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Abstract: Distributed hydrological models based on shallow water equations have gained popularity
in recent years for the simulation of storm events, due to their robust and physically based routing
of surface runoff through the whole catchment, including hill slopes and water streams. However,
significant challenges arise in their calibration due to their relatively high computational cost and
the extensive parameter space. This study presents a surrogate-assisted evolutionary algorithm
(SA-EA) for the calibration of a distributed hydrological model based on 2D shallow water equations.
A surrogate model is used to reduce the computational cost of the calibration process by creating
a simulation of the solution space, while an evolutionary algorithm guides the search for suitable
parameter sets within the simulated space. The proposed methodology is evaluated in four rainfall
events located in the northwest of Spain: one synthetic storm and three real storms in the Mandeo
River basin. The results show that the SA-EA accelerates convergence and obtains superior fit values
when compared to a conventional global calibration technique, reducing the execution time by up
to six times and achieving between 98% and 100% accuracy in identifying behavioral parameter
sets after four generations of the SA-EA. The proposed methodology offers an efficient solution for
the calibration of complex hydrological models, delivering improved computational efficiency and
robust performance.

Keywords: surrogate model; evolutionary algorithm; hydrological model; optimization; shallow
water equations

1. Introduction

Hydrological models are mathematical tools that can be employed to simulate the
hydrological response of a watershed to precipitation. They play a crucial role in water
resources engineering, addressing various purposes such as flood forecasting, streamflow
simulation, and water resources management, among others [1,2]. Through the utilization
of computational resources, scientists can execute advanced physics-based simulation codes
to explore phenomena in a controlled environment [3] without the need of conducting
experiments directly on a physical catchment.

Based on the spatial representation of the basin, hydrological models can be classified
into three groups: lumped models, semi-distributed models, and distributed models [4–6].
Lumped models represent the entire watershed as a single unit, with basin-averaged param-
eters and inputs, providing a single output for the entire basin. Semi-distributed models
divide the watershed into a limited number of sub-basins or hydrological response units
(HRUs), considering spatial variability in certain parameters, but still providing aggregated
outputs. Distributed models represent the watershed using a grid or mesh, accounting for
spatial variability in both inputs and parameters, simulating the hydrological processes at
each grid cell or mesh element, and generating outputs at multiple spatial locations.
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According to the guidelines provided by [5], distributed hydrological models can be
classified as physically based, analytical, or empirical, based on their representation of the
movement of water through the basin. Physically based distributed models can be derived
from equations describing the conservation of mass, momentum, and/or energy [4,7,8].
The use of physically based distributed models has become increasingly important due to
their ability to represent the variability of hydrological responses to changes in land use and
climate, as well as to investigate hydrological processes in basins with non-uniform rainfall
and land use conditions [9]. These type of models have been employed in various studies
for runoff forecasting [10,11], climate change impact assessment [12], and water resources
management [13,14], among other applications. However, to obtain reliable results, their
parameters need to be calibrated with observed data.

Parameter calibration involves adjusting the parameters of a numerical model to
improve its representation of the observed variables, in a process that aims to find the
combination of parameters that yields the most accurate predictions [1]. It is achieved by
iteratively modifying the model parameters and evaluating one or more objective functions
that quantify the fitness between the observed and the simulated variables, with the goal
of minimizing the error between these two series. The search for the optimal parameters
is conducted within the parameter space, which represents the range of values that each
model parameter can take [15–17]. An efficient exploration of the parameter space is critical
to the success of the optimization process, but it can be computationally expensive when it
comes to distributed models due to the level of detail of its spatial representation and the
need to solve complex partial differential Equations [18]. To overcome this computational
challenge, many research studies have focused on developing methods to optimize the
model parameters. These methods can be classified into two main categories: local search
methods and global search methods [1].

Local search algorithms, such as gradient descent, are designed to identify local minima
within a parameter space, but they lack the capability to find the global optimum [16,17,19].
On the other hand, global search methods, such as evolutionary algorithms (EAs), utilize
stochastic search mechanisms to overcome this limitation [20,21]. The main disadvan-
tage of these methods is that the number of model runs increases with the number of
parameters, which leads to a slow convergence rate and a high computational cost [22].
The computational cost of both local and global search methods can be reduced by the
assistance of surrogate model-based methods, or meta-modeling methods, which focus
on replacing the original numerical model with a simpler cost-effective surrogate model,
derived from statistical or data-driven approaches. These methods have proven to be highly
effective in reducing the computational cost for tasks such as optimization and sensitivity
analysis [1,23]. Several techniques have been utilized for constructing surrogate models, in-
cluding radial basis (RB) [24–27], least squares support vector machines (LS-SVMs) [18,28],
and artificial neural networks (ANNs) [9,15,29–34].

Nevertheless, a significant number of model runs are required to train the surrogate
model, in order to ensure its accuracy in representing the actual output of the numerical
model. Extracting sufficient data from a distributed model can be time-consuming, as
it involves running the model with a substantial number of non-optimal parameter sets.
Conversely, if the data are insufficient for training the surrogate, it may not achieve proper
generalization, hindering the identification of optimal solutions. Thus, there is ongoing
interest in investigating techniques that simplify the implementation of surrogate models
while minimizing computational time and maximizing model accuracy [1,15,33,35]. In
this regard, the development of new strategies and EAs that are well-suited for exploring
solutions in simulated solution spaces generated with surrogate models could significantly
accelerate the processes of calibrating complex distributed models, extending its range of
application in water resources research and management.

The aim of this study is to develop an SA-EA for the calibration of a physically
based distributed hydrological model based on 2D shallow water equations. By creating a
simulation of the parameter space, the surrogate model aims to reduce the computational
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cost of the calibration, making it possible to perform multiple simulations within this space
with a low computational cost. The EA guides the search for optimal parameter sets within
the simulated space. The calibrated parameters are then used in the real hydrological
model to reproduce observed discharge series in the study catchment. This proposed
methodology seeks a more efficient exploration of the parameter space while maintaining
accurate model performance.

2. Study Area and Data

The proposed methodology was applied in a case study within the Mandeo basin,
situated in the northwest region of Spain (Figure 1). The whole basin spans an area of
353 km2, while the area draining to a gauge station, which is the part of the basin modeled
in this work, measures 248 km2. The main watercourse extends for approximately 50 km
up to the gauge station. The elevation within the catchment fluctuates between 328 m and
810 m above sea level, averaging at around 480 m.

The orientation of the catchment towards the northwest coincides with the most
common direction of low-pressure front arrivals in this Spanish region. Due to its geo-
graphical positioning and steep orographic profile, these low-pressure fronts are uplifted
as they travel through the catchment, thereby enhancing the spatial variability of precipita-
tion [36,37].

Figure 1. Mandeo catchment, including the location of the stream gauge and meteorological stations.

Historical rainfall data with a temporal resolution of 10 min are publicly available
from the monitoring network of the regional meteorological agency, MeteoGalicia (https://
www.meteogalicia.gal/ (accessed on 28 January 2024)). From this meteorological network,
seven rain gauge stations were used to interpolate the precipitation fields over the entire
catchment (Figure 1). The average annual precipitation (Pannual) at the rain gauge stations
ranges from 1000 to 1500 mm (with the exception of one single station), while the average
annual maximum daily precipitation (P24) varies from 55 to 70 mm. The streamflow gauge
station located at the outlet of the study basin (Figure 1) is managed by the regional
water administration (Augas de Galicia) (https://augasdegalicia.xunta.gal/ (accessed on
28 January 2024)), with publicly available 10 min discharge data since 2008.

The proposed methodology was assessed in a synthetic rainfall event and in three
real storm events (Table 1). In the synthetic event, the precipitation at each station was
obtained by adding random perturbations to a synthetic 50-year return period hydrograph
computed with the hydrological model using a random set of input parameters.

https://www.meteogalicia.gal/
https://www.meteogalicia.gal/
https://augasdegalicia.xunta.gal/
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Table 1. Characteristics of the storm events.

