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Abstract: The recent problems of Lake Urmia (LU) are caused by extensive and complex socio-
ecological factors that require a comprehensive approach to consider the relationships between users
and identify failure factors at the basin level. For this purpose, an agent-based simulation model
of farmers’ social interactions and economic interests (ABM) with various support scenarios and
random supervision and training by the government agent is developed to evaluate its impact on
independent farmers’ decision-making in the form of a complex adaptive system. Finally, a fault
tree analysis (FTA) is created in the Cara-FaultTree 4.1. software to identify scenarios that lead to
the non-development technology in irrigation management (non-DTIM) in the LU sub-basin. The
assessment of the impact of government supervision and training revealed that the main causes of
non-DTIM in the LU basin are a lack of demands from farmers and low awareness among residents
of the basin, with failure probabilities of 0.90 and 0.86, respectively. Ultimately, the failure probability
of the main event (non-DTIM) was 0.50. The paths of proper training and farmers’ requirements
for sustainable agricultural water supply should become more stringent. The results confirm that
appropriate measures to strengthen government supervision and training, as well as raise farmers’
awareness of the importance of long-term sustainability of water resources, can lead to greater
resilience in the DTIM.
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1. Introduction

The water crisis poses a serious threat to human life. The short-term perspective
in managing risks, as well as the lack of transparency and unscientific planning, raise
the possibility that the crisis will worsen and expand once it occurs [1,2]. It is, therefore,
necessary to assess the catchment areas with a tool so that the right quality of required water
can be provided. If financial resources are not made available within the schedule, there
will be delays in the implementation of projects in the individual basin areas. The lack of
community perspective in regional planning and the lack of codified laws in the watershed
as well as the absence of a land-use plan are among the main reasons for the emergence
of a critical situation in the basin [3]. With population increase, climate variability, and
its numerous problems, watersheds have become less important and are facing various
threats. Therefore, the possibility of the occurrence of an undesirable phenomenon (risk)
and systematic efforts to determine and manage the threats and hazards through risk
identification and analysis are proposed [4]. This objective requires accurate identification
of catchment problems and risks. A comprehensive and accurate identification of risks and
the determination of the effectiveness of system failure concerning each of these risks may
require the provision of accurate and effective solutions to improve the status of the water
resources of the basins [5].
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In recent years, the LU basin has faced many problems in terms of a lack of water
resources and economic and social damage. A comprehensive approach to assessing the
performance of catchments can reduce their vulnerability in critical situations and focus on
the most vulnerable points [6–8]. The purpose of the risk analysis of the total failure of a
watershed is to assess and identify all threat factors regarding the amount of available water;
the environmental, economic, and social water quality of the basin; and the impossibility
of its provision [9]. On the other hand, the cross-sectional approach to dealing with risks
and the lack of transparency in planning increases the risks caused by risks and harbors
the possibility of aggravation and expansion of the crisis after it occurs [10]. Accurate
knowledge of the basin, the elimination of human and natural destructive factors, and the
need to apply novel approaches to risk analysis are the keys to success in improving and
preventing possible risks in basins. Compared to water resource use studies with high
costs and difficulties, simulation-based modeling offers an alternative method [11]. Many
water resource models were proposed to describe population dynamics, which are mainly
divided into two types, namely, microscopic and macroscopic models [12]. Microscopic
models, including the social force model (SF model) [13], the cellular automata model (CA
model) [14,15], and the agent-based model (ABM) [16], can describe individual behavior
more accurately and come closer to reality. Among these models, agent-based models have
made significant progress in recent years. ABMs have improved the processing speed of
computers. ABM can simulate a variety of “agents” that may have rudimentary artificial
intelligence to make decisions. Each agent can have a unique set of behavioral rules that
allow modeling heterogeneity in the population [17,18].

In recent years, ABM models have been developed for water resources manage-
ment [19,20]. ABMs have the potential to significantly improve the design of stringent
regulations and incentives for water resources management [21]. Nhim et al. [22] concluded
that ABM models are a powerful tool for studying how socioeconomic and environmental
changes affect the human use of water resources. Pouladi et al. [23] reported that farmers’
performance and willingness to engage in LU restoration could be simulated by integrating
ABM into the socio-hydrological framework. Ohab-Yazdi and Ahmadi [24] showed that
the regional water organization’s relevant interactions with other stakeholders led to the
control of illegal water extraction and the rise of water levels in aquifers. Anbari et al. [25]
concluded that through government-sponsored programs it is possible to offset about 23%
of the negative balance of the aquifer within 13 years. Lang and Ertsen [26] investigated
the interaction between human and non-human agents in an irrigation system. The results
showed that the Irrigation-Related Agent-Based Model (IRABM) offers a new perspective in
modeling the human–water system. Okura et al. [27] studied irrigation management using
the ABM model and game theory. The results showed that social changes can accelerate
farmers’ non-cooperative behavior. Shoushtarian et al. [28] developed an ABM model to
simulate agricultural water use and socio-hydrological dynamics of California. The results
showed that ABM helps to evaluate current water reuse management practices in terms
of sustainability of water resources. Streefkerk et al. [29] presented a dynamic adaptive
drought modeling model in Kenya that combines socio-hydrological modeling and ABM
approaches. The results showed that the absorption of drought adaptation affects soil
moisture, groundwater, and drought propagation. Mirzaei et al. [30] concluded that for the
implementation of the water–energy–food nexus model in the water-stressed region, the
policy of using advanced irrigation technologies under the government’s support scenarios
is necessary.

