial distribution of precipitation.

2.2.2. Storm Templates

A suite of storm templates was assembled to represent the spatial and temporal char-
acteristics influencing the flood response for the watershed under investigation. Temporal
characteristics define the loading of a storm (front-loaded, middle-loaded, back-loaded)
and hyetograph shapes. Spatial characteristics define the locations over which a storm will
center and the distribution of heavier and lighter precipitation areas. As the size of a water-
shed increases, spatial characteristics become more important as the flood response times
become longer and the number of major tributaries increases [30]. When developing storm
templates for this study, the combined watershed area of the three dams was considered.

TVA’s storm database and transposition tool (SDTT) was used as a centralized database
from which to access detailed precipitation analyses when developing storm templates for
all storm types over the combined watershed area considered in this study. Storm templates
referenced within the SDTT were developed according to the isopercental analysis method-
ology [31]. This methodology consists of transforming observed precipitation values in
a mathematical space so that data can be linearly interpolated between observation sites,
populating grid cells in a raster field constructed through geographic information system
(GIS) mapping of the study area. The data can then be transformed back into real space to
represent complex spatial patterns. The isopercental technique is particularly useful for
analyzing large synoptic-scale storms in mountainous terrain where non-linear behavior is
observed between precipitation data points, and can also be used for transposing storms
from one location to another [31,32]. The five largest analyzed historical storms that oc-
curred over the combined watershed were selected and supplemented by selecting other
large historical storms that have occurred in the Tennessee Valley and transposing them to
the combined watershed. The SDTT tool uses a cluster analysis to group and select storms
over a representative range of characteristics, and weighting factors are assigned to define
the frequency that each storm template is sampled in the stochastic modeling. Weighting
factors are assumed based on the historical frequency of large storms in the region and are
selected to maintain the expected frequency of specific storm patterns.

2.2.3. Precipitation Frequency Relationships

Precipitation frequency relationships define the basin average precipitation depth of a
stochastic storm event with a given AEP within the watershed of interest and are developed
for each storm type used in the stochastic model. Similar to the development of storm tem-
plates described in Section 2.2.2, precipitation frequency relationships from data referenced
in the SDTT are developed according to the isopercental analysis methodology [31,32],
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along with a regional L-moment analysis of storm type and duration [33]. For the combined
watershed of Dam A, Dam B, and Dam C, regional probability distributions for key storm
durations characterize uncertainty and are developed from historical records, point to
area relationships, multiple linear regression, and Thiessen polygon analyses. For MLC
and TSR storms, a 48 h precipitation is computed on the watershed level. Precipitation
annual maxima for a given station within a watershed can vary from a wide range of storm
patterns and storm magnitudes for MEC storms. Thus, the watershed raster is randomly
placed relative to the fixed precipitation raster field according to the spatial behavior of
historical storms, and a 6 h duration is chosen as the key duration representative of the
time during which most of the precipitation occurs [34,35]. The precipitation frequency
relationship is shown to have a strong influence on flood frequency estimation for extreme
events, making it paramount to develop accurate relationships for the watershed being
studied [4,36].

The resulting precipitation frequency relationships for a range of percentiles from the
5th to the 95th are shown in Figure 3. The mean curve is calculated as the expected value of
the percentiles. A precipitation frequency areal reduction factor (PFARF) is used to relate
the median point precipitation frequency curve to the areal average precipitation frequency
data, and percentile results are related to the median by scaling factors. PFARFs and scaling
factors are obtained by interpolating the results of stochastic storm generation studies at
other watersheds across the Tennessee Valley region [35].
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2.2.4. Initial Conditions from Long-Term Simulation

A long-term simulation of synthetic hydrology is completed to establish initial wa-
tershed conditions for the stochastic events. Synthetic hydrology is a dataset constructed
by resampling statistical distributions of historical mean areal precipitation data for every
sub-basin in the Tennessee Valley and synthesizing alternating wet and dry events into
a time series of 1000 years of continuous hydrology. By resampling precipitation from
the sub-basin statistical distribution rather than actual observed events, the long-term
hydrology reflects historical trends but better captures the statistical tails of the rainfall
distribution. These synthetic hydrology data are used as input to the Sacramento soil
moisture accounting (SAC-SMA) and unit hydrograph models [37]. The SAC-SMA and
unit hydrograph models produce continuous flows and sub-basin outlets, which are then
provided to RiverWare (a river and reservoir modeling tool offered by CADSWES to sim-
ulate reservoir system operations) [38]. The simulated reservoir responses, soil moisture
states, and river states make up the initial conditions associated with a sampled date from
the long-term simulation.