Event Start Event Duration (h) Max 1 h Intensity (mm/h) Q Max (m3/s)

E0 - 42 11.3 201.1
E1 5 January 2011 12:00 38 6.1 162.5
E2 13 January 2016 00:00 38 10.7 171.3
E3 15 February 2018 15:00 50 4.1 82.5

3. Distributed Hydrological Model
3.1. Iber

Iber is a numerical model based on the 2D depth-averaged shallow water equations
for the simulation of free surface flow (https://www.iberaula.es/ (accessed on 28 January
2024)). It includes an hydrological module that enables its application to the simulation
of rainfall–runoff transformation and overland flow at the catchment scale [38]. Even if
the solver includes a GPU-enhanced implementation that reduces the computational time
up to two orders of magnitude with respect to the sequential implementation [39], its
computational demand is still high and thus, it is a prime candidate for the use of surrogate
modeling techniques.

The mass and momentum conservation equations solved by Iber are given by:
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where h denotes the water depth; qx, qy, and |q| represent the two components of the
unit discharge and its magnitude, respectively; zb is the bed elevation; n is the Manning
coefficient; g is the gravity acceleration; R is the rainfall intensity; i is the infiltration
rate. The hydrodynamic equations are solved with an unstructured finite volume solver
specifically designed for hydrological applications [38]. The model has been applied
and validated for the simulation of rainfall–runoff at the basin scale in several previous
works [40–42].

In order to generate the computational mesh for solving the hydrodynamic equations,
we have established two distinct maximum element sizes corresponding to the different
components of the terrain: slopes and rivers. The maximum element size for slopes is set
at 100 m, while river channels have a maximum element size of 10 m. The resulting mesh
comprises 200,757 elements in total.

A digital terrain model (DTM) with a resolution of 25 m, obtained from the Spanish
National Geographic Institute (https://centrodedescargas.cnig.es/ (accessed on 28 January
2024)), was used to define the topography. Preliminary simulations shown that this DTM
yields similar results to those generated with a 5 m resolution DTM.

The infiltration rate was calculated with an implementation of the Green-Ampt in-
filtration model [43] that has six parameters that are described in Section 3.2: saturated
hydraulic conductivity, soil suction, soil porosity, initial soil saturation, initial loss, and
soil depth.

https://www.iberaula.es/
https://centrodedescargas.cnig.es/


Water 2024, 16, 652 5 of 24

3.2. Model Parameterization

To establish the parameter space for the calibration process, the study catchment was
divided into distinct zones based on the existing land use types and a plausible range of
variation for the Green-Ampt and roughness parameters was defined.

Land use information was obtained from the Spanish Land Occupation Information
System (SIOSE) (https://www.siose.es/ (accessed on 28 January 2024)), and the land uses
were assigned using the Hierarchical INSPIRE Land Use Classification System (HILUCS)
developed by the Infrastructure for Spatial Information in Europe (INSPIRE) (https://
inspire.ec.europa.eu/ (accessed on 28 January 2024)). Table 2 presents the distribution of
the different land uses in the Mandeo watershed. Natural land areas and agriculture are
the predominant land uses, occupying 58.82% and 36.52% of the watershed, respectively.
To avoid over-parameterization the model was divided into two zones, with the remaining
4.66% of land use added to zone two, as shown in Figure 2.

Table 2. Distribution of land uses in the study catchment.

Land Use %

Natural land areas 58.82
Agriculture 36.52
Forestry 1.92
Residential use 0.76
Transitional areas 0.59
Transport networks 0.45
Abandoned areas 0.16
Secondary production 0.15
Utilities 0.15
Use not known 0.15
Community services 0.14
Mining and quarrying 0.10
Water areas not in other economic use 0.08

Figure 2. Zones considered for the assignation of model parameters.

https://www.siose.es/
https://inspire.ec.europa.eu/
https://inspire.ec.europa.eu/
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Soil type information was retrieved from the SoilGrids (https://soilgrids.org/ (ac-
cessed on 28 January 2024)) platform, which provides global predictions of soil classes and
properties with a spatial resolution of 200 m. The platform includes soil type information at
various depths, and for our study, we integrate this information into the basin for the three
texture components of the soils: clay, sand, and silt, as shown in Figure 3. To determine the
soil type, we followed the classification guide provided by the United States Department of
Agriculture in [44], which involves plotting the values in the texture diagram (Figure 3).
In our study, area, on average the soil texture consists of 15% clay, 43% silt, and 42% sand,
which classifies it as loam. This information was used to determine suitable values for
the parameters of the Green-Ampt infiltration model. We used the values suggested for
loam soil type by [45] to establish a preliminary estimation of the parameter space. We
followed a similar approach to define a range of roughness values based on loam soil type,
as provided by [46,47]. Additionally, we establish the roughness of the river as another
parameter. In total, in this study the numerical model had 15 parameters to be optimized,
which are detailed in Table 3.

Figure 3. Soil type determination following the guidelines provided by [44].

https://soilgrids.org/
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Table 3. Parameter space considered for the calibration of the distributed hydrological model.

Zone Description Symbol Units Min Value Max Value

Zone 1

Soil suction in zone 1. Su1 mm 88 273
Soil porosity in zone 1. Por1 - 0.3 0.5
Initial soil saturation in zone 1. Sat1 - 0.05 0.85
Saturated hydraulic conductivity of the soil in zone 1. Ks1 mm/h 1 4
Initial losses in zone 1. loss1 mm 0.1 10
Depth of soil in zone 1. depth1 m 0.25 10
Manning roughness coefficient for the zone 1. n1 - 0.012 0.18

Zone 2

Soil suction in zone 2. Su2 mm 88 273
Soil porosity in zone 2. Por2 - 0.3 0.5
Initial soil saturation in zone 2. Sat2 - 0.05 0.85
Saturated hydraulic conductivity of the soil in zone 2. Ks2 mm/h 1 4
Initial losses in zone 2. loss2 mm 0.1 10
Depth of soil in zone 2. depth2 m 0.25 10
Manning roughness coefficient for the zone 2. n2 - 0.012 0.18

River Manning roughness coefficient for the river nriver - 0.012 0.18

3.3. Objective Functions

Two objective functions were used to quantify the fitness between the observed and
simulated discharge series: the Nash–Sutcliffe Efficiency (NSE) [48] and the Weighted
Nash–Sutcliffe Efficiency (WNSE) [2]. The NSE coefficient was computed as follows:

NSE = 1− ∑n
i=1(Qobs,i −Qsim,i)

2

∑n
i=1(Qobs,i −Qobs)2

(4)

where n represents the total number of data points; Qobs,i and Qsim,i are the observed and
simulated discharge values at time i, respectively; Qobs stands for the mean of the observed
discharge series.

The WNSE coefficient is a modification of NSE that weights the differences between
observed and simulated discharges according to the magnitude of the observed discharges:

WNSE = 1− ∑n
i=1 wi(Qobs,i −Qsim,i)

2

∑n
i=1 wi(Qobs,i −Qobs)2

(5)

The vector of weights wi for each time step i was calculated as:

wi =
(Qobs,i)

p

∑n
i=1(Qobs,i)

p (6)

where p is an exponent that determines the weighting of high versus low discharge values.
In this study, p = 1 was used to give a higher weight to high flows in the WNSE.

3.4. Uncertainty Assessment

The Generalized Likelihood Uncertainty Estimation (GLUE) approach [49] was applied
to evaluate the predictive capacity of the model by comparing its predictions with the
observed hydrographs for each storm event. The implementation of the GLUE approach
requires to define threshold to identify those parameter sets that result in a good fit with
the observations, the so-called behavioral parameter sets. The GLUE methodology assigns
weights to each behavioral parameter set in order to account for modeling uncertainty.
The weights are typically proportional to the fitness measure. In this study, weights
are designated based on fitness, where a higher fitness results in a greater weight being
attributed to the corresponding parameter set. This scheme ensures that solutions with a
superior fit to the observed data have more influence on the predictions of the model.
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4. Conceptual Framework
4.1. Artificial Neural Networks

Artificial neural networks (ANNs) are computational models that simulate the struc-
ture and function of the human brain through nodes or artificial neurons. These neurons
perform simple computations on the input data and are interconnected in layers, facilitating
complex information processing [50,51].

ANNs can consist of a single hidden layer or multiple hidden layers, with models
build from the latter often referred to as deep learning models. Each layer in an ANN can
be fully connected, meaning each neuron in a layer is connected to every neuron in the
next layer. This comprehensive connectivity allows for the representation of more complex
functions.