Previous studies on water resource utilization mainly focused on farmer behavior and
water resource modeling and optimization. There is a knowledge gap regarding the use of
information from ABM modeling in decision-making that improves safety. To fill this gap,
this study aims to adopt ABM modeling and further develop a fault tree analysis (FTA)
method to identify scenarios that lead to non-DTIM in the LU sub-basin. FTA is a decision
tree structure based on a graphical method to represent the logical cause of failure [31]. The
purpose of the FTA is generally to control risk, the worst-case event is considered the top
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event, and then the various failures that can lead to the top event are determined through
top-down layer-wise logical analysis. These disturbance events are distributed layer by
layer in the form of a tree structure. To this end, a case study in the LU sub-basin in the
Miandoab Plain was used as an example to demonstrate the methodology. The increase in
the area under water cultivation, the decrease in rainfall, the low efficiency of agricultural
irrigation, and the lack of an allocation of sufficient water to meet the biological needs of
the leading rivers are considered to be the most important factors aggravating the crisis
and dryness of LU. In addition, traditional agriculture is one of the reasons for the drying
up of LU after the decrease in rainfall. The change from traditional to advanced agriculture
is of particular importance due to the drying up of LU. Therefore, risk indicators need to be
provided for risk management and improvement of this catchment area. This paradigm
can be used for any watershed to identify critical paths and prevent the inappropriate
use of water resources. The developed free trade agreement provides water resource
managers with a basis for formulating water resource use plans to avoid the catastrophic
consequences of water scarcity in catchment areas.

According to the mentioned main goals, in the present study, an ABM simulation
model of social interactions and economic interests of farmer agents, along with different
scenarios of support policies as well as random supervision and training by the government
agent to evaluate its impact on the decision-making of independent farmers in the form of
a complex adaptive system, is presented. Next, by using FTA, the scenarios that led to the
non-development technology in irrigation management (non-DTIM) in the Lake Urmia
basin were identified. In this regard, there are fundamental questions and hypotheses,
such as what are the main reasons and factors for solving the non-DTIM in the Lake Urmia
basin? The use of ABM and FTA models based on the identification of various factors and
their interactions is effective in identifying the reasons for the non-DTIM. The answers to
the questions mentioned as the main goals are necessary for the purposeful design of the
road map for the DTIM in the LU sub-basin and the achievement of its goals. Regardless of
the mentioned cases, the implementation of water consumption management programs is
not only accompanied by many uncertainties from the point of view of their effectiveness
but will also entail huge costs.

2. Materials and Methods
2.1. LU

The LU basin in northwestern Iran is one of the main basins of Iran, with an area
of 51,876 km2. LU is the largest inland lake in Iran and one of the most valuable aquatic
ecosystems in Iran and the world [32]. The downward trend of the water level of LU
began in 1995, and in 20 years, the lake level has dropped by more than 8 m. As a result,
the remainder of more than 30 billion cubic meters of LU’s water volume has been lost
due to evaporation and lack of annual rainfall. Due to LU’s location in a closed basin,
precipitation and runoff are considered sources of water input into the lake, and evaporation
is considered water discharge [32].

The two main causes of LU drying are (1) excessive extraction of renewable wa-
ter resources and unbalanced development in the LU basin (human factors, 69%) and
(2) climate change (18%) and persistent drought (natural factors) [33].

Improved living conditions and higher incomes of farmers were the main reasons for
the expansion of cultivated area and increase in water consumption in the LU basin due
to human factors. The expansion of the cultivated area and increased water consumption
created a crisis in LU that is making life more and more difficult for the population living
there [33].

2.2. Miandoab Plain

The Miandoab Plain lies in the southern part of LU (Figure 1). The geographical
coordinates of Miandoab are 45◦43′ N, 36◦46′ E, and its altitude is 1292 m above sea
level [34]. The average annual rainfall is 296 mm, and the average humidity is 53%. The
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average annual and minimum temperatures are 11.8 ◦C and −3 ◦C, respectively [34]. In the
Miandoab Plain, half of the surface flows flow into LU and 20% of the total groundwater.
Zarineh Roud and Simineh Roud are the main sources of Miandoab Plain surface water
discharged into LU [35]. The Zarineh Roud and Simineh Roud basins comprise the largest
sub-basin of the LU basin (34% of the total LU basin area). In recent years, the function of
securing the rights of LU has been lost due to the development of exploitation of surface
water resources of these rivers.
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2.3. Agent-Based Modeling (ABM)

Agent-based models (ABMs) are a popular tool in today’s computing environment
for simulating the collective outcomes of individual behavior in complex systems. These
models are based on the idea that interactions between autonomous and independent
agents shape the behavior of a system rather than just focusing on the system’s internal
variables [36]. ABMs allow for variation and interactions between individual factors to
be taken into account by returning the focus to the agents themselves, resulting in a more
accurate and realistic representation of the system’s behavior. ABMs are particularly useful
in modeling complex systems whose behavior is difficult to predict due to the relationships,
competition, and interdependencies between their components or between the system and
its environment. Using these models, researchers can capture the patterns and structures
that emerge from, rather than those that are dictated by, the interactions of individual actors
or the emergent properties of the system (Figure 2). Additionally, ABMs enable agents to
make decisions by considering the concepts of adaptive learning and intelligence [37].

