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Abstract: Rapid and accurate assessment of fracture permeability is critical for subsurface resource
and energy development as well as rock engineering stability. Fracture permeability deviates from
the classical cubic law under the effect of roughness, geological stress, as well as mining-induced
stress. Conventional laboratory tests and numerical simulations are commonly costly and time-
consuming, whereas the use of a connectivity metric based on percolation theory can quickly predict
fracture permeability, but with relatively low accuracy. For this reason, we selected two static
connectivity metrics with the highest and lowest prediction accuracy in previous studies, respectively,
and proposed to revise and use them for fracture permeability estimation, considering the effect of
isolated large-aperture regions within the fractures under increasing normal stress. Several hundred
fractures with different fractal dimensions and mismatch lengths were numerically generated and
deformed, and their permeability was calculated by the local cubic law (LCL). Based on the dataset, the
connectivity metrics were counted using the revised approach, and the results show that, regardless
of the connectivity metrics, the new model greatly improves the accuracy of permeability prediction
compared to the pre-improved model, by at least 8% for different cutoff aperture thresholds.

Keywords: fracture permeability; connectivity metrics; numerical modeling; percolation theory

1. Introduction

Understanding the flow and transport properties of rock fractures is critical for many
underground projects, such as mining engineering, geothermal energy development, shale
gas exploitation, and carbon dioxide geological storage. In the case of underground
mine engineering, fluids inside the fracture are closely related to ore mining efficiency,
rock stability assessment, and groundwater disaster control [1–3]. In addition, for low
permeable rock reservoirs, fractures, as the main flow channels for subsurface fluids,
determine the efficiency of resource and energy development, as well as the effectiveness of
long-term sequestration of hydrocarbons, carbon dioxide, hydrogen energy, etc. [4–6]. One
of the key parameters describing the flow and transport properties of rock mass is fracture
permeability. Therefore, the estimation of fracture permeability has been a hot research
topic [7–11]. The cubic law, as the most commonly used estimation approach, assumes
that the fracture surfaces are smooth and parallel [8]. However, rock fractures in nature
are composed of rough walls and deformed by stress history, resulting in a decrease in
the fracture mean aperture, an increase in the contact area between their upper and lower
surfaces, and the degree of tortuosity, thus further deviating from the ideal cubic law.

Over the past decades, many scholars have investigated the effect of heterogeneous
geometric surfaces on fracture permeability, mainly including roughness coefficient, contact
area, standard deviation of fracture aperture field, and correlation length [7,10,12–15]. On
the one hand, the cubic law has been correlated, and the fracture permeability can be
directly calculated by incorporating varied geometrical parameters; on the other hand,
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quantified scaling functions such as the relationship between fracture normal stiffness
and fracture permeability has been proposed, as such the fracture permeability can be
indirectly estimated through the normal stiffness, which can be remotely detected with
geophysical methods. However, these studies are mainly based on laboratory experiments
and numerical simulations, which in general are costly and computationally inefficient,
and the results based on a single statistical parameter do not fully reflect the effective
permeability of the heterogeneous fracture aperture field [16]. Therefore, some researchers
have proposed the use of percolation theory to estimate the permeability of heterogeneous
porous media. For instance, different connectivity regimes were determined for three-
dimensional natural fault networks assuming a power law length distribution [17], and
the reservoir permeability and connectivity were evaluated by percolation theory [18].
Compared with the conventional reservoir modeling approach, the computational efficiency
of the percolation theory method was greatly improved. Moreover, this method is closely
related to fracture geometry. For example, the percolation through self-affine surfaces was
found to be controlled by the largest wavelength of the height distribution [19]; a power
law relationship between the heat conductivity and the statistical parameters of the rough
fractures was proposed based on the concept of the percolating cluster [20], and the fracture
permeability was shown as a function of the percolation probability and the fracture contact
area [21]. In addition, the percolation threshold of a three-dimensional binary random field
was shown to be associated with the correlation length and the finite size of the field [22].