For an input matrix X ∈ RN×mx and an output matrix Y ∈ RN×my , where N indicates
the number of data samples, mx denotes the number of input features, and my is the num-
ber of output features, the ANN aims to define a mapping function g(X; W) to predict
the output Y based on the input X. Here, W is the weight matrix of the ANN [51]. The
ANN is trained using a dataset composed of input–output pairs: {(x(1), y(1)), (x(2), y(2)),
. . . , (x(i), y(i)), . . . , (x(N), y(N))}, where x(i) ∈ Rmx and y(i) ∈ Rmy denote the vector repre-
sentation of the ith sample from X and Y, respectively.

The objective during the training phase is to find the optimal set of weights W that
minimize a loss function L(W) [52] that quantifies the difference between the predicted
and actual outputs. The training problem can thus be expressed as:

min
W
L(W) =

N

∑
i=1
L(g(x(i); W), y(i)) (7)

The training process starts with the random initialization of the weight matrix W. An
optimizer, typically based on gradient descent, iteratively adjusts the weights towards
the direction that minimizes the loss. The iterative process continues until the weights
converge to an optimal configuration that yields the smallest loss [52].

For regression problems, a common choice for the loss function is the mean squared
error (MSE). It computes the average of the squared differences between the predicted
outputs, denoted by g(x(i); W), and the actual outputs y(i). The MSE loss function can be
mathematically represented as:

L = MSE =
1
N

N

∑
i=1

(g(x(i); W)− y(i))2 (8)

The operation of the ANN can be conceptually illustrated as shown in Figure 4. The
input data matrix X is fed through multiple interconnected layers of artificial neurons,
ranging from the input layer to hidden layers, and finally to the output layer, thereby
transforming it into the output matrix Y (Figure 4). During the training process, the weights
W within these hidden layers are iteratively adjusted to minimize the mean squared error
(MSE) loss function.

In the context of this work, i.e., the calibration of hydrological models assisted with
surrogate modeling, the input matrix X is composed of parameters from the hydrological
model, while the output matrix Y encapsulates their corresponding fitness values. There-
fore, a properly trained ANN model can act as an efficient predictor of the fitness values y(i)

for a given set of parameters x(i) with significantly less computational time than required
by the original model.
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4.2. Evolutionary Algorithms

Evolutionary algorithms (EAs) are a family of biologically inspired algorithms that are
based on Darwinian evolution theory [21]. They find application across various problem do-
mains, particularly in situations where traditional exploitative or stochastic algorithms face
challenges due to resource limitations, high-dimensional spaces, or complex functionality.
EAs can be effectively utilized for diverse problem types, including parameter optimization
and the generation of new designs or improvements. Popular EAs include simulated an-
nealing [53,54], genetic algorithms [55,56], and shuffled complex Evolution [57,58], among
others [1]. EAs employ synthetic methods such as population management, selection,
replication, and variation to achieve their objectives [20,21].

The population is a collection of potential candidate solutions. This population,
initially generated randomly or by sampling from a feasible solution space, evolves with
each generation. The fitness of a solution, measured using a fitness function, represents
how close that solution is to achieving the desired goal. The selection process identifies
and selects the best-performing members of the population for further progression. This
could be likened to a natural setting, where the fittest individuals are chosen based on
survival of the strongest. The replication process is the creation of a new population based
on the best population members obtained in the selection process. This process usually
entails assigning a probability of replication to the best population members based on
their fitness. The variation process, crucial for introducing diversity within the population,
can manifest in two forms: recombination and mutation. Recombination combines parts
of different individuals to create new population members, akin to genetic crossover in
nature. Mutation, conversely, introduces randomness by randomly altering features of
each population member, reflecting genetic mutations in nature that can result in new
and unique traits. Such processes can lead to the emergence of new individuals created
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4.2. Evolutionary Algorithms

Evolutionary algorithms (EAs) are a family of biologically inspired algorithms that are
based on Darwinian evolution theory [21]. They find application across various problem do-
mains, particularly in situations where traditional exploitative or stochastic algorithms face
challenges due to resource limitations, high-dimensional spaces, or complex functionality.
EAs can be effectively utilized for diverse problem types, including parameter optimization
and the generation of new designs or improvements. Popular EAs include simulated an-
nealing [53,54], genetic algorithms [55,56], and shuffled complex Evolution [57,58], among
others [1]. EAs employ synthetic methods such as population management, selection,
replication, and variation to achieve their objectives [20,21].

The population is a collection of potential candidate solutions. This population,
initially generated randomly or by sampling from a feasible solution space, evolves with
each generation. The fitness of a solution, measured using a fitness function, represents
how close that solution is to achieving the desired goal. The selection process identifies
and selects the best-performing members of the population for further progression. This
could be likened to a natural setting, where the fittest individuals are chosen based on
survival of the strongest. The replication process is the creation of a new population based
on the best population members obtained in the selection process. This process usually
entails assigning a probability of replication to the best population members based on
their fitness. The variation process, crucial for introducing diversity within the population,
can manifest in two forms: recombination and mutation. Recombination combines parts
of different individuals to create new population members, akin to genetic crossover in
nature. Mutation, conversely, introduces randomness by randomly altering features of
each population member, reflecting genetic mutations in nature that can result in new
and unique traits. Such processes can lead to the emergence of new individuals created
randomly, thereby facilitating a more comprehensive exploration of the solution space.
The evolution process refers to repeated cycles of selection, replication, and variation until
a termination criterion is met, such as reaching a satisfactory solution or after a defined
number of generations [20,21,59].
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In the present work, a compact EA for optimization has been developed, in which
the key components are population, fitness, selection, replication, mutation, and evolution.
The initial state of the population is created using the Latin hypercube sampling (LHS)
technique [60,61]. The population is given by X ∈ RN×mx , where N is the number of
individuals in the population and mx is the number of features in the population member.
Then, the fitness of each of the N population members is calculated by means of the fitness
functions defined by the user. This fitness values are stored in the matrix Y ∈ RN×my ,
where my represents the number of fitness functions utilized.

The selection process is carried out by identifying the q best-performing members
of the population, where q ≤ N. Once these members are selected, they are assigned a
selection probability based on a fitness measure, denoted as f it(·), which summarizes
the information on their fitness contained in the matrix Y. The specific fitness measure
f it(·) can vary, depending on both the application of the EA and the number of fitness
functions [15,59,62]. To this end, Equation (9) was applied:

p(i) =
f it(x(i))

∑
q
i=1 f it(x(i))

for i ∈ [1, 2, . . . , q] (9)

where p(i) is the probability of replication of the i− th best population member. Equation (9)
is an adaptation of the artificial bee colony algorithm proposed by [59]. Subsequently,
replication consists of selecting one of the q best members and creating an initial replica
x∗ = x(i) for further mutation. Naturally, members with a higher f it(·) are attributed
a higher replication probability. Then, the mutation process controlled by Equation (10)
is applied:

x∗j =

{
x∗j − α · rand(0, x∗j ) if ϕ = −1,

x∗j + α · rand(0, (1− x∗j )) if ϕ = 1
(10)

where x∗j represents a feature from the vector x∗ that is randomly selected from the range
j ∈ rand[1 . . . mx]. This mutation is controlled by two factors: the mutation rate, α, and the
direction variable, ϕ. As illustrated in Figure 5, when the direction (ϕ) is −1, the selected
feature experiences a reduction proportional to its current value. Conversely, when the
direction is 1, the parameter undergoes an increase proportional to the remaining distance
to 1. It is important to note that the features x∗j are normalized between 0 and 1 within their
range of variation, before applying the mutation given by Equation (10). The magnitude of
the mutation is determined by α, which is a user defined parameter between 0 and 1. A
high value of α promotes substantial mutations and encourages wider exploration of the
solution space. Conversely, a lower value of α encourages small variations, which results
in a more concentrated exploration around the most promising members [20,21,59].