2.3. Stochastic Calculations

Once the necessary inputs and initial conditions are obtained, they are sampled within
each stochastic simulation to define initial watershed conditions and storm characteristics.
For each stochastic event simulation, a synthetic precipitation event is inserted within the
context of the continuous precipitation time series from the long-term simulation according
to the following steps:

1. Sample precipitation depth: the watershed precipitation frequency curve is used to
sample the precipitation depth at the key duration of the specified storm type (e.g.,
48 h for MLC and TSR, 6 h for MEC).

2. Sample storm template: The spatial and temporal distribution of the storm is deter-
mined by sampling from the available set of storm templates. An AEP range limits
when a storm template may be selected based on the probability of the sampled
rainfall event.

3. Scale the storm template: the selected storm template is then scaled such that the
average storm depth across the watershed is equal to the depth of precipitation
sampled from the precipitation frequency curve.

4. Sample date from long-term simulation: a date is randomly sampled from the long-
term simulation in accordance with the seasonality of the storm type under consider-
ation and is used to set the initial conditions for the stochastic event and define its
placement within the overall precipitation time series.

5. Insert stochastic event: MLC, MEC, and TSR storms are inserted within the context
of the continuous precipitation time series from the long-term simulation. A dry
period of 48 h is maintained before and after MLC and TSR events. Three sub-types of
MEC storms (isolated, multi-day, and hybrid) are defined based on the precipitation
surrounding an MEC event (MEC events may be embedded within other storms). The
sampling algorithm considers the appropriate type of MEC storm to insert on a given
date and the probability associated with the given sub-type in each season.

6. Execute stochastic event simulation and compute statistics: After establishing the
precipitation sequence and initial conditions, watershed and operational models
can be executed to route the stochastic event. The output statistics from watershed
models (e.g., peak headwater, peak discharge) are collected and used in the analysis
of hydrologic hazards and creation of hydrologic hazard curves.

2.3.1. Stratified Sampling and Convergence

A stratified sampling technique is employed, allowing storm depths and templates
to be selected strategically based on defined AEP levels that will be influential in the
development of hydrologic hazard curves. Using Neyman’s [39] optimal sample allocation
method, precipitation depths are categorized in 100 bins that span the total sampled AEP
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range for precipitation depths. A fixed number of samples are drawn from each bin and
used as inputs for the stochastic calculation procedure defined above in Section 2.3. The
probability of exceeding a specific threshold (such as peak headwater or flow) by sampling
within a precipitation bin is calculated empirically as the ratio of the number of outputs
exceeding a threshold to the total number of samples drawn from the given bin. Key
hydrologic hazard metrics are computed for each simulation and used in developing annual
exceedance probability curves according to the total probability theorem as follows [40–43]:

p(Q ≥ q) = ∑
i

piwi (1)

where p(Q ≥ q) = probability that Q exceeds a threshold q (i.e., the annual exceedance
probability); Q = value of hydrologic hazard response variable of interest (e.g., reservoir
inflow, peak discharge); q = specified threshold of the hydrologic hazard response variable
Q; pi = [Count (Qn ≥ q)]/N = probability that Q exceeds the threshold q within the
precipitation bin; wi = incremental probability (width) of the precipitation bin; i = index
identifying the sampled precipitation bin; n = index identifying the nth simulation output
for the hydrologic response variable within a given bin; and N = total number of samples
from a given bin.

Bins containing rarer precipitation events are “larger” in that they will be sampled
more frequently to gain results applicable to more extreme thresholds of interest. Depend-
ing on the threshold of interest, selective sampling can be made from precipitation bins
(which will influence overall results), while precipitation bins that will not influence results
can be excluded. A breakpoint is defined for a given threshold of interest such that no
sampling is conducted in bins below a certain AEP, but all bins that could influence results
are included in sampling. This allows for reduced computation time by limiting the number
of required simulations.

A two-sided confidence interval is computed to determine when sufficient sampling
has been completed for the estimation of a given hydrologic hazard variable. The Clopper–
Pearson confidence interval is used to compute the two-sided 90-percent confidence interval
for a specific threshold of a variable of interest [44]. The width of the confidence interval is
assessed and required to be within a user-defined percentage of the corresponding AEP
value of the output variable. Samples are incrementally added per precipitation bin until
the confidence interval sufficiently converges for a computed AEP value, signifying that
additional sampling would have minimal impact on the resulting hydrologic hazard curve.

2.4. Stochastic Model Calibration

Reservoir inflow during large storm events is a key parameter that directly influences
the hydrologic loading placed on a dam [1]. Thus, it is critical to ensure that inflow volumes
simulated through stochastic modeling accurately represent the prevailing hydrologic
regime and reservoir operations. The watershed model must be able to accurately simulate
reservoir inflow to ensure that the consumption of controllable storage during a storm
event is modeled appropriately. To ensure proper calibration of the SEFM results, estimated
historical annual peak inflows for the studied reservoirs and the results from the 1000-year
long-term simulation are compared with the stochastic simulations, as shown in Figure 4.
The estimated local inflow data are TVA’s best estimate of inflows compiled from several
data sources, including reverse routing and gage scaling.