The percolation theory divides the study area into permeable and non-permeable
zones, assuming that flow depends on the connectivity of fracture flow paths, which can be
quantitatively described by connectivity metrics. Knudby et al. measured the connectivity
of two-dimensional binary random fields and found that the information on connectivity
can significantly improve the hydraulic behavior close to the percolation threshold [23].
By studying the relationship between connectivity and percolation theory, Hovadik and
Larue defined the types of connectivity of reservoirs, the proposed methods for the mea-
surement of connectivity, and identified the controlling factors of reservoir connectivity [24].
Tyukhova and Willmann showed that based on information on the resistance and geometry
of the connected channel network, the static connectivity metrics can predict effective
flow and transport of heterogeneous fields through comparison with flow simulations [25].
In previous studies, the percolation thresholds on self-affine surfaces were investigated [26],
and the difference between the static and dynamic connectivity metrics for the characteriza-
tion of heterogeneous porous reservoirs was clarified [27]. In detail, the static connectivity
metrics are only related to the connectivity geometrical parameters, such as hydraulic
conductivity or geological structures. In comparison, the dynamic connectivity metrics
are time-dependent and rely on physical processes, like fluid flow and transport. The two
types of connectivity metrics can be linked; however, the relations are extremely complex.
With the above research basis, Javarmand et al. [16] recently successfully applied static con-
nectivity metrics for the first time based on percolation theory to estimate the permeability
of rough deformed fractures. For three commonly used connectivity metrics, the accuracy
of the permeability prediction was 72%, 55%, and 63%, respectively, which needs to be
further improved.

To this end, a new approach by revising the connectivity metrics was proposed in this
study to better characterize the flow properties of the deformed fracture. The idea lies in the
fact that there exist trapped fluid regions within the fracture, especially for fractures under
high normal stress [15,16]. In this case, the connectivity of the fracture must be rechecked
to eliminate or reduce the effects of large isolated aperture areas. For this purpose, we
first numerically generated fractures characterized by different geometrical statistical
parameters (mainly considering the fractal dimension and the mismatch length), and then
obtained the deformed fracture aperture field by progressively applying normal stresses.
Furthermore, by simulating the fracture flow at low Reynolds numbers, we obtained a
fracture permeability dataset. We then analyzed the fracture aperture percolation threshold,
calculated the connectivity metrics of all generated fractures, and corrected them according
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to the potential trapped fluid regions. Finally, we compared the permeability–connectivity
metric models before and after correction.

2. Materials and Methods
2.1. Fracture Aperture Generation

Synthetic fractures were used in this study to generate a large number of fractures
with controllable surface properties. These were implemented by using SynFrac, which
creates two opposing rough fracture surfaces that can well approximate natural rock sur-
faces by taking into account their statistical parameters, roughness, matchedness, and
anisotropy [28–30]. The fracture size is 100 × 100 mm and discretized by 512 × 512 uni-
form square grid cells in the xy-plane. This resolution is lower than the one of acceptable
error [16]. The standard deviation (0.1 mm) remains the same for all fractures, and no
anisotropy was considered. To characterize varying fracture roughness, the fractal di-
mension was set to 2.1–2.5, corresponding to roughness exponent 0.5 to 0.9 for natural
rock surfaces, as commonly observed both in the laboratory and field [31–34]. In SynFrac,
the generated top and bottom surfaces of the fracture will be adjusted until a single contact
point is left [35]. To obtain the same mean aperture for all generated fractures, the fracture
aperture was manually regulated to 0.35 mm. Moreover, by changing the seeds of the
random number generator, namely the Park and Miller pseudo-random number generator,
a series of fractures with the same properties can be created [36].

In addition, the surface matching is crucial to fracture characterization. Previous
studies showed that the geometry of the two opposing fracture surfaces is correlated at long
wavelengths but uncorrelated at short wavelengths in most cases [37–40]. Thus, the length
over which the fracture surfaces are correlated is called the mismatch length, or correlation
length. Several models were implemented in SynFrac to describe the mismatch length, here
the Brown model was used in our study [41] to set the mismatch length to 5 mm, 10 mm,
and 20 mm, referring to commonly observed values [37,38,42,43].

For each generated aperture field, 10 normal stress levels were stepwise applied
to simulate fracture closure under normal stress. The numerical simulations of frac-
ture surface contact were solved by a fast Fourier transform (FFT)-based convolution
approach integrated with the boundary element method (BEM) [44]. In this study, only
elastic deformation was considered since the target is to obtain deformed aperture fields
rather than a real fracture closure process, which may be better described by elastoplas-
tic deformation [11,45,46]. In terms of linear elasticity, the normal closure u(x, y) under
normal stress σ(x, y) is calculated as follows:

u(x, y) = G(x, y) ∗ σ(x, y) (1)

where G(x, y) is the Green’s function, and the symbol ∗ represents the convolution.
For non-period fracture aperture field in this study, the Green’s function can be written

as follows:
G(x, y) = M/π/E∗ (2)

where M is a geometrical parameter, which is related to the coordinates of the calculated
point and the measured resolution of the aperture field; E∗ is the effective elastic modulus,
given by:

E∗ =
1

2(1 − ν2)/E
(3)

In this study, the elastic modulus E and Poisson ratio ν were assumed to be 60 GPa
and 0.25, corresponding to typical mechanical properties of granite [10,11,47]. The initial
normal loading was set to an extremely low value to allow the fracture surfaces to come
into contact (contact area below 0.1%). For all the stress levels, the contact area varies
between 0 and 50% depending mainly on the fractal dimension, forming different flow
channels and, therefore, the connectivity of the aperture fields.
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In total, 450 aperture fields were generated for the purpose of statistics by considering
10 stress levels, 3 fractal dimensions, 3 mismatch lengths, and 5 seeds for each synthetic
fracture. As an example, Figure 1 shows fracture aperture distributions at several normal
stress levels for a fractal dimension of 2.5 and a mismatch length of 20 mm.

Figure 1. Fracture aperture distributions under increasing normal stress. (a) 0.001 MPa; (b) 1 MPa;
(c) 5 MPa; (d) 10 MPa; (e) 20 MPa; (f) 40 MPa.

2.2. Fluid Flow along Fractures

Assuming single phase, fully saturated, steady-state Newtonian fluid flow along the
rock fracture, the governing equation is simplified to the Reynolds equation (i.e., local cubic
law, LCL) from the Navier–Stokes (NS) equation, which can be written as follows:

∇ ·
[

d(x, y)3

12µ
∇P

]
= 0 (4)

where d is fracture local aperture, µ is fluid viscosity, and P is fluid pressure.
In this study, Equation (4) was solved by the open-source software MOOSE/Golem

(https://github.com/topics/moose-framework accessed on 5 February 2024) [48], devel-
oped based on the finite element method (FEM). For boundary conditions, constant pressure
boundaries were applied to the inlet and outlet sides of the fracture (marked in blue in
Figure 2), and no-flow boundaries were imposed on the other sides (marked in red in
Figure 2), which forces the fluid flows in the x-direction in Figure 2. The simulation started
with a zero-pressure field. To ensure a low Reynolds number, a pressure drop of 10 Pa was

https://github.com/topics/moose-framework
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set along the flow direction. Once the pressure field and velocity field inside the fracture
were obtained, the hydraulic aperture dh can be obtained by applying Darcy’s law [49,50]:

dh =

[
12µV̇

(∇P/L)w

]1/3

(5)

where V̇ is the total flow rate, and L and w are fracture lengths along and perpendicular to
the flow direction, respectively.

Finally, the fracture permeability k is calculated as follows:

k = d2
h/12 (6)

Figure 2. Flow boundary conditions and aperture distribution of a generated fracture, the blue curve
indicates the flow traces.

2.3. Percolation Theory and Connectivity Metrics

To describe the connectivity, one of the indicators that can be used is the percolation
theory, which mainly deals with connectivity on an infinite Bernoulli lattice [27]. The perco-
lation theory determines the evolution of the shape and size of clusters as the probability
of site occupancy p. There exists a proportion pc, If p > pc, a unique cluster with infinite
volume occurs with a probability equal to 1. If p < pc, this occurs with probability 0. Such
pc is called the percolation threshold, where pc ̸= 0 and pc ̸= 1 [51]. Figure 3a,b depict
the concept of percolation theory by using a four-neighbor and eight-neighbor algorithm,
respectively. The element A connects with 4 elements (marked in blue) through its edges
for the former case while it connects 7 elements (marked in blue) through both its edges
and nodes for the latter case. Thus, for the same network, 13 clusters were formed when
applying the four-neighbor algorithm (Figure 3c), whereas only 5 clusters were determined
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in terms of the eight-neighbor algorithm (Figure 3d), and a connected path was also created
(cluster 3, from left to right). In this study, the eight-neighbor algorithm was selected to
determine the accumulated cluster of the fracture aperture field as it mimics more realistic
flow patterns [16]. Moreover, as can be seen from Figure 3c,d, the percolation theory
divides the heterogeneous aperture field into a binary field, i.e., a permeable phase and
an impermeable phase. This requires a cutoff aperture threshold in practical application,
and this threshold is the percolation threshold that regulates whether the fracture is open
or closed to flow.

(a) (b)

(c) (d)

Figure 3. Cluster identification for element A using the (a) 4-neighbor algorithm (red box) and (b) 8-
neighbor algorithm (red box with four dots); (c) 13 clusters were identified by using the 4-neighbor
algorithm for a network; (d) 5 clusters were identified by using the 8-neighbor algorithm for the
same network.