Each time x∗ undergoes a mutation, its fitness measures (y∗) are compared against
those of its original state (x) before mutating in terms of f it(·), with two counters up-
dated accordingly: one for counting improvements (c) in relation to the previous state
of each member, and another for counting the evaluations resulting in deterioration (d)
(Algorithm 1). If f it(x∗) is found to be greater than f it(x), the parameter x(i)j is updated

to its evolved state x∗(i)j . On the other hand, if f it(x∗) is equal to or less than f it(x), the
population member remains unchanged. The evolution of the population members is
finished once one of the stop criteria reaches its limit.
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ϕ ∈ {−1, 1}

ϕ = −1 ϕ = 1

x∗j = x(i)j − α · rand(0, x(i)j ) x∗j = x(i)j + α · rand(0, (1− x(i)j ))

x(i)j x(i)j1 00 1

Search direction Search direction

Figure 5. Schematic representation of the mutation process.

The use of these two counters aims to maintain a balance between exploration and
exploitation during the optimization process, ensuring a more efficient search for optimal
solutions [15,63].

Algorithm 1 Evolutionary algorithm

X = {xi |xi ∼ Uni f orm}N
i=1

▷ Generation of the Initial Population
D = {(xi, yi)|yi = f it(xi)} ▷ Fitness of each Candidate
while Budget left do

Q = {xi if i < q in sort(D|xi > xj if yi > yj)} ▷ Selection of top q best candidates
P = {pi|pi =

yi

∑
q
i=1 yi

and xi ∈ Q}q
i=1 ▷ Assign probability

for i = 1 to GN do
x∗i ∼ Q, P ▷ Replication
c← 0, d← 0 ▷ Initialize counters
while c < climit or d < dlimit do

xm
i ← Mutate(x∗i ) ▷ Use Equation (10)

if f it(xm
i ) > f it(x∗i ) then ▷ Evaluate fit of the mutated members

x∗i ← xm
i

c← c + 1
else

d← d + 1
end if

end while
X← X ∪ x∗i ▷ Update X
D← D∪ (x∗i , f it(x∗i )) ▷ Update D

end for
end while

5. Methodology

Traditional applications of EAs necessitate the calculation of the fitness function for
each population member using the real model. This process can be computationally
demanding, particularly for complex models with numerous input parameters, where
a single model evaluation might take minutes or even hours. This computational load
is mainly due to the sequential nature of the evaluation process, which becomes more
challenging as the number of features and the size of the population increases [15].

To address this computational challenge, the present study incorporates an ANN
to support the EA, aiming to reduce the associated computational cost. To this end, the
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ANN was employed as a surrogate model of the real hydrological model. The population
members correspond to the inputs of the ANN, and their fitness values represent the
outputs of the ANN. This strategy allows for the evaluation of a large number of solutions
with a relatively small computational cost. The SA-EA primarily consists of the steps
delineated in Figure 6. These steps are elaborated across the present section and ultimately
summarized in Algorithm 2.

Figure 6. Scheme of application of the SA-EA.

Algorithm 2 Surrogate-assisted evolutionary algorithm

X = {xi |xi ∼ Uni f orm}N
i=1 ▷ Generation of the Initial Population

D = {(xi, yi)|yi = f it(xi)} ▷ Fitness of each Candidate
G ← 0 ▷ Initialization of the generation counter
while G < NumGen do

M̃← TrainANN(D) ▷ Train a surrogate model
Q = {xi if i < q in sort(D|xi > xj if yi > yj)} ▷ Selection of top q best candidates
P = {pi|pi =

yi

∑
q
i=1 yi

and xi ∈ Q}q
i=1 ▷ Assign probability

for i = 1 to GN do
x∗i ∼ Q, P ▷ Replication
c← 0, d← 0 ▷ Initialize counters
while c < climit or d < dlimit do

xm
i ← Mutate(x∗i ) ▷ Use Equation (10)

if M̃(xm
i ) > M̃(x∗i ) then ▷ Estimate fit of the mutated member using M̃

x∗i ← xm
i

c← c + 1
else

d← d + 1
end if

end while
X← X ∪ x∗i ▷ Update X
D← D∪ (x∗i , f it(x∗i )) ▷ Update D by evaluating x∗i using Iber

end for
G ← G + 1

end while

The initialization process requires the definition of an initial population X ∈ RN×mx ,
where N, is the number of individuals in the population and mx is the number of parameters
of the hydrological model. In our case, the parameters used are those summarized in
Table 3. The initial population was generated using the Latin hypercube sampling (LHS)
technique, and it was employed to run the Iber model described in Section 3.1, resulting in a
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collection of N simulated discharge series. Then, the fitness of the each of the N population
members was calculated using the objective functions described in Section 3.3. This fitness
values were stored in the matrix Y ∈ RN×my , where my represents the number of objective
functions utilized, which in the present case are two: NSE and WNSE.

The training of the ANN as a surrogate model of Iber was carried out using the model
parameters in X and their corresponding fitness measures in Y as input and output data,
respectively. To this end, a cross-validation technique was employed for performance
evaluation. The training set was divided into k folds, with each k separate models trained
on k− 1 folds as the training set and the remaining fold as the validation set. The surrogate
model prediction was computed as the average prediction of the k models [64,65]. The
ANN hyperparameters, such as the number of neurons, activation functions, number of
epochs, and batch size were tuned through trial and error to ensure proper training.

Contrary to a standard application of the EA, where only one member replicates in
each iteration, in the SA-EA version, GN replicas of the q best population members can
be selected to take advantage of the high-throughput capabilities of the ANN. Once the
replication is accomplished, the mutation of the replicated members could start using
Equation (10) for the GN replicas of the best population members.

The fitness of the prospective members is predicted using the trained ANN, yielding
y∗(i). If the fitness of the mutated member surpasses the current fitness, the original
member is replaced by the mutated one, and the improvement counter c is incremented.
Otherwise, the deterioration counter d is incremented. The evolution of a population
member is stopped once one of the counters reaches a limit of climit for improvements or
dlimit for deterioration. This iterative process is repeated until the stopping criterion is
reached for all the GN-replicated members. Subsequently, the numerical model Iber is run
to validate the fitness of the prospective population. Finally, the training set is updated for
the next generation, and the generation counter is incremented (G = G + 1).

Since training an ANN requires a significant amount of data, which can pose a hand-
icap for surrogate modeling applications [35,66], the proposed methodology uses a pro-
gressive approach to for update the training set that consists on increasing its size after
each obtaining each new generation in the SA-EA. Initially, the ANN is trained with a
population of size N and, by the end of each iteration, a new generation (G) of GN new
members is added to the training set. By using this approach, the ANN can be updated with
a population of GN members in each iteration of the SA-EA, leading to a more accurate
ANN as the size of the training set grows, while still utilizing it from the beginning of the
procedure to identify prospective population members. Once the training set is updated,
the counter that tracks the number of generations (G) is increased by 1, and the SA-EA may
start another iteration if the limit of generations (NumGen) has not been reached. The steps
to deploy the proposed methodology are outlined in Algorithm 2.

Experimental Settings

In the following, we detail the experimental setting used in the implementation of
the SA-EA for the specific application of the current study, which have shown the most
stable performance after evaluation of different configurations. Therefore, it is important
to note that they are tailored to this particular study and may not directly translate to
other scenarios.

In the context of hydrological modeling, a population refers to a set of physically based
parameter sets. The fitness refers to the similarity of the observed and simulated discharge
series produced by running the hydrological model with a set of parameters and can be
computed by applying the objective functions, NSE and WNSE, described in Section 3.3.
Selection refers to choosing the parameters that best reproduce the observed hydrographs.
Replication is the process of creating GN replicas of the best parameter sets. Mutation
corresponds to the introduction of random changes to specific model parameters. Finally,
evolution corresponds to the cyclical application of selection, replication, and mutation,
until the objective functions converge to their optimal values.
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Given that this study incorporates two fitness measures (NSE and WNSE), the selection
criterion uses Equation (11) to define the f it(·) function in the selection step:

f it(x(i)) = 0.5 ·NSE(i) + 0.5 ·WNSE(i) for i ∈ [1, 2, . . . , N] (11)

where f it(x(i)) is the average of the NSE and WNSE values of the discharge series generated
by the i-th population member. Subsequently, the best q members of the population, based
on their fitness values, are selected.

