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Abstract: Numerical modeling is widely acknowledged as a highly precise method for understanding
the dynamics of contaminant transport in groundwater. However, due to the intricate characteristics of
environmental systems and the lack of accurate information, the results are susceptible to a significant
degree of uncertainty. Numerical models must explicitly consider related uncertainties in parameters
to facilitate robust decision-making. In a Chromium Residue Site located in southern China (the
study area), this study employed Monte Carlo simulation to assess the impact of variability in key
parameters uncertainty on the simulation outcomes. Variogram analysis of response surface (VARS),
global sensitivity analysis, and an XGBoost (version 2.0.0)-based surrogate model was employed to
overcome the substantial computational cost of Monte Carlo simulation. The results of numerical
simulation indicate that the contaminant is spreading downstream towards the northern boundary of
contaminated site near Lianshui River, threatening water quality. Furthermore, migration patterns are
complex due to both downstream convection and upstream diffusion. Sensitivity analysis identified
hydraulic conductivity, recharge rate, and porosity as the most influential model parameters, selected
as key parameters. Moreover, uncertainty analysis indicated that the variability in key parameters has
a minimal impact on the simulation outcomes at monitoring wells near the contaminant source. In
contrast, at wells positioned a considerable distance from the contaminant source, the variability in key
parameters significantly influences the simulation outcomes. The surrogate model markedly mitigated
computational workload and calculation time, while demonstrating superior precision and effectively
capture the non-linear correlations between input and output of the simulation model.

Keywords: numerical modeling; Monte Carlo simulation; VARS; global sensitivity analysis; surrogate
model; uncertainty analysis

1. Introduction

Transport of contaminants through groundwater presents substantial environmental
concerns, resulting in the degradation of freshwater reservoirs and a decline in drinking
water standards. The quantity and quality of freshwater play pivotal roles in shaping the
surrounding ecosystem, notably affecting aquifer integrity [1]. Contaminants commonly
consist of heightened concentrations of substances like heavy metals and toxins, posing
threats to water reservoirs [2]. The rapid industrialization in China has served as a catalyst
for socioeconomic advancement; however, at same time, it has led to the contamination of
groundwater environments with heavy metals [3]. The transport of heavy metals contami-
nants in groundwater is an imperceptible, prolonged, challenging-to-detect, and reversible
phenomenon [4]. Among them, Chromium (Cr) groundwater contamination often stems
from the unregulated disposal of chromium slag and the seepage of leachate from slag piles.
Chromium (Cr) is typically present in trivalent (Cr(III)) and hexavalent (Cr(VI)) states [5],
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in which Cr(VI) poses a significant environmental concern, adversely affecting the ecosys-
tems and water quality [6,7]. Due to its high toxicity [8], mobility, and dissolvability [9],
it poses substantial threats to the prospects of sustainable development [10,11]. Having
recognized the hazardous nature of Cr, the United States Environmental Protection Agency
(US EPA) added it to the priority pollutant list. Therefore, a comprehensive understanding
of the dynamic features governing Cr(VI) contaminant transport is crucial for accurate
contamination assessment, and effective remediation, contributing to the overall goal of
sustainable development.

With advances in computational techniques, numerical simulation of contaminants in
ground waters has become a predominant approach for studying contaminants behavior in
groundwater systems [12,13]. In recent years, several numerical simulations of groundwater
investigations have been conducted to simulate the transport of Cr(VI) contaminant [10,14–17].

The hydrodynamic processes governing the flow of groundwater and the transportation
of contaminants in an aquifer are a very complex, introducing numerous uncertainties in the
numerical modeling outcomes. These uncertainties encompass aspects related to model pa-
rameters [18], the conceptual model [19,20], and observational data and measurements [21,22].
Accurate data for groundwater simulation model parameters are hindered by high testing
costs, measurement errors from non-calibrated devices, and the complex behavior of water
movement in aquifers. Consequently, providing precise values for simulation parameters is
impractical, necessitating the incorporation of a reasonable level of uncertainty [23]. Input
parameter inaccuracies can further impact model outputs, stemming from measurement er-
ror [24]. To enhance model reliability, it is crucial to perform uncertainty analyses on simulation
model parameters to reduce the possible risk in the failure of model [25].

In parameter uncertainty analysis, the preeminent methodologies employed with high-
est frequency encompass sensitivity analysis and the Monte Carlo method [26]. Sensitivity
analysis serves as an essential evaluation technique, providing valuable understanding
into how variations in input factors, such as model parameters, affect model responses [27].
Sensitivity analysis comprises two main approaches: Local and Global sensitivity analy-
sis [28]. Local sensitivity analysis focuses on model sensitivity within a specific parameter
range, while global sensitivity analysis examines sensitivity across the entire parameter
spectrum [29]. Methods for local sensitivity analysis include the one-factor-at-a-time tech-
nique [30] and regional sensitivity analysis [31]. Global sensitivity analysis employs various
approaches, including the derivative-based [32], variance-based [33], and the recently de-
veloped Variogram Analysis of Response Surfaces (VARS) architecture [34,35]. While the
ultimate aim of uncertainty analysis is to explore the full range of potential outcomes
and their associated probabilities, sensitivity analysis only assesses the impact of input
variations on output values [36].