Simulated annual peak inflows from the long-term simulation tend to be lower than
estimated historical annual peak inflows for probabilities ranging from 0.01 to 0.001; how-
ever, the stochastic simulation captures both data sets within the 90% confidence interval
for the majority of data points and shows a general agreement with the data trends. Of
most importance is the ability to model inflow volumes for the extreme storms beyond an
AEP of 0.001 to supplement the historical dataset. The results indicate that the stochastic
simulations sufficiently characterize inflow for rare events within the range of confidence.
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2.5. Empirical Method to Determine Bivariate Exceedance Probabilities

An empirical methodology is developed to expand the stratified sampling technique
outlined in Section 2.3.1 to allow for the determination of a bivariate probability distribution.
In this methodology, spillway discharge is assessed at any two of the studied dams during
individual stochastic events to determine the probability that a pair of spillway discharges
would exceed a defined threshold at each dam. Spillway discharge pairs for the studied
dams are obtained for a single sampled storm event within a given precipitation bin. The
process of empirically determining the annual exceedance probability is then carried out
as in Equation (1) but modified to account for a second hydrologic variable (i.e., spillway
discharge at a second dam). This results in annual exceedance probabilities being described
as a probability surface representing the likelihood of discharge pairs at the selected dams,
defined as:

(QA ≥ qA, QB ≥ qB) = ∑
i

Piwi (2)

where p(QA ≥ qA, QB ≥ qB) = probability that QA exceeds the threshold qA and QB exceeds the
threshold qB; QA, QB = value of hydrologic hazard response variable of interest for a given dam
(e.g., spillway discharge at Dam A, B, or C); qA, qB = specified threshold of the hydrologic hazard
response variable Q at a given dam; Pi = [Count (QAn ≥ qA, QBn ≥ qB)]/N = probability that
QA exceeds the threshold qA and QB exceeds the threshold qB within the precipitation bin;
wi = incremental probability (width) of the precipitation bin; i = index identifying the sampled
precipitation bin; n = index identifying the nth simulation output for the hydrologic response
variable within a given bin; and N = total number of samples from a given bin. Resulting
probability surfaces are shown in Section 3.2.1.
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2.6. Calculation of Bivariate Empirical Failure Probability

Bivariate exceedance probabilities for spillway discharge pairs are used to determine
the probability of simultaneous dam failures in response to a simulated storm event. Spill-
way fragility curves for the studied dams are used to associate the hydrologic loading from
spillway discharges with probabilities of spillway failure (see Section 2.6.1). A conditional
probability relationship is developed to describe the interaction between hydrologic loading
and failure probability, and defined as:

p(FA, FB)= p(QA ≥ qA, QB ≥ qB)× (FA|qA)× p(FB|qB) (3)

where p(F A, FB) = probability that spillway discharge leads to failure at two specified dams
during the same storm event (e.g., Dam A, B, or C); p(QA ≥ qA, QB ≥ qB) = probability
that QA exceeds the threshold qA and QB exceeds the threshold qB; QA, QB = value of
hydrologic hazard response variable of interest for a given dam (e.g., spillway discharge at
Dam A, B, or C); qA, qB = specified threshold of the hydrologic hazard response variable
Q at a given dam; and p(FA|qA), p(FB|qB) = probability of spillway failure given that a
discharge threshold has been met. Resulting probability surfaces are shown in Section 3.2.2.

2.6.1. Failure Estimate from Generalized Spillway Fragility Curves

Generalized spillway fragility curves shown in Figure 5 are used to determine the
probability that a given hydrologic loading would result in spillway failure (termed the
system response probability) for the evaluation of Equation (3). The term failure is used
here to refer to any situation in which the hydrologic loading causes damage to the spillway
which progresses to a breach and uncontrolled release of the reservoir. The hypothetical
spillway fragility curves presented here are informed by general knowledge of the spill-
ways so that the values of the generalized curves would yield realistic results based on
end behavior and rates of change with increasing discharge; however, the actual values
presented here do not reflect the expected failure probabilities of the studied dams or the
relative magnitudes of failure across the dams. Patterns of failure response based on dam
combinations, correlation of stochastic simulation results, and relative differences between
system and individual risk are preserved here to demonstrate applied methodology and
the significance of results.
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3. Results
3.1. Assessment of Discharge Correlation

Stochastic simulation results were analyzed with the goal of determining the prob-
ability of coincident dam failures due to spillway discharges resulting from a sampled
storm event. The dependence of spillway discharge values between selected dams was
ascertained using Pearson’s linear correlation coefficient, as shown in Figure 6 and Table 1.
A bivariate approach was chosen, allowing for the comparison of two dams at a time as
opposed to assessing all three dams simultaneously. This approach allowed for easier
processing, visualization, and interpretation of results and the assessment of the more likely
case of two dams failing versus three. Confirmation of discharge correlation discussed
in Section 4.1 validated further investigation into probabilities associated with spillway
discharge pairs.
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Table 1. Summary statistics from stochastic simulation results by storm type (MLC—mid-latitude
cyclone, MEC—embedded convection, and TSR—tropical storm remnant).