The training of the ANN as surrogate model was carried out using TensorFlow [67]
with a cross-validation technique employed for performance evaluation. The training
set was divided into five folds, with five separate models each, trained on four folds
and using the remaining fold as the validation set. In this way, the surrogate model
prediction was computed as the average of the predictions of the five models [64,65].
The ANN hyperparameters were tuned through trial and error, considering between
8 and 32 neurons, activation functions such as hyperbolic tangent and swish [68], and the
Adam [69] optimizer. The number of epochs ranged from 200 to 400. The batch size was
selected between 1, 2, 4, and 8 to ensure proper training. In order to avoid a situation in
which the parameters with large numeric ranges overshadow those with smaller ranges in
our model, the input data X are scaled to [0, 1], using a min–max normalization method [70].
The exprimental settings are summarized in Table 4.

Table 4. Experimental settings of the SA-EA for exploration and exploitation of the simulated
parameter space.

Parameters for SA-EA Symbol Value

Generations counter (initial value) G 1
Number of generations of SA-EA NumGen 4
Number of folds for ANN training k 5
Members of the initial population N 25
Replicated members per generation GN 25
Model parameters mx 15
Objective functions my 2
Best population members q 5
Improvement counter (initial value) c 0
Improvement counter limit climit 25
Deterioration counter (initial value) d 0
Deterioration counter limit dlimit 10
Evolution parameter α 0.25

6. Results and Discussion

In the following, we first examine the effectiveness of the ANN in simulating the solu-
tion space. Next, we evaluate the performance of the SA-EA and the quality of the solutions
identified. We compare the computational cost of the SA-EA approach with a traditional
global optimization method. Lastly, we discuss the outcomes of our calibrated model and
the insights obtained from our investigation within the context of hydrological modeling.

6.1. Artificial-Neural-Network-Based Surrogate Model

In the present study, the ANN is applied to predict the NSE and WNSE associated
with a particular set of parameters. The MSE is then computed by comparing the NSE and
WNSE values provided by the ANN with those obtained from the hydrological model.

Table 5 presents the MSE on the NSE and WNSE obtained in the training and testing
phases of the ANN for the four storm events after each of the generations (G1–G4) of the
EA, while Figure 7 shows the scatter plots of NSE and WNSE during the ANN training
across the different generations. There is a decrease in MSE for each event, indicating an
enhancement in the performance of the model over generation iterations, while rainfall
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event E3 exhibits the highest MSE values across all generations, events E0, E1, and E2
demonstrate lower and comparable values, suggesting varied ANN performance across
the events.

The surrogate model begins to provide acceptable training values (indicating good
fitting) in generations G2–G3, depending on the event (Table 5 and Figure 7). This can be
explained by the fact that, as described in Section 5, generation G1 is obtained using an
ANN that is trained with insufficient data. This leads to a high degree of uncertainty in
the predictive capabilities of the ANN, adding a significant randomness component to the
EA. However, once the solutions of G1 are validated through Iber and added to the dataset,
they contribute with valuable information for the next generations. This information is
related to the zones of the feasible space that do and do not provide an adequate fitness. For
instance, consider a scenario where the EA-ANN provides a plausible solution that is later
validated through Iber and shows a poor fit. This wrong prediction becomes information for
updating the ANN regarding areas of the feasible space where poor solutions are located.
Consequently, the ANN can guide the EA to avoid these unfavorable areas and steer
towards more promising regions of the solution space in each generation. In this context,
the results obtained from each generation can be seen as a proxy for a sampling method
that improves the generalization skills of the ANN in each training iteration (Table 5).

Furthermore, there is an improvement in correlation and fitting in relation to the
identity line with each successive generation (Figure 7). In this regard, E2 and E3 exhibit a
slightly worse correlation and fit than E0 and E1. Figure 7 reveals that the ANN is highly
accurate in the zones where the highest values of NSE and WNSE (>0.90) are located. This
accuracy can be attributed to the data fed to the model in each iteration, which is obtained
by moving the search towards these zones through the EA. Thus, the ANN is highly
accurate in the zones that can provide appropriate solutions for the calibration process.
It is worth noting that a better fit for all feasible solutions could be achieved by training
the model with a larger dataset, but it would significantly increase the computational
time as the distributed model would need to run with parameter sets that do not provide
essential information for the calibration process, as it is discussed later in Section 6.2. The
primary objective of the proposed methodology is to optimize the distributed model while
maintaining low the total computational time. Therefore, achieving a good fit for the high
values through the ANN and the EA is the main concern.

Table 5. MSE values in the training phase of the ANN in each generation.

Event Training Iteration Population Size
NSE WNSE

Training Testing Training Testing

MSE MSE MSE MSE

E0

G1 25 0.007 0.006 0.018 0.016
G2 50 0.005 0.005 0.015 0.013
G3 75 0.004 0.003 0.012 0.010
G4 100 0.002 0.002 0.008 0.006

E1

G1 25 0.020 0.019 0.066 0.066
G2 50 0.003 0.003 0.012 0.010
G3 75 0.003 0.003 0.010 0.009
G4 100 0.004 0.004 0.014 0.012

E2

G1 25 0.017 0.016 0.046 0.041
G2 50 0.007 0.006 0.022 0.017
G3 75 0.006 0.005 0.018 0.014
G4 100 0.004 0.002 0.014 0.008

E3

G1 25 0.128 0.116 0.276 0.251
G2 50 0.068 0.053 0.128 0.101
G3 75 0.055 0.047 0.090 0.074
G4 100 0.042 0.030 0.079 0.053
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Figure 7. Scatter plots of the real vs. predicted fitness values in the training phase of the ANN for
each generation of the SA-EA.

6.2. Parameter Identification with the SA-EA Method

In the initial population, with 25 randomly generated members, the number of mem-
bers that exceed a fit value of 0.9 is lower than or equal to 4 in the four events. The synthetic
event (E0) yielded the highest number of population members with a fitness value above
0.90. In this event, after the first generation all the population members yielded fit values
greater than 0.9, which is probably related to the absence of uncertainty on the observed
data in this particular synthetic case, making the identification of parameters much eas-
ier for the SA-EA. It is interesting to note that, even if the first ANN was trained with a
small-sized training set (just 25 randomly generated members), the EA effectively guided
the search towards parameter values that produce high-fit values (Table 6). Furthermore,
the fit values continue to increase as the number of EA generations increases, as shown in
Figure 8. In this instance, the SA-EA discovered population members with fitness values
greater than 0.90 in 96% of the cases for E1 and 100% for the remaining events.
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In the case of the real events (E1-E3), the identification of suitable population members
remains low in the first generation and moderate in the second generations. However, in the
third and fourth generations almost all the population members achieve fit values higher
than 0.90. This improvement is better shown in Figure 8, which shows that after generation
G1 the goodness of fit obtained with the identified parameters improves considerably. It
is also worth noting that, in most of the cases, the convergence of the SA-EA is achieved
already in generation G3, in which between 90% and 100% of the identified members
provide fitness values over 0.90.

Table 6. Number of population members identified by the SA-EA that presented a f it value > 0.90
after validation with Iber.

E0 E1 E2 E3

Initial population 4/25 0/25 1/25 0/25
G1 25/25 1/25 12/25 3/25
G2 23/25 10/25 25/25 7/25
G3 25/25 25/25 25/25 20/25
G4 25/25 24/25 25/25 25/25

Figure 8. Evolution of the goodness-of-fit through generations (a) E0, (b) E1, (c) E2, and (d) E3.

6.3. CPU Time

The application of the SA-EA shows that, in order to obtain 25 population members
at the end of each generation, the ANN performed the evaluation of 385 to 425 mutations
to the replicated members depending on the event (Table 7). The time taken to complete
all these evaluations was relatively low, with the duration ranging from 40 to 52 s. These
evaluations are distributed among the 25 members of the initial state and are performed at
a lower computational cost due to the parallel behavior of the ANN [15]. For instance, if the
EA was applied without the assistance of the ANN, the real hydrological model would only
be able to evaluate one mutated population member at a time, which includes the inherent
evaluation of population members (i.e., parameter sets) with very poor fitness. When the
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number of model parameters is large and the computational cost of the numerical model is
high (as in the present work), it would take several hours of computational time to identify
only one suitable population member. Consequently, non-assisted evaluations of the EA
become inefficient in the context of complex and computational demanding numerical
models [15,22]. In those cases, a traditional Monte Carlo (MC) method might be a more
appropriate alternative for performing comparisons with the proposed algorithm, as both
methods perform global optimization.