https://www.esri.com/en-us/arcgis/about-arcgis/overview
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2.4. Fault Tree Analysis (FTA)

The FTA includes building a fault tree, entering the fault probabilities of the base
events, distributing the fault probabilities to determine the probability of the main event,
and determining the intersections [38]. When a shear set occurs simultaneously as a group
of initiators, the main event occurs. The first step in FTA analysis is to gain a complete
and accurate understanding of the system. Accurate and detailed information, including
system components, physical and functional interactions between components, and normal
and abnormal conditions, can be obtained from various sources, such as reviewing maps,
diagrams, instruction manuals, maintenance methods, and interviews with experts. Gates
defines the logic in the fault tree and links base events to intermediate and main events
(Figure 3). If the main event results from the simultaneous failure of two events or at least
one of the events results in the failure of a higher event, AND or OR gates are used [39].
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3. Methodology
3.1. Designed ABM Model

The ABM model aims to replicate farmers’ ability to adapt to new DTIM (development
technologies in irrigation management). In this model, there are two groups of farmers
and government officials. Farmers with low DTIM-WP, regardless of their experience,
seek financial benefits and cheaper production and irrigation costs. Looking for long-
term strategic goals to maintain the sustainability of water resources on behalf of the
government. To encourage farmers to use DTIM, the government offers incentives, in
this case, subsidies. It also serves as a tool for tracking farmer productivity and training.
Currently, water resources are used by farmers to achieve short-term benefits through
irrigation systems and different levels of technology. Farmers adjust the current plan
based on a cost–benefit analysis, their desire to increase WP, and their understanding of
the importance of DTIM. DTIM charges costs for the initial setup. Government subsidies
can be used by any farmer to increase WP. If no farmer makes optimal use of available
water resources, long-term access to these resources is at risk. If this is the case, farmers
consider this an ad hoc expense. By increasing the allocation of government subsidies, it
is possible to motivate farmers to increase their profits. To achieve this, the government
can rely on assessment teams equipped with DTIM training to offer help and support to
farmers. As part of the government’s assessment process, monitoring farmers’ behavior
is crucial. However, it is important to note that farmers who benefit from the sale of an
improved irrigation system may no longer be eligible for certain government programs
and future subsidies. The government has the power to strengthen the integrity of farmers
through these assessments. Furthermore, to create an effective framework for DTIM in
the Moandoab region, government policies are evaluated using the ABM model. For this
purpose, NetLogo 6.2.2. is used, a software that simulates various phenomena and has
a user-friendly interface. The use of NetLogo 6.2.2., programmed in Java, offers further
advantages to the decision model used in this study [40,41].

3.2. Model Description
3.2.1. Farmer Agent

The decision-making power of the government and the changing characteristics and
behaviors of a group of farmers are presented in the ABM model as the two most important
and powerful players in the use of technology to maximize irrigation management in the
LU Basin. ABM helps clarify the complex adaptive system of individual farmers’ decisions
in response to government policies as well as interactions with other farmers and the
environment. The farmer agent receives subsidies from the government (acting as an agent
of the Ministry of Water and Agriculture) to increase WP through DTIM. The agent-based
adaptability model of farmers in DTIM is schematically shown in Figure 4.
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The inputs that the proposed framework gathers include job preference, academic
education level, age, size of agricultural farm, coordinates, and distances. These data
are used to calculate the entrepreneurship index (entrepre), which indicates each farmer’s
potential for developing an irrigation system. The various degrees of the efficacy of the
aforementioned elements in determining the entrepre index are displayed in Table 1. As
model inputs, the amount of farmers’ expenses and profits, as well as DTIM costs, have
been estimated. Farmers are dispersed throughout the modeling industry. Every farmer has
social ties to neighbors with whom they can exchange experiences. They are impacted by
government policies in the model environment, which includes education and monitoring
programs, government subsidies for irrigation system improvements, and weather- or
decision-making-related uncertainties.

Table 1. The effectiveness of the components in calculating the entrepre index.

Age (Year) Education Occupation Entrepre Index

age < 40
40 < age < 60

age > 60

University education
or without education

Without side
occupation or

unrelated occupation

Normalized
innovation index

[1–3] [1–5] [1–3] [0–1]

It is assumed that farmers who do not have the proper level of WP can make decisions
for DTIM. One of the considered triggers is the propensity of farmers to DTIM (prop).

The minimum value of the prop trigger (prop.min) is defined as follows:

prop.min =
(α scale) + (β entrepre)

(α + β)
(1)

where α and β express the effect of farm scale and the farmer’s entrepreneurship on the
initial propensity to DTIM, respectively.

To make decisions, farmers can weigh the costs and benefits of their options, consider
past performance, and consider the costs of sustainable water supply (SWS).