The Monte Carlo method is a commonly employed technique for evaluating model
uncertainty [37]. Monte Carlo simulation proves to be a versatile and straightforward
technique capable of translating the uncertainty associated with model parameters into
corresponding uncertainties in simulation outcomes, making it well-suited for assessing
uncertainties in multivariable models [38]. In the context of uncertainty analysis, Monte
Carlo method necessitates running the numerical model multiple times, leading to signifi-
cant time consumption, especially when dealing with a complex model directly invoked.
The surrogate model serves as an approximation of the simulation model, mitigating com-
putational burdens and reducing processing time without compromising accuracy [39].
The surrogate model emulates the functionality of the simulation model and attempts to
approximate the inherent association between groundwater parameters and contaminants
distribution, all accomplished with a minimal computational load [40].

In recent years, several surrogate model approaches have been suggested to approx-
imate simulation models for uncertainty analysis, such as Polynomial Chaos Expansion
(PCE); Gaussian Process Emulation (GPE) [41]; Gaussian processes [42]; Kriging [26,43,44];
Radial Basis Function (RBF) [45]; Support Vector Regression (SVR) [46]; Artificial Neural
Network (ANN) [47]; Multi-gene Genetic programming (MGGP) [48]; Kernel Extreme
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Learning Machine (KELM) [49]; a hybrid approach using the Multilevel Monte Carlo
method (MLMC); a graph convolutional neural network and a feed-forward neural net-
work [50]; and a Deep Belief Neural Network (DBNN) [51]. While earlier studies have
demonstrated certain achievements, the application of surrogate models encounters chal-
lenges related to scalability and accuracy, particularly in scenarios where contaminant-
related associations exhibits pronounced non-linearity or high dimensionality [52]. Ensem-
ble learning surrogate models integrate various surrogate models to generate a compre-
hensive prediction, allowing for the compensation of errors from individual surrogates
by utilizing the collective knowledge of the ensemble [53]. Extreme Gradient Boosting
(XGBoost) is an illustrative ensemble learning model that integrates the predictive results of
individual decision trees to address regression tasks, demonstrating significant potential in the
domain of surrogate modeling [54]. However, the significantly increasing computational costs
due to the introduction of multiple surrogate models is the major concerns in applying ensem-
ble learning surrogate models to groundwater contaminant transport modeling. Additionally,
there has been limited attention in existing research on global sensitivity analysis, primarily
focusing on local sensitivity analysis methods. This limits valuable understanding into how
variations in input model parameters affect model responses.

Our study presents a novel and robust Variogram-based Global Sensitivity Analysis
(VARS) to identify the most influencing parameters on the model output, as key parameters.
Additionally, we proposed an XGBoost surrogate model to reduce the computational cost
of Monte Carlo simulation. The Monte Carlo simulation was employed to assess the impact
of variability in key parameters uncertainty on the results of groundwater contaminant
transport model. The Chromium Residue Site located in southern China was chosen as the
study area. This research addresses the following challenges: (1) Application of numerical
modeling to simulate and analyze the behavior of contaminated site in the context of
groundwater contaminant transport; (2) VARS sensitivity analysis to comprehensively
assess the impact of input parameter variations on model outputs; and (3) Uncertainty
analysis utilizing the proposed XGBoost surrogate model to approximate the outcomes of
the groundwater contaminant transport model, facilitating a more computationally efficient
analysis of parameter uncertainties.

2. Materials and Methods
2.1. Overview of Study Area

This paper examines a chromium-contaminated urban site that was previously opera-
tional ferroalloy refinery, situated in a South China as illustrated in Figure 1. The plant was
constructed in 1958, officially started production in 1962, shutdown all factory operation
in 2006, and it was completely dismantled in 2010. The Ferroalloy plant, occupying an
area of around 590,141 m2, primarily produced metal chromium, carbon-manganese and
pig iron. The production process involved utilization of raw materials such as silicon,
manganese, chromium, and iron. The ferroalloy plant, situated in close proximity to Lian-
shui river, consistently produced chromium metals for over five decades, resulting in a
substantial accumulation of chromium-bearing slags and tailings during this historical
timeframe. Improper storage in open yard near the plant has led to leachate from rainfall
induced slag infiltration, causing soil and groundwater pollution.