Storm
Types

Simulation
Count

Dam
(Combination)

Peak Spillway Discharge

Mean
(cms)

Std. Dev.
(cms) Correlation Covariance

(×108)

MLC 180,942

A 565 338 -- --
B 851 462 -- --
C 1029 639 -- --

(A, B) -- -- 0.861 1.675
(A, C) -- -- 0.812 2.183
(C, B) -- -- 0.908 3.340

MEC 160,021

A 264 362 -- --
B 505 471 -- --
C 580 668 -- --

(A, B) -- -- 0.572 1.214
(A, C) -- -- 0.181 0.545
(C, B) -- -- 0.644 2.527

TSR 188,872

A 356 318 -- --
B 556 451 -- --
C 543 587 -- --

(A, B) -- -- 0.674 1.204
(A, C) -- -- 0.517 1.202
(C, B) -- -- 0.855 2.821
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3.2. Probability Surfaces Based on Dam Combination and Storm Type
3.2.1. Spillway Discharge Pair Exceedance Probability

Probability surfaces describing the empirical bivariate exceedance probabilities for
spillway discharge pairs at selected dams for each simulated storm type were calculated
as described in Section 2.5 and are shown in Figure 7. As the discharge became greater
at each observed dam, the probability of meeting or exceeding the coincident discharge
pair became smaller. As shown in Table 1, the MLC and TSR storms demonstrated greater
correlation between each of the observed dams when compared with the MEC storms.
Thus, it follows that the probability of exceeding most discharge pairs at selected dams
would be greater for simulations of MLCs and TSRs than for MECs, as shown in the results.

Water 2024, 16, x FOR PEER REVIEW 16 of 26 
 

 

correlation between each of the observed dams when compared with the MEC storms. 
Thus, it follows that the probability of exceeding most discharge pairs at selected dams 
would be greater for simulations of MLCs and TSRs than for MECs, as shown in the re-
sults. 

 
Figure 7. Empirical bivariate exceedance probabilities for spillway discharge pairs at selected dams 
for the embedded convection (MEC), mid-latitude cyclone (MLC), and tropical storm remnant (TSR) 
storm types. 

3.2.2. Joint Failure Probability 
Probability surfaces describing the empirical bivariate failure probabilities for spill-

way discharge pairs at selected dams for each simulated storm type were calculated as 
described in Section 2.6 and are shown in Figure 8. According to Equation (3), the hydro-
logic annual exceedance probabilities associated with each spillway discharge were mul-
tiplied by the system response probabilities obtained from the spillway fragility curves 
for each dam (see Section 2.6.1) to obtain an estimate of annualized probability of failure 
(APF). The resulting joint failure probability (termed the system failure probability) was 
plotted as the failure surface according to the combination of observed dams and sampled 
storm type. Local maxima representing the maximum system failure probabilities for 
spillway discharge pairs are presented in Table 2. 

Table 2. Maximum system failure probabilities for spillway discharge pairs by storm type (MLC—
mid-latitude cyclone, MEC—embedded convection, and TSR—tropical storm remnant). 

Storm 
Type 

Dam 
(Combination) 

Spill 
(cms) 

Hydrologic 
Exceedance 
Probability 

System 
Response 

Probability 

System Failure 
Probability 

MLC 
(A, B) (620, 760) 1.118 × 10−5 2.501 × 10−2 2.795 × 10−7 
(A, C) (620, 1100) 7.680 × 10−6 1.798 × 10−2 1.371 × 10−7 
(C, B) (1000, 760) 1.732 × 10−5 1.449 × 10−2 2.510 × 10−7 

MEC 
(A, B) (760, 790) 9.261 × 10−7 4.854 × 10−2 4.495 × 10−8 
(A, C) (740, 990) 3.727 × 10−7 2.193 × 10−2 8.173 × 10−9 

Figure 7. Empirical bivariate exceedance probabilities for spillway discharge pairs at selected dams
for the embedded convection (MEC), mid-latitude cyclone (MLC), and tropical storm remnant (TSR)
storm types.

3.2.2. Joint Failure Probability

Probability surfaces describing the empirical bivariate failure probabilities for spillway
discharge pairs at selected dams for each simulated storm type were calculated as described
in Section 2.6 and are shown in Figure 8. According to Equation (3), the hydrologic annual
exceedance probabilities associated with each spillway discharge were multiplied by the
system response probabilities obtained from the spillway fragility curves for each dam (see
Section 2.6.1) to obtain an estimate of annualized probability of failure (APF). The resulting
joint failure probability (termed the system failure probability) was plotted as the failure
surface according to the combination of observed dams and sampled storm type. Local
maxima representing the maximum system failure probabilities for spillway discharge
pairs are presented in Table 2.
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the embedded convection (MEC), mid-latitude cyclone (MLC), and tropical storm remnant (TSR)
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scale shown.