In this study, it is assumed that the challenge of SWS in the long term is such that if
farmers do not take action to correct the existing process of using water resources, this
possibility is seriously threatened. Considering this issue, the non-participation of farmers
in upgrading the irrigation system is regarded as a cost. This cost will decrease with
the participation of more farmers in improving irrigation productivity (SWR). SWR is
calculated as follows:

SWR =
6 × count f armers6

6
∑

i=1
irrstatus × count f armerirrstatus

(2)

Farmers typically leverage their desire for DTIM and honesty when using government
subsidies as a trigger for decision-making. Farmers’ decisions are influenced by the amount
of these stimuli and vice versa. The ABM model then undergoes a sufficient number of
iterations in different scenarios and the resulting results of the model are then statistically
analyzed. The mean ratio of DTIM, the mean speed of DTIM, the field application efficiency
(FAE), and government expenditure (which are taken into account in the number of cases
of granting subsidies) are among the results that are considered consistent with the main
objectives of the study.

3.2.2. Government Agent

The main goal of the government agent is to improve WP. Assuming that crop yields
rise or stay at the same level, the government agent is attempting to persuade the farmer
agent to DTIM. The main defenders of the WP in the agriculture sector, incentive policies,
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have been taken into consideration by the government. One of the policies taken into
consideration in this area is providing DTIM with subsidies. Through subsidies, the
government hopes to persuade farmers to raise WP. Additionally, the government can
lessen DTIM issues and contribute to an increase in WP and crop yield by considering
monitoring and training teams. Farmers become more honest and there is less misuse of
the facilities provided by the government when it is monitored. Increasing WP in the study
area is one of the government’s top priorities in this investigation. Consequently, irrigation
efficiency is assessed using the FAE index in the manner described as follows:

FAE =

6
∑

i=1
irrstatus=1 count f armerirrstatus(r × e f firrstatus × (1 − r) ρ)

6
∑

i=1
irrstatus=1 count f armerirrstatus

(3)

where e f firrstatus is the amount of expected WP in different irrigation systems, which is
estimated as follows (Table 2) [42].

Table 2. Expected WP in different irrigation systems.

Irrigation System effirrstatus
Irrstatus Amount

Border 30% 1
Furrow 50% 2

Sprinkler 65% 3
Surface drip (tape) 80% 4

Surface drip (tape) (with
irrigation management) 90% 5

Subsurface drip irrigation 95% 6

The government’s achievement in raising the FAE index’s value can be attributed to
one of the most important factors. Thus, in the complex socio-environmental system under
study, the government’s best policies have the potential to either improve this index or
accelerate its advancement. The effects of these incentive policies are assessed in the ABM
model using various scenarios. To this end, the influence of governmental policies on the
outcomes is assessed.

Farmers may be encouraged to make money if government subsidies are increased in
proportion. Thus, by taking the assessment teams at various levels with DTIM education
into consideration, the government can aid in raising farmers’ profits. One aspect of
government assessments is keeping an eye on farmers’ conduct. Farmers risk losing
access to certain government services and the chance to reapply for subsidies if they profit
from the sale of their upgraded irrigation system. Evaluations: The government can
make farmers more truthful. The government policies are then assessed using the ABM
model to provide a framework that works for the management of water resources in the
Miandoab region.

The parameters of the ABM model are calibrated using the investigated data and field
studies and are presented in Table 3.

Table 3. Range of ABM model parameters.

Parameter Description Value

Network-density Influence of the farmer’s neighbors [0.05, 0.1, 0.2]

α Farm scale [0.4, 0.7, 0.9]

β
Farmer’s entrepreneurship on the

initial propensity to DTIM [0.4, 0.7, 0.9]

r Effect of random changes [0.1, 0.4, 0.7, 0.9]
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Table 3. Cont.

Parameter Description Value

SWS Sustainable water supply [1000, 10,000, 50,000]

Seed-ratio Portion of seed participants of the
cooperation [0.05, 0.1, 0.2]

Seed-owner Types of earliest participants
[Close owners, Hight entrepre
and scale, Hight degree, Hight

entrepre, No other job]

Gov-policy Subsidy, training, and supervision
policy of the government

[Normal, Enlarge, Diminish,
Mix of all]

Inspect-owners Government supervision teams [4, 8, 16]

3.2.3. Questionnaire Investigation

To define scenarios and identify stakeholders, questionnaires and specialized inter-
views were employed. The sample size of the interview was 72. Interviews with a range of
relevant parties were undertaken in the Miandoab Plain, including farmers, the Ministry of
Agriculture (15 agents), managers and specialists of local water organizations (15 agents).
The validity of the interview findings was confirmed when the researcher’s self-review
method and member control were applied to the gathered interviews. ABMs have apparent
validity if an expert (group of experts) related to the subject confirms the quality of the
simulation results by real-world phenomena. This is performed by taking into account
outputs such as the trend of area change under different irrigation methods and the trend
of economic profit at micro and macro levels, and it is compared with the actual situation
of the studied area according to the opinions of experienced experts. To guarantee the
reliability of the interviews, convergent interviews were employed. To achieve this, model
attributes and input factors—a variety of social and environmental factors—that influence
farmers’ adjustment to DTIM were first arranged. Next, every environmental and social
component is understood to form the ABM model. Finally, a statistical analysis is used to
assess the components and policies that have an impact on the outcomes.