To obtain the connectivity or permeability of the aperture field above the percolation
threshold, Javanmard et al. proposed three static connectivity metrics [16]. Here, we
selected two of these metrics that have the highest and lowest probability of predicting
fracture permeability, which were briefly described below.

The first connectivity metric Θ(z) is defined as the probability that two sites belong to
the largest cluster. When p ≤ pc, Θ(z) = 0; when p > pc, 0 < Θ(z) < 1. This indicates that
this connectivity metric will be close to zero for all clusters that are sufficiently small and
will be one for the entire field in the permeable phase.

The second connectivity metric Γ(z) is defined as the probability that a pair of sites
belong to the same cluster. Similar to the connectivity metric Θ(z), Γ(z) will approach
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zero when clusters are small, and it will be one when the whole permeable phase falls into
the same cluster. It can be calculated as the ratio of the number of connected pairs to the
number of all pairs in the permeable phase as follows:

Γ(z) =
1

n2
p

N

∑
i=1

n2
i (7)

where np is the number of sites in the permeable phase, N is the number of clusters, and ni
is the number of sites in cluster i.

The computation of connectivity metrics is based on cluster identification [27]. For Θ,
only the largest cluster was considered, and for Γ, smaller and non-percolating clusters
were also included. However, isolated or unconnected aperture regions of the fracture may
contribute little or nothing to the entire flow field, as indicated by clusters 1, 2, 4, and 5 in
Figure 3d. Therefore, considering these regions in the calculation of connectivity metrics
may bring relatively large errors in describing the physical processes of the fluid flow along
the fracture, in particular when the mean aperture of these regions is large [16]. Therefore,
a coefficient, f , was introduced here to revise the connectivity metrics, and the revised
connectivity metrics can be written as follows:

Θ
′
= f Θ (8)

Γ
′
= f Γ (9)

The coefficient, f , reflects the influence of the trapped regions of a large aperture. When
searching for the clusters, the mean aperture of these trapped regions will be checked,
and for any value larger than a given threshold, i.e., twice the mean aperture of the entire
fracture field in this study, the clusters will be redetermined depending on the number of
clusters with large apertures, and accordingly, the connectivity metrics will be recalculated.

3. Results and Discussions
3.1. Fracture Permeability under Normal Stress from Numerical Simulations

Figure 4 shows the stress-dependent fracture permeability as a function of the me-
chanical aperture in a log-log plot for the fracture dataset. In general, the numerically
obtained permeability (dark blue balls) deviates from the cubic law (dark line), this is mani-
fested by the fact that the calculated fracture permeability is all below the one predicted
by the cubic law at the same mechanical apertures. This is consistent with many previous
studies [8,15,29,49,52].

In addition, we compared several established models to our numerical data and found
that the upper and lower limits can be roughly described by models proposed by [53]
(orange line) and [8] (red line), respectively, as follows:

dh = dm

(
1 − dσ

m
dm

)1/3
(10)

dh =
dm(

1 − 1.5
(

dσ
m

dm

)2
)1/3 (1 − 2Ac) (11)

where dσ
m is the standard deviation of the aperture field, and Ac is the contact area.

The above models used the parameter dσ
m/dm. In between, the relationships between

fracture permeability and mechanical aperture were given by many authors using varying
parameters. For instance, ref. [54] also used the ratio dσ

m/dm for the estimation of fracture
permeability (yellow line); Ref. [55] connected the cubic of the hydraulic and mechanical
apertures by incorporating fracture contact area (cyan line), which was complemented
by [7] (dark green line) by considering the aspect ratio of the ellipse; Ref. [56] (pink line)
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related the dh to dm using the joint roughness coefficient (JRC), indicating the effect of
roughness on the dh − dm relationship; similarly, ref. [57] (purple line) proposed a modified
cubic law by introducing a roughness factor. The predicting accuracy of each method is
presented in Figure 4, ranging from 75% to 88%. Note that these values are averaged and
the curves shown in Figure 4 are compared with only one identical fracture. Although each
study contributes to the permeability–aperture model from different perspectives and each
model possesses its advantages, they were all obtained based on specific conditions and,
therefore, all have certain limitations. Currently, there is no single model that can completely
describe the relationship between fracture permeability and mechanical aperture and, thus,
further exploration, such as advancing the prediction approach of the fracture permeability,
is required.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 01 0 - 1 4