Table 2. Maximum system failure probabilities for spillway discharge pairs by storm type (MLC—mid-
latitude cyclone, MEC—embedded convection, and TSR—tropical storm remnant).

Storm
Type

Dam
(Combination)

Spill
(cms)

Hydrologic
Exceedance
Probability

System
Response

Probability
System Failure

Probability

MLC
(A, B) (620, 760) 1.118 × 10−5 2.501 × 10−2 2.795 × 10−7

(A, C) (620, 1100) 7.680 × 10−6 1.798 × 10−2 1.371 × 10−7

(C, B) (1000, 760) 1.732 × 10−5 1.449 × 10−2 2.510 × 10−7

MEC
(A, B) (760, 790) 9.261 × 10−7 4.854 × 10−2 4.495 × 10−8

(A, C) (740, 990) 3.727 × 10−7 2.193 × 10−2 8.173 × 10−9

(C, B) (1200, 790) 1.131 × 10−6 2.125 × 10−2 2.403 × 10−8

TSR
(A, B) (620, 790) 1.416 × 10−5 2.797 × 10−2 3.961 × 10−7

(A, C) (620, 1000) 4.438 × 10−6 1.569 × 10−2 6.964 × 10−8

(C, B) (1200, 790) 9.005 × 10−6 2.125 × 10−2 1.914 × 10−7

3.3. Best Estimate of Bivariate and Univariate Failure Probability

To capture the influence of significant storm types encountered in the Tennessee Valley
region, this study included stochastic sampling of MEC, MLC, and TSR storms described
in Section 2.2.1. Stochastic simulations involving these storm types considered spatial
and temporal characteristics that produced a range of flood hydrograph shapes, runoff
durations and volumes, and resulting peak discharges. Considering hydrologic hazard
curves produced individually by each storm type provided insight into the response of
the watershed to specific storm characteristics, but a best estimate of hydrologic hazards
was determined by combining the results from the analysis of each storm type to account
for the possibility of any storm type occurring in a given year. A total hydrologic hazard
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curve may be developed to determine the best estimate of hydrologic hazards assuming
the independence of the results from each storm type.

Equation (4) was applied to the results for bivariate empirical failure probability for
each storm type shown in Figure 8 to yield the best estimate of bivariate system failure
probabilities. Similarly, hazard curves for the best estimate of spillway discharge at each
individual dam were obtained by applying Equation (4) to the univariate results. System
response probabilities from Figure 5 were then sampled and used to scale the best estimate
hydrologic hazard curves for spillway discharge at each dam, resulting in univariate failure
probabilities in response to spillway discharge. The results of calculating the best estimate
for bivariate and univariate system failure probabilities are shown in Table 3 and Figure 9.

Best Estimate AEP = 1 − (1 − AEPMEC)× (1 − AEPMLC)× (1 − AEPTSR) (4)

Table 3. Best estimate of maximum system failure probabilities for spillway discharges per
dam combination.

Dam
(Combination)

Spill
(cms)

Hydrologic
Exceedance
Probability

System
Response

Probability

System Failure
Probability

A 590 3.650 × 10−4 1.367 × 10−1 4.991 × 10−5

B 650 1.624 × 10−4 8.751 × 10−2 1.421 × 10−5

C 990 6.893 × 10−5 8.274 × 10−2 5.703 × 10−6

(A, B) (620, 760) 2.822 × 10−5 2.501 × 10−2 7.059 × 10−7

(A, C) (620, 1100) 1.146 × 10−5 1.798 × 10−2 2.061 × 10−7

(C, B) (1100, 790) 2.651 × 10−5 1.737 × 10−2 4.604 × 10−7
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4. Discussion
4.1. Discharge Correlation

Results from Figure 6 and Table 1 indicate that correlation in regulated spill existed
between dams for the storm events sampled, and the correlation varied based on the dams
being analyzed and the type of storm used in the stochastic simulations. In agreement with
other flood frequency studies, the spatiotemporal characteristics of storms showed a significant
influence on maximum flood discharges at the scale of the studied watershed [28,36]. Among
the three storm types, the highest correlation and covariance was exhibited by MLC storms,
with the lowest being exhibited by MEC storms; moreover, mean peak spillway discharge at
each project was the highest for MLC storms and the lowest for MEC storms. The small-scale
convective storm patterns that characterized MEC storms led to chaotic spatial distributions
of precipitation, reducing the likelihood for loading to be concentrated on a specific area to
produce high flows that were correlated at multiple sites. This reaffirms the results of previous
studies that indicated that spatial characteristics of storms have significant impact on peak
flood discharges for drainage areas of the size studied [28]. MLC and TSR storms, on the other
hand, exhibited extended durations of precipitation, gradually varying precipitation gradients,
and large total precipitation volumes at low to moderate intensity, resulting in higher average
peak spillway discharges, which exhibited significant correlation between dams.