The developed ABM model is applied for 100 years at the time step of a half-crop
season. The model considers 42 farmer agents. Drip and sprinkler irrigation are two
common examples of both traditional and advanced irrigation techniques that are taken
into consideration. The sub-model for figuring out the farmers’ economic spending was
taken into consideration because of how crucial the economic factor is to the farmer’s agent
decision-making. The price of planting and harvesting crops, the cost of installing irrigation
systems, and the cost of fertilizers and seeds, labor costs for manual labor, water pumps,
etc., were computed.

3.3. Compilation of the FTA of LU Sub-Basin

The FTA model was created to quantify and evaluate different scenarios of non-DTIM
of LU sub-basin. The probability of failure of basic events is estimated quantitatively and
qualitatively based on recorded records. After estimating the failure probability of basic
events, AND and OR gates are calculated as follows:

P =
n

∏
i=1

Pi (4)

P = 1 −
n

∏
i=1

(1 − Pi) (5)

where P is the probability of each basic event, Pi is the value of the failure probability of the
ith basic event, i is the counter, and n is the number of input events connected to the gate.
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The impact (contribution) of basic events on the main event is calculated as follows:

Ix =
∑ Ux

Us
(6)

where Ix is the importance of the basic event x in creating the main event, ∑ Ux is the
sum of the error percentages of the cuts in which the event x is present, and Us shows the
probability of the main event. If the failure probability of the main event is satisfactory,
the FTA analysis ends. If the FTA analysis is not satisfactory, it is necessary to reduce the
failure probability of the main event and take corrective actions.

A total of 18 parameters were identified as the basic event for non-DTIM risk
assessment in the LU sub-basin. Table 4 shows the basic events according to their
performance type.

Table 4. Basic events of the FTA of LU basin.

No. Basic Events Type No. Basic Events Type

1 Drought Natural 9 Failure to develop guidelines by the
government Operational

2 Flood Natural 10 Absence of farmer’s demands Operational
3 Small ownership of agricultural land Operational 11 Lack of adequate training Operational

4 Lack of financial resources Operational 12 Lack of control over the irrigation
systems management Operational

5 Lack of government supervision Operational 13 Lack of irrigation scheduling Operational
6 Lack of awareness Operational 14 Conflict of interest Operational
7 Inappropriate governance Operational 15 Insufficient knowledge Operational

8 Reliable water resources Operational 16 Improper soil management of
agricultural lands Operational

The flowchart of the study process is presented in Figure 5.
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4. Results and Discussion

The suggested scenarios, which include 64,800 states, have been combined and run
100 times apiece in the model with 100 time periods to implement the suggested model.
By using balanced variance analysis, each of these scenarios was examined. The factors
influencing farmers’ adaptation to DTIM were examined using balanced variance analysis
and Minitab 16.2 software. Tables 5–8 and Figures 6–9 show average WP indicators (SWR,
FAE), average propensity threshold (mean.prop), and honesty threshold (mean.honesty).

Table 5. Balanced variance analysis for mean.prop.

Source DF SS MS F P

Network-density 2 0.000083 0.000041 1.18 0.308
Random change 3 0.015535 0.005178 147.65 0.000

SWS 2 0.306912 0.153456 4375.59 0.000
Seed-ratio 2 0.000096 0.000048 1.36 0.256

Seed-owner 4 0.000123 0.000031 0.88 0.475
Gov-Subsidy-Policy 3 0.002418 0.000806 22.98 0.000

Inspect-owners 2 0.074007 0.037003 1055.10 0.000
Error 64,781 2.271928 0.000035
Total 64,799 2.671102

Note: S = 0.00592207 R–Sq = 14.94% R–Sq(adj) = 14.92%.

Table 6. Balanced variance analysis for mean.honesty.

Source DF SS MS F P

Network-density 2 9.014 4.507 10,834.69 0.000
Random change 3 0.017 0.006 13.49 0.000

SWS 2 0.032 0.016 38.34 0.000
Seed-ratio 2 0.031 0.015 37.17 0.000

Seed-owner 4 0.001 0.000 0.58 0.677
Gov-Subsidy-Policy 3 0.004 0.001 3.14 0.024

Inspect-owners 2 1164.803 582.401 1,400,027.11 0.000
Error 64,781 26.948 0.000
Total 64,799 1200.850

Note: S = 0.0203959 R–Sq = 97.76% R–Sq(adj) = 97.76%.

Table 7. Balanced variance analysis for SWR.

Source DF SS MS F P

Network-density 2 0.001113 0.000556 2.23 0.107
Random change 3 0.064029 0.021343 85.61 0.000

SWS 2 0.862558 0.431279 1729.93 0.000
Seed-ratio 2 0.000161 0.00008 0.32 0.725

Seed-owner 4 0.000871 0.000218 0.87 0.479
Gov-Subsidy-Policy 3 0.002044 0.000681 2.73 0.042

Inspect-owners 2 0.718565 0.359282 1441.14 0.000
Error 64,781 16.150154 0.000249
Total 64,799 17.799494

Note: S = 0.0157894 R–Sq = 9.27% R–Sq(adj) = 9.24%.

Table 8. Balanced variance analysis for FAE.