The computation time needed by Iber to validate the 25 best population members
ranged from 1.21 to 1.68 h, depending on the storm event and generation. The findings
suggest that the computation time for evaluation of mutated members with the ANN was
consistent across generations, while the duration of the Iber evaluation varied depending
on the rainfall–runoff event.

Table 7. Performance of the SA-EA for each storm event: Number of evaluations performed with the
ANN, time consumed by the ANN, and time consumed by Iber.

Generation

E0 E1 E2 E3

Evalua-
tions with

ANN

Time (s) Evaluation
with Iber

(h)

Evaluations
with ANN

Time (s) Evaluation
with Iber

(h)

Evaluations
with ANN

Time (s) Evaluation
with Iber

(h)

Evaluations
with ANN

Time (s) Evaluation
with Ibet

(h)

G1 408 52 1.53 394 40 1.42 420 41 1.70 409 46 1.23
G2 425 50 1.53 400 50 1.43 412 41 1.65 424 54 1.22
G3 425 52 1.52 385 40 1.42 401 44 1.62 416 56 1.23
G4 403 50 1.50 347 47 1.41 416 38 1.62 412 49 1.28

Figure 9 shows, for each storm event, the total computation time required by the
SA-EA and the MC approaches to calibrate the Iber model, together with the average fit
value obtained with the 15 best population members (i.e., parameter sets) identified. The
computation times and fit values are shown for the different generations (in the case of
SA-EA) and for different number of MC simulations, in order to show the convergence
rate of both methods. The results indicate that the SA-EA converges much faster than the
Monte Carlo approach. This difference in computational time is explained by the fact that
in the proposed approach the evaluation of poorly fitted members is carried out by the
ANN. The ANN assists the EA in evaluating the quality of potential populations members,
avoiding running the real model with lots of parameter sets that would generate poor fits
to the observed data.

Moreover, in events E0, E1 and E3, the convergence not only occurs faster but also
reaches better fit values than the MC simulations. This demonstrates that the proposed
approach can converge to optimal solutions in cases where global optimization methods
have a slow convergence. In the case of the E2 event, the Monte Carlo simulation with
500 parameter sets reached a slightly higher result than the SA-EA (0.96 vs. 0.95), but the
computational time was 5 times higher. Although the SA-EA would probably outperform
the Monte Carlo method in event E2 by running an additional generation, the difference in
results between the two methods can be considered negligible when compared to the cost
of running another generation (which would take approximately 1.5 h).

6.4. Calibrated Model

The GLUE approach [49] was utilized in this study to evaluate the predictive capacity
of the model by comparing its predictions with the observed hydrographs for each storm
event. Therefore, the behavioral parameter sets were defined from those population
members with f it > 0.90.
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E2 E3

E0 E1

Figure 9. Cumulative computational times for convergence of the SA-EA and MC methods.

Figure 10 shows that the model was able to efficiently reproduce the synthetic and
observed events. In the case of the synthetic event, the fit is nearly perfect, except for
minor variations in certain areas of the hydrograph. This can be explained by the fact
that simulations obtained using the parameter sets identified by the SA-EA method were
averaged based on their fit values. Consequently, small deviations from the synthetic
hydrograph may occur due to consideration of behavioral parameter sets that do not
provide a perfect fit.

Regarding the optimized fitness values (Table 8), the best model performance is
achieved in the synthetic event E0, with NSE and WNSE values of 0.99, aligning with the
simulated hydrograph displayed in Figure 10. This high fitness level is anticipated, given
that the synthetic hydrograph is generated using the hydrological model to evaluate the
effectiveness of the SA-EA approach in a controlled case. In contrast, all the real events
exhibit fitness values exceeding 0.92, indicating a very good model performance in line
with the guidelines suggested by [71].

Table 8. Average fitness obtained in the 4 storm events.

Event NSE WNSE fit

E0 0.99 0.99 0.99
E1 0.92 0.93 0.93
E2 0.94 0.93 0.93
E3 0.93 0.92 0.93

The calibrated parameter values differ from one event to another, since antecedent soil
moisture conditions significantly affect the potential infiltration and the peak discharge
during a storm event, and consequently, the model parameters (Table 9). Previous studies
have reported that, in the study basin, the river discharges generated by storm events that
take place over wet antecedent soil moisture conditions are, on average, three times larger
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than those occurring over normal antecedent moisture conditions. Taking into account the
event-specific soil moisture conditions, or at least the potential interactions between soil
moisture and rainfall intensity, is essential when estimating flood discharges.

It is noteworthy that a majority of the obtained roughness values are higher than those
commonly used in river hydraulics. This is likely due to the presence of various types of
vegetation and microtopography features that are not adequately resolved by the digital
terrain model (DTM). Consequently, the effective roughness coefficient must account for all
these unresolved features. Previous studies have reported Manning numbers significantly
larger than those typically employed in river hydraulics applications, depending on factors
such as vegetative cover, microtopography, rainfall intensity, and water depth [42,72]. These
factors significantly influence calculations involving rainfall–runoff transformation over
rough terrains.

95% C.I 95% C.I

95% C.I 95% C.I

Figure 10. Observed and simulated hydrographs, including the 95% confidence interval estimated
with GLUE.

Table 9. Mean and standard deviation of the behavioral parameter values obtained using the
GLUE approach.

Event Measure Su1 Por1 Sat1 Ks1 loss1 depth1 Su2 Por2 Sat2 Ks2 loss2 depth2 n1 n2 nriver

E0
mean 212.8 0.34 0.49 3.2 7.5 5.6 196.1 0.36 0.76 1.7 8.6 7.4 0.09 0.09 0.05

std 33.6 0.05 0.07 0.4 2.8 1.3 31.6 0.03 0.22 0.3 2.0 0.9 0.04 0.02 0.03

E1
mean 136.5 0.47 0.12 1.2 2.0 4.5 222.5 0.46 0.55 1.3 6.1 6.0 0.04 0.07 0.07

std 9.1 0.01 0.02 0.0 1.0 0.9 19.9 0.01 0.08 0.0 0.3 0.6 0.00 0.00 0.01

E2
mean 189.2 0.40 0.67 1.8 8.5 5.2 157.9 0.37 0.63 1.8 5.4 5.0 0.13 0.07 0.09

std 18.3 0.05 0.14 0.2 1.1 1.2 27.1 0.02 0.10 0.4 1.6 1.6 0.01 0.03 0.01

E3
mean 119.7 0.32 0.61 2.8 6.3 9.6 148.2 0.36 0.76 1.6 8.3 0.4 0.18 0.02 0.16

std 8.5 0.00 0.02 0.2 0.5 0.0 7.7 0.00 0.01 0.1 1.3 0.0 0.00 0.00 0.00
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7. Conclusions

This study aimed to develop an SA-EA for the calibration of distributed hydrological
models based on the 2D shallow water equations. A surrogate model is used to simulate
the solution space, drastically reducing the computational cost of running hundreds of
simulations with the hydrological model, while the EA guides the search for optimal
parameters. Training data for the surrogate model were incrementally collected in order
to minimize data acquisition costs, ultimately enabling an accurate reproduction of the
observed discharge series in the study catchment.

Our findings demonstrate that the SA-EA effectively calibrated the distributed hy-
drological model, while maintaining computational efficiency. The proposed algorithm
was able to predict behavioral parameter sets, reducing execution times by five–six times
compared to traditional global optimization techniques. This confirms its suitability as a
calibration tool for distributed hydrological models.

The accuracy of the ANN in predicting NSE and WNSE improved with each generation
of the EA, as more validated data were incorporated into the training set. The ANN
achieves a high precision in regions with NSE and WNSE values higher than 0.90 for
all the events, which proves its effectiveness in guiding the EA towards suitable regions
of the solution space. For instance, the SA-EA identified parameter sets with fitness
values higher than 0.90, achieving success rates between 90% and 100% by the third
generation, demonstrating its efficiency and effectiveness in the calibration process. The
SA-EA efficiently performs expensive simulations, achieving desired results more quickly
and leveraging the exploration abilities of EAs for such optimization tasks. Without the
SA-EA, these simulations would require solving the 2D-SWE thousands of times, making
the application of the EA unfeasible.

Finally, while the present study has shown promising results, it is crucial to acknowl-
edge other recent optimization methods, such as Bayesian optimization or gradient-based
tools. Future research comparing these approaches with the SA-EA method could offer
valuable insights into their respective strengths and limitations. These alternative methods
require extensive development and evaluation before any meaningful comparison can be
made. Therefore, they were not assessed in the current study, and future research should
concentrate on their evaluation and comparison.