A visual inspection of the bivariate fit plots in Figure 6 further demonstrates the
dependence of the resulting spillway discharges on the spatial and temporal characteristics
of the different storm types. As noted, the MLC and TSR storms were the most correlated
and demonstrated a positive relationship among each dam combination. For each set
of simulations, the least correlation was observed for the combination of Dam A and
Dam C, a result of these dams being separated by a greater distance than the other dam
combinations; however, the larger footprint and gradually varying spatial distribution
of MLC and TSR storms allowed some correlation to remain. Several distinct clusters
and thresholds may be visually identified for each set of simulations. This behavior
was a result of the stochastic sampling procedure. As storm templates and precipitation
volumes were selected through Monte Carlo sampling, the distinct spatial and temporal
characteristics of specific storm templates caused some results to group together, as similar
patterns of hydrologic loading were experienced across the three dams and scaled based on
precipitation volume. Similarly, the stochastic sampling may involve repeated simulations
of storms that produced a relatively constant discharge at one observed dam and varying
discharge at another due to the spatial distribution of rainfall, creating distinct horizontal
and vertical lines of grouped discharge values. Although the average peak spillway
discharges were the greatest for MLC and TSR storms, MEC storms exhibited the largest
maximum spillway discharge pairs of the three storm types. This behavior was likely a
result of the high-intensity MEC storms being sampled most often during the summer
months when reservoirs were maintained at higher pool levels. The higher starting pool
elevation resulted in higher maximum simulated spillway discharge values for a given
sampled depth of precipitation.

4.2. Assessment of Discharge and Failure Probabilities
4.2.1. Bivariate Discharge Pair Exceedance Probabilities

From the results shown in Figure 7, the bivariate AEP of 1 in 10,000 years (10−4)
resulted from spillway discharge pairs generally in the range of 600–900 cubic meters
per second (cms) for MLC and TSR storms, while MEC storms reached this discharge
pair threshold around an AEP of 1 in 100,000 years (10−5) or rarer, indicating that it is
significantly more likely for MLC and TSR storms to bring about coincident spillway
discharges of this magnitude. As discharge pairs became increasingly rare, however, the
distinction between storm types and dam combinations became less apparent, as the
rarity of the hydrologic loading controlled the probability estimate. This was consistent
with studies considering influence factors on spatially distributed stochastic models [28].
For discharges generally beyond the 1 in 1,000,000-year (10−6) return period, MEC storms
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showed more correlation, as intense precipitation occurred in the summer with the reservoir
at a higher pool, leading to more frequent spilling (see Section 4.1). Stochastic sampling
of storm types and storm templates resulted in a different range of discharges depending
on the observed dam, and, typically, the most extreme storms for each set of simulations
appeared in a single precipitation bin. These characteristics of the stochastic sampling led
to differing values of maximum spillway discharge pairs among dam combinations and
jagged edges at the extremes of the probability plots.

4.2.2. Bivariate Failure Probabilities

System failure probabilities shown in Figure 8 generally became the greatest, in the
range of 600 to 1100 cms across all storm types and dam combinations. As shown in Table 1,
the MLC and TSR storms demonstrated greater correlation in peak spillway discharge be-
tween each of the observed dams when compared with the MEC storms. Thus, it followed
that the hydrologic exceedance probability for a given discharge pair and dam combination
was roughly one order of magnitude greater for simulations of MLCs and TSRs than for
MECs. Moreover, the general shape of the failure surfaces was the most similar between
the MLCs and TSRs, as these storm types produced similar correlation in discharge among
the dams. However, there were similarities across all storm types considering the range
of discharge pairs corresponding to maximum system failure probability and the general
slope of each surface associated with a combination of dams. These similarities reflected the
influence of the physical characteristics associated with each dam such as relative location,
elevation, surrounding topography, and available storage. The hydrologic exceedance
probabilities were the controlling factor in determining the maximum system failure prob-
abilities given that they were much rarer than the system response probabilities for the
associated discharge pairs. Regardless of the sampled storm type, the combination of Dam
A and Dam C had the rarest hydrologic exceedance probability in response to the increased
distance between these dams, limiting the likelihood of coincident spillway discharge.