Source DF SS MS F P

Network-density 2 0.015 0.007 0.32 0.724
Random change 3 744.568 248.189 11046.72 0.000

SWS 2 0.543 0.272 12.09 0.000
Seed-ratio 2 0.177 0.088 3.94 0.020

Seed-owner 4 0.132 0.033 1.47 0.209
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Table 8. Cont.

Source DF SS MS F P

Gov-Subsidy-Policy 3 0.035 0.012 0.51 0.673
Inspect-owners 2 1.972 0.986 43.88 0.000

Error 64,781 1455.451 0.022
Total 64,799 2202.893

Note: S = 0.149891 R–Sq = 33.93% R–Sq(adj) = 33.91%.
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Thus, uncertainty (random change of the system due to climate and agent behavior
patterns), SWS, subsidy policy, government supervision, and training are the most effective
indicators of the farmer agent’s propensity to DTIM (p-value = 0.0 at the confidence level of
95%). The most significant predictors of the farmer agent’s inclination to DTIM are SWS,
government supervision, and training, with F-values of 4375.59 and 1055.10, respectively.
The farmer agent’s propensity to DTIM is least affected by the seed-owner and seed-ratio
indices. The mean.prop index barely changes as a result of the initial population.

As a result, different inputs influence the agents’ subjective propensity in the DTIM.
The appointment, potential for ideal local management, and involvement of the farmer
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agent are all facilitated by their involvement in the management of water resources [43–46].
Participation and awareness foster the desire for DTIM. Government subsidies and cost
reductions have a significant impact on farmers’ adoption of DTIM [47,48].

The most significant parameters on the SWR index are random change (r), SWS,
government supervision, and training, with p-value = 0.0 at a 95% confidence level. The
SWR index is independent of the initial population’s seed-ratio, seed-owner, and network-
density. The crop yield and WP are greatly influenced by the indicators of SWS, government
supervision, and training. The F-values for SWS and government supervision are 1729.93
and 1441.14, respectively. The presence of government supervision and training is crucial
for improving WP and taking advantage of government subsidies. This also affects the
integrity threshold and the propensity of farmer agents. The effective supervision and
management of irrigation systems play a significant role in increasing both the physical and
economic WP as well as crop yield, which aligns with the findings of previous studies [49].
Uncertainty, SWS, government supervision, and training are the most effective indicators
at the 95% confidence level on FAE (p-value = 0.0). Consistent with the findings of the
present study, optimal irrigation systems coupled with sufficient government supervision
and training will raise FAE and crop yield [50]. The water resource conditions in the LU
basin state that the WP can be improved through training and monitoring of the irrigation
system [34,51,52]. All inputs and production must be provided continuously, and farmers’
representatives must be continuously supersized and trained by the government in the
management, maintenance, and operation of field irrigation systems [53].

4.1. Risk of Failure of LU Sub-Basin

In Table 9, the failure probability of the basic events was calculated based on the
specific statistics of the LU sub-basin and entered as input into the Cara-FaultTree 4.1.
software. In this study, Cara-FaultTree software was used for the complete graphical
representation of the overall risk of the basin due to the unique features and simplicity of
the environment.

4.2. Measure the Importance of Basic Events
4.2.1. Lack of Accurate Planning in Water Supply and Demand

The average amount of water consumed in the short-term period of the LU basin, in
excess of the virtual upper limit of surface water in the agricultural sector, and the amount
of surface water consumed in the long-term normal in the agricultural sector are 3600 MCM
and 2370 MCM, respectively. The average amount of water consumed in agriculture in
the short-term period of the LU basin in excess of the virtual limit of groundwater and the
amount of groundwater consumed in agriculture in the long-term in the normal state is
1756 MCM and 1580 MCM, respectively.

The event failure probability value is calculated as follows:

P (A24) = 0.51 Surface water (7)

P (A24) = 0.11 Ground water (8)

4.2.2. Unreasonable Economic Value of Water

The low economic value of water in the LU basin is caused by the low price of water.
The low price of water causes an excessive increase in water in the agricultural sector
and leads to economic failure. The probability of an inappropriate water price failure is
calculated as follows:

4.2.3. Destructive Water Transfer Systems

Protecting and conserving water in irrigation and drainage networks should be con-
sidered one of the cost-effective solutions in water projects. Therefore, the destructive
water transfer system may lead to economic failure in the LU basin. The failure caused by
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this event is similar to the water loss event along the transmission path and is calculated
as follows:

P (A11) = 0.30 (9)

In Figures 10a,b and 11a–d, the probability of the main event is determined based on
the probability assigned to the basic events. Indiscriminate water abstraction, dam con-
struction, land-use changes, non-compliance with environmental rights for water, increased
CO2 emissions, low WP, and social and economic conditions are among the important
intermediate factors for the failure of the Urmia Lake basin due to human factors. Climate
changes (floods, droughts) are important natural factors for reducing water resources in
the LU sub-basin.
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In Table 9, the ranking of basic events effective in the non-DTIM of LU sub-basin
was calculated.

Table 9. Ranking of basic events effective in non-DTIM in LU sub-basin.