Author Contributions: Conceptualization, J.F.F.-D., A.H., T.D., I.C. and L.C.; methodology, J.F.F.-D.;
software, J.F.F.-D. and A.H.; validation, J.F.F.-D.; investigation, J.F.F.-D.; data curation, J.F.F.-D.;
writing—original draft preparation, J.F.F.-D.; writing—review and editing, J.F.F.-D., A.H. and L.C.;
visualization, J.F.F.-D. and A.H.; supervision, L.C., T.D. and I.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was financially supported by the Galician Government (Xunta de Galicia)
under its pre-doctoral fellowship program (Axudas de apoio á etapa predoutoral 2019 ), Register No

ED481A-2019/014. Additional funding was provided by the INDITEX-UDC 2022 pre-doctoral stay
aid program. The work also received support from the Flemish Government through the ‘Onder-
zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen’ program and the ‘Fonds Wetenschappelijk
Onderzoek (FWO)’.

Data Availability Statement: The meteorological data were obtained from the agency MeteoGalicia.
The discharge data have been provided by the regional water administration, Augas de Galicia. The
scripts and specific events needed to recreate the results and figures of the present study are provided
in the HydroShare repository [73].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, T.; Hsu, K.; Duan, Q.; Sorooshian, S.; Wang, C. Method to estimate optimal parameters. In Handbook of Hydrometeorological

Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2018.
2. Farfán, J.F.; Cea, L. Improving the predictive skills of hydrological models using a combinatorial optimization algorithm and

artificial neural networks. Model. Earth Syst. Environ. 2022, 9, 1103–1118. [CrossRef]

http://doi.org/10.1007/s40808-022-01540-1


Water 2024, 16, 652 22 of 24

3. Wang, G.G.; Shan, S. Review of Metamodeling Techniques in Support of Engineering Design Optimization. In Proceedings
of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Philadelphia, PA, USA, 10–13 September 2006; Volume 4255, pp. 415–426.

4. Mediero Orduña, L.J. Pronóstico Probabilístico de Caudales de Avenida Mediante Redes Bayesianas Aplicadas Sobre un Modelo
Hidrológico Distribuido. Ph.D. Thesis, Caminos, Universidad Politécnica de Madrid, Madrid, Spain, 2007.

5. Kampf, S.K.; Burges, S.J. A framework for classifying and comparing distributed hillslope and catchment hydrologic models.
Water Resour. Res. 2007, 43 , W0542. [CrossRef]

6. Yoosefdoost, I.; Bozorg-Haddad, O.; Singh, V.P.; Chau, K.W. Hydrological Models. In Climate Change in Sustainable Water Resources
Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 283–329.

7. Kavvas, M.; Chen, Z.; Dogrul, C.; Yoon, J.; Ohara, N.; Liang, L.; Aksoy, H.; Anderson, M.; Yoshitani, J.; Fukami, K.; et al. Watershed
environmental hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module. J. Hydrol. Eng. 2004,
9, 450–464. [CrossRef]

8. Zanchetta, A.D.; Coulibaly, P. Hybrid Surrogate Model for Timely Prediction of Flash Flood Inundation Maps Caused by Rapid
River Overflow. Forecasting 2022, 4, 126–148. [CrossRef]

9. Gu, H.; Xu, Y.P.; Ma, D.; Xie, J.; Liu, L.; Bai, Z. A surrogate model for the Variable Infiltration Capacity model using deep learning
artificial neural network. J. Hydrol. 2020, 588, 125019. [CrossRef]

10. Mo, K.C.; Lettenmaier, D.P. Hydrologic prediction over the conterminous United States using the national multi-model ensemble.
J. Hydrometeorol. 2014, 15, 1457–1472. [CrossRef]

11. Schumann, G.P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A.C.; Bates, P.D. A first
large-scale flood inundation forecasting model. Water Resour. Res. 2013, 49, 6248–6257. [CrossRef]

12. Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the
Pearl River Basin in South China in the 21st century. Agric. For. Meteorol. 2018, 249, 149–162. [CrossRef]

13. Sridhar, V.; Ali, S.A.; Lakshmi, V. Assessment and validation of total water storage in the Chesapeake Bay watershed using
GRACE. J. Hydrol. Reg. Stud. 2019, 24, 100607. [CrossRef]

14. Wang, K.; Shi, H.; Chen, J.; Li, T. An improved operation-based reservoir scheme integrated with Variable Infiltration Capacity
model for multiyear and multipurpose reservoirs. J. Hydrol. 2019, 571, 365–375. [CrossRef]

15. Farfán, J.F.; Cea, L. Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological
models. Neural Comput. Appl. 2021, 33, 8479–8494. [CrossRef]

16. Kavetski, D. Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of Hydromete-
orological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2018.

17. Li, Z.; Liu, P.; Deng, C.; Guo, S.; He, P.; Wang, C. Evaluation of estimation of distribution algorithm to calibrate computationally
intensive hydrologic model. J. Hydrol. Eng. 2016, 21, 04016012. [CrossRef]

18. Bermúdez, M.; Cea, L.; Puertas, J. A rapid flood inundation model for hazard mapping based on least squares support vector
machine regression. J. Flood Risk Manag. 2019, 12, e12522. [CrossRef]

19. Madsen, H. Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J. Hydrol. 2000, 235, 276–288.
[CrossRef]

20. Pétrowski, A.; Ben-Hamida, S. Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2017.
21. Sloss, A.N.; Gustafson, S. 2019 evolutionary algorithms review. In Genetic Programming Theory and Practice XVII; Springer:

Singapore, 2020; pp. 307–344.
22. Zhao, J.; Lv, L.; Sun, H. Artificial bee colony using opposition-based learning. In Genetic and Evolutionary Computing; Springer:

Cham, Switzerland, 2015; pp. 3–10.
23. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W0740.

[CrossRef]
24. Mugunthan, P.; Shoemaker, C.A. Assessing the impacts of parameter uncertainty for computationally expensive groundwater

models. Water Resour. Res. 2006, 42 , W10428. [CrossRef]
25. Khu, S. A fast evolutionary-based meta-modelling approach for the calibration of a rainfall–runoff model. In Proceedings of the

1st Biennial Meeting of the International Environmental Modelling and Software Society, iEMSs, Lugano, Switzerland, 24–27 June
2002; Volume 1, pp. 147–152.

26. Shoemaker, C.A.; Regis, R.G.; Fleming, R.C. Watershed calibration using multistart local optimization and evolutionary
optimization with radial basis function approximation. Hydrol. Sci. J. 2007, 52, 450–465. [CrossRef]

27. Sopelana, J.; Cea, L.; Ruano, S. A continuous simulation approach for the estimation of extreme flood inundation in coastal river
reaches affected by meso-and macrotides. Nat. Hazards 2018, 93, 1337–1358. [CrossRef]

28. Zhang, X.; Srinivasan, R.; Van Liew, M. Approximating SWAT model using artificial neural network and support vector machine 1.
JAWRA J. Am. Water Resour. Assoc. 2009, 45, 460–474. [CrossRef]

29. Chu, H.; Wu, W.; Wang, Q.; Nathan, R.; Wei, J. An ANN-based emulation modelling framework for flood inundation modelling:
Application, challenges and future directions. Environ. Model. Softw. 2020, 124, 104587. [CrossRef]

30. Shaw, A.R.; Smith Sawyer, H.; LeBoeuf, E.J.; McDonald, M.P.; Hadjerioua, B. Hydropower Optimization Using Artificial Neural
Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model. Water Resour. Res. 2017, 53, 9444–9461.
[CrossRef]

http://dx.doi.org/10.1029/2006WR005370
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:6(450)
http://dx.doi.org/10.3390/forecast4010007
http://dx.doi.org/10.1016/j.jhydrol.2020.125019
http://dx.doi.org/10.1175/JHM-D-13-0197.1
http://dx.doi.org/10.1002/wrcr.20521
http://dx.doi.org/10.1016/j.agrformet.2017.12.077
http://dx.doi.org/10.1016/j.ejrh.2019.100607
http://dx.doi.org/10.1016/j.jhydrol.2019.02.006
http://dx.doi.org/10.1007/s00521-020-05601-3
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001350
http://dx.doi.org/10.1111/jfr3.12522
http://dx.doi.org/10.1016/S0022-1694(00)00279-1
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.1029/2005WR004640
http://dx.doi.org/10.1623/hysj.52.3.450
http://dx.doi.org/10.1007/s11069-018-3360-6
http://dx.doi.org/10.1111/j.1752-1688.2009.00302.x
http://dx.doi.org/10.1016/j.envsoft.2019.104587
http://dx.doi.org/10.1002/2017WR021039