1 0 - 1 3

1 0 - 1 2

1 0 - 1 1

1 0 - 1 0

1 0 - 9

1 0 - 8
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 P h i l l i p s  e t  a l . ,  2 0 2 1  
 B a r t o n  e t  a l . ,  1 9 8 5  ( 7 5 % )
 W i t h e r s p o o n  e t  a l . ,  1 9 8 0  ( 8 3 % )
 Z i m m e r m a n  a n d  B o d v a r s s o n ,  1 9 9 6  ( 8 2 % )

Per
me

abi
lity

 (m
2 )

M e c h a n i c a l  a p e r t u r e  ( m m )
Figure 4. Fracture permeability obtained from the numerical simulations (blue balls) as a function of
mechanical aperture. The data was compared with experimental data ([29]) and several previous
derived models ([7,8,53–57]).

3.2. Percolation Threshold of the Fracture Aperture Field

The percolation threshold was determined in terms of the probability of the permeable
phase, it is the threshold at which no percolating clusters exist just before a given cutoff
aperture threshold. Figure 5a,b show the averaged percolation threshold probability as a
function of the mismatch length and the fractal dimension under increasing normal load,
respectively. In general, the percolation threshold increases with increasing normal load and
decreasing fractal dimension. The results agree with previous studies [16,20], which can be
interpreted as the fact that lower normal loading and a higher fractal dimension generally
correspond to a lower fracture contact area and, therefore, a lower aperture percolation
threshold [20,58]. However, there is no clear relationship between the percolation threshold
and mismatched length, this is due to the fact that the mismatch length only regulates
the scale of the contact and open regions of the fracture and is not directly related to the
topology of the fracture [40,58].
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Figure 5. Percolation threshold of the fracture aperture field as a function of (a) mismatch length and
(b) fractal dimension under increasing normal load.
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3.3. Fracture Permeability and Connectivity Metrics

Based on the percolation theory, previous studies (e.g., [16,25]) proposed a power law
relationship between the fracture permeability and the connectivity metric as follows:

k = aXb (12)

where X represents the connectivity metric (i.e., Θ and Γ in this study), and a, b are constants.
For the cutoff thresholds dc of 0, 10, 20, and 30 µm, we compared the fitting parameters

a, b and R2 from Javanmard et al. [16] and our study, as detailed in Table 1. All the fitted
curves are quite close, with the coefficient of determination R2 around 75% for Θ and 55%
for Γ, both of which are a few percentage points higher than the accuracy of the fit obtained
from Javanmard et al. [16]. For both connectivity metrics, the larger the cutoff threshold,
the higher the fitting accuracy. This is because a larger dc can separate the aperture
field into well-bounded contact and non-contact areas, so that some regions may not
commit to the overall flow, e.g., large open regions [15,54,59], or by being trapped [15,49,60].
Moreover, a non-zero dc provides a more accurate description of the real fracture flow,
though the larger dc should be avoided since it may misidentify the percolating zone as a
non-percolating zone within the fracture [16].

Table 1. Comparison of the fitting parameters using Equation (??) between data from [? ] (D1), our
data from old metrics (D2), and our data from new metrics (D3).

Data dc (µm) Θ Γ

a b R2 a b R2

D1
D2
D3

0
10 × 10−10

1 × 10−9.38

1 × 10−9.29

25.47
26.21
27.15

0.69
0.71
0.79

3 × 10−10

1 × 10−9.18

1 × 10−9.27

220.53
210.57
206.88

0.45
0.50
0.62

D1
D2
D3

10
7 × 10−10

1 × 10−9.26

1 × 10−9.50

7.37
6.71
7.22

0.72
0.74
0.82

2 × 10−10

1 × 10−9.35

1 × 10−9.52

8.32
8.09
8.07

0.36
0.51
0.60

D1
D2
D3

20
6 × 10−10

1 × 10−9.21

1 × 10−9.33

3.70
3.55
3.63

0.70
0.75
0.84

3 × 10−10

1 × 10−9.34

1 × 10−9.02

3.69
3.76
3.89

0.48
0.55
0.67

D1
D2
D3

30
7 × 10−10

1 × 10−8.88

1 × 10−8.91

2.55
2.75
2.86

0.72
0.77
0.87

3 × 10−10

1 × 10−9.14

1 × 10−8.97

2.65
2.63
3.15

0.55
0.58
0.72

For a better comparison, Figure 6a,b show the numerically estimated fracture perme-
ability as a function of the connectivity metric Θ and Γ at the cutoff threshold of 30 µm,
respectively. The fitting lines using Equation (12) were marked in red and compared with
the results obtained from [16] (dark line). For the two connectivity metrics, we obtained
the power law functions to estimate fracture permeability as follows:

k = 1 × 10−8.88Θ2.75 (13)

k = 1 × 10−9.14Γ2.63 (14)