Basic Events Ix = ∑Ux/Us Quantitative Rating

CS1 = (A1, A2) (1/42) × (1/42) = 0.005/0.8 = 0.006 1
CS2 = (A8) 35/42 = 0.83/0.8 = 1.04 7

CS3 = (A3, A4, A5) (25/42) × (25/42) × (38/42) = 0.32/0.8 = 0.4 2
CS4 = (A6, A7) (35/42) × (40/42) = 0.79/0.8 = 0.99 6
CS5 = (A8, A9) (35/42) × (36/42) = 0.71/0.8 = 0.89 5

CS6 = A10 35/42 = 0.83/0.8 = 1.04 8
CS7 = A11 25/42 = 0.60/0.8 = 0.75 4

CS8 = (A3, A12, A13) (25/42) × (35/42) × (42/42) = 0.50/0.8 = 0.625 3
CS9 = (A14, A15) (38/42) × (40/42) = 0.86/0.8 = 1.075 9

CS10 = A16 38/42 = 0.9/0.8 = 1.125 10

According to Table 9, the basic events are sorted in descending order by the greatest
impact on the vertex event. The higher the value of the Ix index, the more important the
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basic event is in the vertex event. The results show that the low awareness of the basin
residents and the lack of demands of farmers are the most important failure factors in the
LU basin, with a failure probability of 0.86 and 0.90, respectively. Finally, the probability
of failure of the main event (non-DTIM in the LU sub-basin) was 0.50. The quantity and
quality of water resources in the LU can be considered the most important factors affecting
the sustainability of its ecological function. However, both factors are influenced by human
activities, particularly the increase in cultivated area and the development of irrigation in
the upstream sections of this basin. Increasing water use along with the implementation of
agricultural development plans will reduce the quantity and quality of water entering the
LU basin. In recent years, the lack of environmental protection measures in the LU basin
has led to the disappearance of rare species.

In addition, the events of a lack of sufficient training, insufficient knowledge, and
management of irrigation systems have a significant impact on the lack of non-DTIM in
the LU sub-basin. The participation of users in decision-making and the development
of coordination between different organizations in water resources management are the
most important parameters in the sustainable management of agricultural water resources.
Participatory and centralization events were identified as key components in water re-
sources management, which is consistent with the results of the present study [54–57],
Farmers’ communities are the first trustees of water resources in the LU sub-basin, which
is highly dependent on water resources. The lack of water resources in the LU sub-basin
causes the loss of economic activities and disrupts the biological balance. These results are
consistent with the studies of [23,58]. These studies also emphasize the participation and
role of farmers in the management and exploitation of water resources. Governance and
its effectiveness, which correspond to the development and management of surface and
underground water resources, were introduced as intermediate events dependent on other
events. The results of this study are consistent with the findings of [59,60]. The farming
community is the primary manager of water resources in the LU sub-basin, which is highly
dependent on water resources. The lack of water resources in the LU sub-basin leads to the
loss of economic activities and disrupts the biological balance. These results are consistent
with the studies by [58] that emphasize the participation and role of farmers in the man-
agement and use of water resources. Governance and its effectiveness corresponding to
the development and management of surface and groundwater resources were introduced
as intermediate events dependent on other events. The results of this study are consistent
with the findings of [59,60].

The government is an influential player in decision-making on LU restoration pro-
grams. In addition to government supervision and training, stakeholders must be em-
powered to implement the prescribed programs (e.g., reducing water consumption) and
revitalize LU. However, this local-level approach has not yielded success in structuring
the requirements for the implementation of LU restoration programs. In other words,
restoring LU is not the concern of stakeholders, and the government is failing to build
consensus, achieve user satisfaction and participation, create alternative value for water,
and awareness and knowledge of upgrading society and getting to know the real problems
and creating solutions for the restoration of LU. Furthermore, farmers, as key beneficiaries,
view the restoration of LU as a form of governance and show a desire to achieve this
goal. The government’s performance in sensitizing the farming community has been weak,
and the politically motivated messages tended to play a destructive role. A key factor
in the failure was the avoidance of government and stakeholder involvement, as well as
inadequate internal and cross-border management in the LU basin caused by centralized
legislation, multiple decision-making centers, and inaccurate planning of water supply and
demand. The creation of integrated management based on a comprehensive law and plan
is the most effective strategy in this area to achieve the sustainable development of the LU
basin. Managing the LU basin in an integrated manner that balances regional function and
farmers’ empowerment can achieve the government’s policy objectives.
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Due to the lack of “implementation-feedback-learning” mechanisms, the government
has not taken advantage of the impending obstacles to learn from and achieve success. In
this way, when faced with many problems, instead of finding solutions, it erased them
instead of solving them. For example, the strategy to reduce water consumption from
dams for use in this sector by 40% was gradually replaced by a 40% reduction in water
consumption in the agricultural sector, which has a significantly smaller impact on water
supplies than initially expected. Therefore, it is necessary to strengthen and develop educa-
tional and promotional activities in the Urmia Lake basin to improve farmers’ attitudes
and self-efficacy and expand their knowledge and skills in using irrigation systems.