Water 2024, 16, 652 23 of 24

31. Shrestha, D.; Kayastha, N.; Solomatine, D. A novel approach to parameter uncertainty analysis of hydrological models using
neural networks. Hydrol. Earth Syst. Sci. 2009, 13, 1235–1248. [CrossRef]

32. Liong, S.Y.; Khu, S.T.; Chan, W.T. Derivation of Pareto front with genetic algorithm and neural network. J. Hydrol. Eng. 2001,
6, 52–61. [CrossRef]

33. Yan, X.; Mohammadian, A.; Ao, R.; Liu, J.; Yang, N. Two-dimensional convolutional neural network outperforms other machine
learning architectures for water depth surrogate modeling. J. Hydrol. 2023, 616, 128812. [CrossRef]

34. Wu, M.; Wang, L.; Xu, J.; Wang, Z.; Hu, P.; Tang, H. Multiobjective ensemble surrogate-based optimization algorithm for
groundwater optimization designs. J. Hydrol. 2022, 612, 128159. [CrossRef]

35. Gorissen, D.; Couckuyt, I.; Demeester, P.; Dhaene, T.; Crombecq, K. A surrogate modeling and adaptive sampling toolbox for
computer based design. J. Mach. Learn. Res. 2010, 11, 2051–2055.

36. Liang, J.; Melching, C.S. Experimental evaluation of the effect of storm movement on peak discharge. Int. J. Sediment Res. 2015,
30, 167–177. [CrossRef]

37. Cabalar Fuentes, M. Los temporales de lluvia y viento en Galicia. Propuesta de clasificación y análisis de tendencias (1961–2001).
Investig. Geogr. 2005, nº 36, 103–118. [CrossRef]

38. Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland
flow applications. Water Resour. Res. 2015, 51, 5464–5486. [CrossRef]

39. García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Formella, A. An accelerated tool for flood
modelling based on Iber. Water 2018, 10, 1459. [CrossRef]

40. Cea, L.; Álvarez, M.; Puertas, J. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and
high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). J. Hydrol. Reg. Stud. 2022,
44, 101247. [CrossRef]

41. García-Alén, G.; Hostache, R.; Cea, L.; Puertas, J. Joint assimilation of satellite soil moisture and streamflow data for the
hydrological application of a two-dimensional shallow water model. J. Hydrol. 2023, 621, 129667. [CrossRef]

42. Sanz-Ramos, M.; Bladé, E.; González-Escalona, F.; Olivares, G.; Aragón-Hernández, J.L. Interpreting the manning roughness
coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models. Water 2021, 13, 3433. [CrossRef]

43. Green, W.H.; Ampt, G. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [CrossRef]
44. USDA, N.R.C.S. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; Number 436 in 1; US

Department of Agriculture: Washington, DC, USA, 1975.
45. Maidment, D. Handbook of Hydrology; McGraw-Hill Education: New York, NY, USA, 1993.
46. Te Chow, V.; Maidment, D.R.; Mays, L.W. Applied hydrology. J. Eng. Educ. 1962, 308, 1959.
47. Samuels, P.; Bramley, M.; Evans, E. Reducing uncertainty in conveyance estimation. In Proceedings of the International

Conference on Fluvial Hydraulics (River Flow 2002), Louvain-la-Neuve, Belgium, 4–6 September 2002.
48. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970,

10, 282–290. [CrossRef]
49. Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992,

6, 279–298. [CrossRef]
50. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
51. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
52. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
53. Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 1984, 34, 975–986. [CrossRef]
54. Granville, V.; Krivánek, M.; Rasson, J.P. Simulated annealing: A proof of convergence. IEEE Trans. Pattern Anal. Mach. Intell. 1994,

16, 652–656. [CrossRef]
55. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
56. Wang, Q. The genetic algorithm and its application to calibrating conceptual rainfall–runoff models. Water Resour. Res. 1991,

27, 2467–2471. [CrossRef]
57. Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour.

Res. 1992, 28, 1015–1031. [CrossRef]
58. Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models.

J. Hydrol. 1994, 158, 265–284. [CrossRef]
59. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
60. Audze, P. New approach to planning out of experiments. Probl. Dyn. Strengths 1977, 35, 104–107.
61. McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis

of output from a computer code. Technometrics 2000, 42, 55–61. [CrossRef]
62. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [CrossRef]

http://dx.doi.org/10.5194/hess-13-1235-2009
http://dx.doi.org/10.1061/(ASCE)1084-0699(2001)6:1(52)
http://dx.doi.org/10.1016/j.jhydrol.2022.128812
http://dx.doi.org/10.1016/j.jhydrol.2022.128159
http://dx.doi.org/10.1016/j.ijsrc.2015.03.004
http://dx.doi.org/10.14198/INGEO2005.36.03
http://dx.doi.org/10.1002/2014WR016547
http://dx.doi.org/10.3390/w10101459
http://dx.doi.org/10.1016/j.ejrh.2022.101247
http://dx.doi.org/10.1016/j.jhydrol.2023.129667
http://dx.doi.org/10.3390/w13233433
http://dx.doi.org/10.1017/S0021859600001441
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1109/34.295910
http://dx.doi.org/10.1029/91WR01305
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1016/0022-1694(94)90057-4
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1016/j.amc.2009.03.090


Water 2024, 16, 652 24 of 24

63. Zhao, L.; Hu, Y.; Wang, B.; Jiang, X.; Liu, C.; Zheng, C. A surrogate-assisted evolutionary algorithm based on multi-population
clustering and prediction for solving computationally expensive dynamic optimization problems. Expert Syst. Appl. 2023,
223, 119815. [CrossRef]

64. Espinosa, R.; Jiménez, F.; Palma, J. Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in
regression and classification problems with time series data. Inf. Sci. 2023, 622, 1064–1091. [CrossRef]

65. Wang, H.; Jin, Y.; Sun, C.; Doherty, J. Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE
Trans. Evol. Comput. 2018, 23, 203–216. [CrossRef]

66. Kim, S.H.; Boukouvala, F. Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset
selection for regression techniques. Optim. Lett. 2020, 14, 989–1010. [CrossRef]

67. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.

68. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
69. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
70. Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462.
71. Ritter, A.; Munoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in

goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [CrossRef]
72. Fraga, I.; Cea, L.; Puertas, J. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient

used in distributed urban drainage models. J. Hydrol. 2013, 505, 266–275. [CrossRef]
73. Farfán-Durán, J.F.; Cea, L. Visualizing the Results of the Calibration of the Distributed Hydrological Model Iber+ with the Surrogate-

Assisted Evolutionary Algorithm; HydroShare, 2023. Available online: https://www.hydroshare.org/resource/1a7d73ae3ac04496
9740f985b56d031c/ (accessed on 28 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2023.119815
http://dx.doi.org/10.1016/j.ins.2022.12.004
http://dx.doi.org/10.1109/TEVC.2018.2834881
http://dx.doi.org/10.1007/s11590-019-01428-7
http://dx.doi.org/10.1016/j.jhydrol.2012.12.004
http://dx.doi.org/10.1016/j.jhydrol.2013.10.005
https://www.hydroshare.org/resource/1a7d73ae3ac044969740f985b56d031c/
https://www.hydroshare.org/resource/1a7d73ae3ac044969740f985b56d031c/

	Introduction
	Study Area and Data
	Distributed Hydrological Model
	Iber
	Model Parameterization
	Objective Functions
	Uncertainty Assessment

	Conceptual Framework
	Artificial Neural Networks
	Evolutionary Algorithms

	Methodology
	Results and Discussion
	Artificial-Neural-Network-Based Surrogate Model
	Parameter Identification with the SA-EA Method
	CPU Time
	Calibrated Model

	Conclusions
	References