4.2.3. Univariate and Bivariate Best Estimate of Failure Probability

Inspection of the univariate and bivariate failure probabilities in Figure 9 and Table 3
shows that the estimate of joint failure was between three and four orders of magnitude
more likely (7.42 × 102 to 5.68 × 103) when the dependence of spillway discharge between
the dams was considered as opposed to assuming the failure of each project resulted from
an independent hydrologic event. This was calculated by comparing the joint system failure
probabilities (e.g., (A, B)) in Table 3 with the corresponding product of failure probabilities
for the individual dams (e.g., A × B). As the best estimate method described in Section 3.3
considered the contributions of each storm type, the best estimate system failure probabili-
ties were slightly greater when compared with the individual storm type results. Inspection
of the best estimate surface plots for bivariate failure probability showed that the contribu-
tions from the MLCs and TSRs controlled the response at the most common probabilities;
however, the best estimate surfaces also considered the impact of the MEC storms, which
produced the greatest maximum discharge pairs, as discussed in Section 4.1. As a result,
the best estimate curves were able to represent the correlation of MLCs and TSRs caused
by the extended durations of precipitation, gradually varying precipitation gradients, and
large total precipitation volumes while also accounting for the largest maximum discharge
pairs that resulted from MEC storms with intense precipitation pockets during the summer
months when the reservoir was at the highest antecedent pool elevations.

As shown in Table 3, bivariate best estimates for maximum system failure probabilities
were one to two orders of magnitude rarer than univariate best estimates of maximum
system failure probability at each dam. The contribution to increased rarity between the
bivariate and univariate case was split between the hydrologic exceedance probability
and the system response probability. Inspection of the results shows that the hydrologic
exceedance probability and the system response probability were each roughly one order
of magnitude rarer in the bivariate case than the univariate case. Thus, similar levels
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of hydrologic loading were more likely to occur at a single dam than coincidently at a
combination of dams, and the risk of a single dam spillway failure in response to such
loading was more likely than coincident dam spillway failures.

4.3. Characterization of System Risk

As discussed in Section 2.6.1, the actual magnitude of system failure probabilities
will differ depending on the spillway fragility curves referenced to determine system
response probabilities. Consequently, the significance of the results from this study should
be assessed based on the relative differences between system and individual risk that
would not be influenced by system response curves, since the same spillway fragility was
applied in both univariate and bivariate cases. Considering the relative difference between
system failure probability for bivariate and univariate cases, the results suggest that a
coincident failure was between one and two orders of magnitude rarer than a failure at an
individual dam.

Although the coincident failure of two dams is up to 100 times less likely to occur than
an individual dam failure based on these results, the characterization of the risk associated
with coincident failure could still prove significant in relation to the risk associated with an
individual failure. Given that risk is characterized by the frequency of hazardous events
such as floods and earthquakes, the response of a dam to a hazard (failure mode), and the
potential consequences of failure, the occurrence of coincident dam failures could pose
significant risk driven by the consequences of multiple dams failing in response to a single
storm event [1,8].

To fully consider risk on a system level, additional factors influencing failure modes
and failure progression must be considered [1]. Once the hydrologic loading probabilities
are determined through the development of hazard curves, there are still many factors
related to failure modes and consequences that must be accounted for when determining
risk. Additional risk factors include the uncertainty of the failure mechanism itself, the time
required for the failure to progress from initiation to full failure, and the impact of detection
and intervention. In the case of a system of dams with the potential for coincident failure,
the failure progression time for each dam will be critical for the estimation of downstream
consequences and emergency response. Considering spillway failure modes such as those
hypothesized in this study, the failure progression time at each spillway could result in
a range of maximum discharges encountered by downstream communities; moreover,
the degree to which failures progress simultaneously will place increased strain on the
emergency response staff called upon to intervene and prevent or reduce the consequences
of failure.

4.4. Factors Influencing Sensitivity of Stochastic Simulation Results

Similar to the discussion in this study concerning the influence of factors such as
storm templates, storm types, initial conditions, and model parameters on the stochastic
simulation results (see Section 1.3), other studies have shown that certain factors influence
flood frequency estimates with varying levels of sensitivity [45,46]. Essential to the utility of
stochastic modeling is the ability to address the assumption of AEP neutrality by assigning
probability estimates to hydrologic parameters. The impact of initial conditions, precip-
itation inputs, and randomly sampled model parameters on flood frequency estimates
may be assessed based on the output from a hydrologic model [27]. However, a struc-
tured modeling framework with varying parameters and initial conditions can perform
differently based on the type of hydrologic event being modeled and the hydroclimate
under consideration [47,48]. Therefore, depending on the application, it may be justifiable
to use multiple modeling structures for stochastic flood frequency studies to identify or
reduce potential variability in results [4]. Moreover, an understanding of the sensitivity of
resulting flood frequency estimates in response to varying model inputs may provide a
means to reduce uncertainty.
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4.4.1. Hydrologic Model Structure

Common hydrologic models, including the Hydrologic Engineering Center hydrologic
modeling system (HEC-HMS) and the Sacramento soil moisture accounting (SAC-SMA), are
shown to exhibit varying outputs resulting from interactions between model structure and
model parameters, particularly for flood metrics involving multi-day volumes; moreover,
examination of stochastic flood frequency estimates using these hydrologic models suggests
that model structure has a measurable influence on results across return periods at least
up to the 100,000-year event [4,37,49]. This highlights the importance of assessing all
assumptions underpinning the hydrologic models used within a stochastic modeling
framework to best characterize flood generation processes and select models appropriate
for the watershed being studied.