Equations (13) and (14) both yield quite close coefficients of determination R2 as
Javarmand et al., i.e., 0.77 vs. 0.72 for Θ, and 0.58 vs. 0.55 for Γ. Similarly, the connectivity
metric Θ shows a higher accuracy of permeability prediction compared to Γ.
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Figure 6. Fracture permeability as a function of connectivity metrics (a) Θ and (b) Γ; the results
derived from this study and [16] were indicated by red and black lines, respectively.

In this study, we propose to revise the two connectivity metrics as Θ
′
(z) and Γ

′
(z) to

better characterize the flow properties of the deformed fracture. Figure 7a,b show fracture
permeability as a function of the revised connectivity Θ

′
(z) and Γ

′
(z), respectively. Using

the fitting model Equation (12), we obtain the following relationship between fracture
permeability and connectivity metrics for the cutoff threshold of 30 µm:

k = 1 × 10−8.91Θ′2.86 (15)

k = 1 × 10−8.97Γ′3.15 (16)

As shown in Figure 7, we then compare the new models (red lines) with the older
models (Equations (13) and (14), dark lines). There are only small differences between the
predicted fracture permeability, with the largest difference being less than half of an order
of magnitude over the range of connectivity metrics studied. However, all data are more
centralized towards the predictive model under the new connectivity metrics. This results
in a higher coefficient of determination R2. For Θ

′
and Γ

′
, the fitting accuracy improves by
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10 percentage points (from 77% to 87%) as well as 14 percentage points (from 58% to 72%),
respectively. For other cutoff thresholds, the prediction accuracy has also been improved
by at least 8 percentage points for the two metrics, as given in Table ??, demonstrating the
substantial advantages of our new prediction model.
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Figure 7. Fracture permeability as a function of revised connectivity metrics (a) Θ
′

and (b) Γ
′
; the

results based on the revised connectivity metrics and the common connectivity metrics were indicated
by red and dark lines, respectively.

Although both the connectivity metrics have been improved, and the connectivity met-
ric Γ

′
grows to a greater extent than the connectivity metric Θ

′
(with an average growth of

12% vs. 8%), Θ
′

still has a higher permeability prediction accuracy than that of the Γ
′

(aver-
agely about 18%). Notably, the fracture permeability prediction accuracy by the connectivity
metric Θ

′
reaches more than 80%, which is comparable with most common permeability

models obtained with laboratory experiments and numerical modeling ([7,8,29,53–57], see
Figure 4). Moreover, the information required in this study is no more than that of common
numerical modeling, yet presents fast and inexpensive computation [27]. In the future,
three-dimensional or dynamic connectivity metrics can be identified for application to
complex flow and transport processes.
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4. Conclusions

In this study, we improved two common connectivity metrics, Θ and Γ, mainly by
introducing the negative impact of isolated/trapped large aperture regions within fractures.
A database of fracture permeability was constructed by simulating flow along fractures
subjected to stepwise increasing normal stresses. Based on the above work, we evaluated
and compared the accuracy of fracture permeability prediction using improved and non-
improved connectivity metrics. The main conclusions are summarized as follows:

(1) With the increase in normal loading, the fracture permeability deviates from the cubic
law to an increasing degree. For the generated fracture dataset in this study, common
fracture permeability prediction models based on fracture geometrical parameters are
established by laboratory experiments and numerical simulations with an accuracy of
75% to 88%;

(2) The flow percolation threshold is affected by the fractal dimension of the fracture
and the stress variations, independent of the mismatch length, and the connectivity
metrics of the fracture aperture field based on the percolation theory can be quickly
estimated, which is related to the set cutoff aperture threshold;

(3) By fitting a power law model to permeability–connectivity metrics, similar perme-
ability prediction results and accuracy to the previous study are obtained. Using the
improved connectivity metrics, the permeability prediction accuracy is improved by
8 to 15 percentage points for different cutoff aperture thresholds, with a maximum
fitting accuracy of 0.87. In particular, for the connectivity metric Θ

′
, the accuracy

remains almost over 80%, comparable with common previous fracture permeability
prediction models; however, the computation of our approach can be easily achieved,
showing an advantage over previous methods.
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