Studies show that there is a positive relationship between extension calls, use of
communication channels, social participation, and technical knowledge of farmers and
their attitude towards the use of irrigation systems [61,62]. Studies show that there are
problems in the LU basin, such as that the government is at the center of the problem,
has a technical view, and is satisfied with the cross-sectional results, and that there is no
real goal that can be achieved with the government’s results consistent with the present
study [58,59]. Training farmers in the LU basin about the consequences of lake drying and
involving local communities in the restoration process can be successful. To achieve the
goals and implement the plans to restore LU, farmers’ trust in the government is crucial.
Traditional agriculture in the LU basin is not profitable despite the region’s high water
consumption. Plans to restore LU demonstrate the importance of farmers in the restoration
and provide an opportunity for development and sustainable agriculture in the LU basin.
By using training tools to improve LU’s water resources and revitalize the lake, farmers
can contribute to the engagement of surrounding communities. By allocating funds and
implementing construction projects and policies, the government has taken measures to
revitalize LU. However, to reduce water consumption in LU, experts and advocates must
work together to promote local culture, awareness, and engagement. The management and
control of the LU basin depend heavily on the residents’ awareness of the values of the
basin and the threats to its further development [7,59,62]. To prevent the collapse of the LU
basin, one of the main objectives is to raise awareness among farmers. To achieve this, the
government needs to strengthen its capacity [63].

A similar study concluded that the lack of community perspective in regional planning,
the development and lack of codified laws in the basins, the absence of land-use plans,
and the lack of sufficient information for the residents of the basin are the most important
reasons for social failure. This is consistent with the results of the present study [9].

4.3. Analysis of the Proposed Methods

In socio-ecological systems, there are a variety of complexities, including dynamics,
feedback and heterogeneity, and a lack of proper understanding of the complexities in
these systems leads to failure in good water governance. However, technical models are
needed to understand the behavior of water resources and provide useful information
about the current situation. In order to have a correct approach to the process of water
governance, a correct understanding of the attitudes, beliefs, and behaviors of the stake-
holders is required. One of the approaches that has been widely noticed in recent years for
the study of complex systems is the ABM and FTA approaches. These approaches were
introduced as effective tools for cooperative management, designing effective strategies,
and water resources management policies. By using this approach while modeling the
behavior of different stakeholders and the relationships and interactions between them
and with the environment and with the dynamic participation of individual, group, and
institutional stakeholders in the modeling process, it is possible to make correct decisions
with appropriate implementation support. The framework developed in this study is used
to understand the characteristics, behaviors, and interactions of effective factors in the pro-
cess of system changes. In addition, system analysis in such a framework provides a better
understanding of the structures of complex systems to support decision-making under
conditions of uncertainty in a collaborative process. In the aforementioned cooperative
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approach, while gaining a more accurate understanding of the components, patterns, and
connections of the studied system by attracting the cooperation and willingness of the
stakeholders, better solutions can be achieved in the decision-making process. Implement-
ing the developed framework in more case studies with different conditions can lead to the
production of more comprehensive guidelines for issues such as cooperative management
at the country level while processing the process of stakeholder analysis. This issue will
be fruitful in defining the procedures of water governance according to different social,
economic, and environmental conditions in the wide area of Iran. Although the majority
of water consumption in the catchment area of Lake Urmia is related to the agricultural
sector, to complete the developed framework, especially in the areas where the drinking
and industrial sectors are influential consumers, their goals, characteristics, and behav-
ioral patterns were evaluated. The relevant factors and interactions should be added to
the model.

One of the problems and complexities in modeling social systems is the existence
of human agents who potentially have irrational behaviors and complex psychological
characteristics—in other words, factors that make quantification, calibration, and validation
difficult. Although this issue is a main source of problems in providing simulation outputs,
in most cases, the only model that can challenge these conditions is the ABM and FTA
models. To develop the presented framework, the integrated exploitation model of surface
and underground water can be considered as the environment of the ABM model. The use
of more accurate agricultural economic models can have a significant effect in matching
the results with the existing reality. In this study, the effects of climate change in the future
have been ignored and only sensitivity analysis on climate change has been considered. In
future research, the effect of different scenarios of climate change in the process of changing
the behavior of the agents and policy-making according to these changes can be considered.

5. Conclusions

The problems of the LU basin are related to extensive and complex factors, which
require a comprehensive approach to identify failure factors at the basin level. The search
for a general index that covers the general risks of the LU basin to various aspects of water
resource scarcity and environmental, economic, and social situations will lead to sufficient
knowledge and mastery. Using the ABM model as a basis, farmers’ social interactions and
financial gains from government subsidies could be simulated. The purpose of the FTA was
to set out the sequence of events that could lead to the depletion of water resources in the
LU basin. The findings demonstrated that, at a 95% confidence level, random change, SWS,
subsidy policy, and government supervision and training are the most reliable measures of
farmers’ willingness and participation in adapting to the DTIM. A key factor in raising WP
is government supervision and training. According to the basic event ranking, the main
reasons for failures in the LU basin are low awareness among residents of the basin and
lack of demands from farmers, with failure probabilities of 0.86 and 0.90, respectively. In
the end, the main event had a probability of failure of 0.50. The inadequate social structure
at LU is the main cause of the existing catastrophic situation. The key to maximizing the
use of the LU basin’s water resources is to demand awareness and participation of the
basin residents. Other sub-basins can benefit from an improved situation by mimicking
the fault tree structure of the LU basin. As a suggestion for future direction, the method-
ology used in this study should be extended to other sub-basins of LU over different
periods, considering how productivity and development plans may alter the demonstrated
risk index.
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