4.4.2. Model Inputs

Initial conditions such as soil moisture content can introduce relatively significant
variability in flood frequency estimates for more frequent flood events nearing the 1000-year
return period, especially in arid environments [50]. As the AEP becomes increasingly
rare, precipitation frequency distributions have been shown to have the most influence
on stochastic flood modeling with respect to other inputs [4]. Thus, the accuracy of
hydrometeorological studies used to develop precipitation frequency estimates is critical
for stochastic flood frequency analysis focused on extending hydrologic hazard curves to
characterize rare events.

4.5. Future Work and Applications

Hydrometeorological inputs are an essential component of stochastic models used to
develop hydrologic hazard curves, and studies that involve data collection, data quality
control, and the extension of historical records are essential to improving the accuracy
of flood frequency estimates [1]. However, as discussed in Section 4.4, there is varying
sensitivity of flood frequency estimates in response to hydrometeorological inputs such as
precipitation frequency relationships. Given that the precipitation frequency relationships
for a watershed are a dominant factor in determining flood frequency of extreme events,
further study into the influence of the spatial representation of watersheds and the spatial
and temporal variability of rainfall on flood frequency estimates could have an impact on
modeling approach and interpretation of results [28,51]. Moreover, if flood frequency results
are to be compared between different watersheds to assess the impact of different storm
types or operation policies on hydrologic response at multiple projects, either consistent
methodologies for determining flood frequency will need to be used or differences in
methodology will need to be quantified [4]. Comparison within the Tennessee Valley
watershed is made possible by consistent meteorological studies and scaling procedures
across the entire region, and similar actions could be taken in other regions where there is a
desire to compare watershed responses to obtain consistent measures of flood frequency
and hydrologic risk.

Stratified sampling and convergence methods developed according to the total proba-
bility theorem could be extended to evaluate exceedance probabilities for discharge thresh-
olds at three or more dams rather than focusing on two dams, as occurred in this study [40].
Further investigation into the joint exceedance probabilities and failure probabilities of
groups of closely related dams could provide valuable information for risk studies. It is
expected that, as is shown in this study, the probability of coincident failure for a group
of dams will be less likely than individual failures; however, the consequences associated
with coincident failures may be significant and require consideration within risk reduction
measures. Continued study into the dynamic interaction between systems of dams acting
in parallel could lead to new discoveries related to operation policy and best practices for
managing large flood events. Similar analyses could also be applied to dams in series, with
outflows from one dam directly influencing inflows to another.
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5. Conclusions

In support of the continued integration of risk-informed decision making and the
expanded use of PFHA for hydrologic hazard studies at dams, this study accomplished the
objectives of (a) assessing the correlation of peak spillway discharges across three dams in
adjacent similarly sized watersheds; (b) determining hydrologic exceedance probabilities
for spillway discharge pairs at selected dams in response to MLC, MEC, and TSR storm
types; and (c) calculating the probability of coincident dam failures to characterize risk
posed by a system of dams in addition to risk posed by an individual dam.

Correlation of stochastic simulation results, patterns of failure response based on dam
combinations, and relative differences between system and individual risk were examined
using generalized spillway fragility curves, as discussed in Section 2.6.1. A pattern of
correlation in spillway discharge was observed between dams for the storm events sampled,
with the correlation varied based on the combination of dams and the type of storm used
in the stochastic simulations. Dam and storm type combinations that exhibited the greatest
correlation in average peak spillway discharges also exhibited the greatest hydrologic
exceedance probabilities and, consequently, the greatest joint failure probabilities. Results
from Section 3.3 show that the estimate of joint failure was three to four orders of magnitude
more likely (7.42 × 102 to 5.68 × 103) when the dependence of spillway discharge between
the dams was considered using the methods of this study as opposed to assuming the
failure of each project resulted from an independent hydrologic event.

Future work must address the influence of the spatial representation of watersheds and
the spatial and temporal variability of rainfall on flood frequency estimates. These factors
could have a significant impact on the stochastic modeling approach and interpretation
of results [28,51]. There is a need to better understand the dynamic interaction between
systems of dams acting in parallel. Similar to research conducted on dams in series,
interconnected system components such as initial reservoir levels, storage availability, and
reservoir operations and discharge capabilities may have a more significant impact on
overtopping and failure probabilities than inflows [7]. An increased understanding of the
response of a system of dams to extreme storm events could better inform reservoir storage
regulation policies and provide increased resiliency in response to weather variability and
climate change.
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