Based on geological drilling data obtained from the geological investigation, the region
is characterized by a heterogeneous composition, including miscellaneous fill, silty clay,
medium sandsilt-round gravel, weathered mudstone, and moderately weathered mudstone.
The miscellaneous fill exhibits high porosity, contrasting with the aquiclude nature of the
silty clay layer, which has limited water permeability. The primary confined aquifer is
represented by the medium sandsilt-round gravel layer, featuring moderate porosity, while
the less permeable mudstone layer forms the base.

A technical roadmap of the proposed methodology is illustrated in Figure 2. A concep-
tual model was developed from the conversion of the 3D geological model pre-processes to
match the input format for the Groundwater Modeling System (GMS). Numerical model of
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Cr(VI) contaminant transport constructed in groundwater for analyzing the spatial and
temporal changes of Cr(VI) contaminant, based on calibrated groundwater flow model.
However, in numerical models, the presence of uncertainty associated with hydrogeological
parameters is frequently inherent, challenging to ascertain, and contributes to uncertainty in
the outcomes. Therefore, the VARS sensitivity analysis method was employed to determine
the highly sensitive parameters within the system, subsequently utilized as the key input
parameters. Latin hypercube sampling was applied within the probability distribution and
range of values of key parameters to generate the input datasets. Then, a groundwater
Cr(VI) contaminant transport numerical model was used to generate input–output dataset.
An XGBoost surrogate model of groundwater Cr(VI) contaminant transport numerical
model was established according to the input–output dataset. The surrogate model was
built to reduce the computational burden caused by frequent invoking of the simulation
model, thereby enhancing overall computational efficiency. Based on the surrogate model,
the Monte Carlo simulation was used to evaluate the uncertainty caused by variability in
key parameters and their impact on the output of numerical model.
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2.2. Numerical Modeling

Numerical modeling is a robust tool for assessing, simulating, and predicting the move-
ment of contaminants in groundwater flow systems. This process involves the following
steps [10]: (1) development of conceptual model, (2) development and calibration of ground-
water flow simulation model, and (3) Cr(VI) contaminant transport simulation model.

In this paper, the simulation of groundwater flow and contaminant transport was con-
ducted using the MODFLOW-2005 and MT3DMS modules integrated within the Ground-
water Modeling System (GMS) software (version 10.6) [55]. A calibrated MODFLOW model
was utilized for the MT3DMS model. Furthermore, to acquire a comprehensive insight of
Cr(VI) transportation during the simulation and for further studies, eight monitoring wells
were used to observe the Cr(VI) transportation (Figure 3).
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2.2.1. Conceptual Model

Previous studies [56,57] confirm the practicality of extracting hydrogeological model
surfaces from GOCAD software (version 2017) geological model in either TIN or ASCII
format for integration into Visual MODFLOW or GMS. A three-dimensional model of the
study area (Figure 4) developed through a systematic process: (1) construction of a geologi-
cal model using GOCAD’s structural and stratigraphic workflow, incorporating data from
30 boreholes, (2) preservation of corrected strata in ‘ASCII’ point files, and (3) application
of the Inverse Distance Weighting (IDW) method in GMS for the interpolation of ‘ASCII’
point files. For conceptual model development, a finite-difference grid has been employed
as a solving framework. The study area is discretized and modeled into finite difference
cell-centered grid of 100 rows and 90 columns, ensuring that each cell maintains a size of
5 m (Figure 4). The modeled domain consisted of 45,000 cells, of which 22,325 were active
cells and 22,675 were inactive cells.

In the numeric simulation, we exclusively focused on sandsilt-round gravel layer.
This layer contains the confined pore water and is treated as the confined aquifer. Other
layers, at the top and bottom of the sandsilt-round gravel layer, are characterized by low
permeability and are regarded as unconfined aquicludes. Taking into account that there
is no natural boundary at the study area, the study area was defined by the Wuming and
Lianshui Rivers in the northwest and southeast, respectively, serving as the constant head
boundaries in their respective regions (Figure 3). As the aquifer possessed a specific depth
of embedment, the impact of evaporation was disregarded [14]. Groundwater in the area
mainly receives recharge from rainfall and surface water, and the flow direction is from
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northwest to southeast to the Lianshui River. According to the hydrological survey for the
site, the head is 51 m at northwest and 47 m at southeast boundaries.
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2.2.2. Numerical Simulation Model

Groundwater flow models determine hydraulic heads and thereby velocities within
an aquifer. This information is then incorporated into a transport model to simulate the
migration of contaminants carried by the groundwater [58]. Governing partial differential
equation for three-dimensional groundwater flow in saturated porous media is based on
Darcy’s Law can be written as Ref. [59]:
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(1)

where, kx, ky, kz denote the hydraulic conductivities in x, y, and z dimensions, respectively;
h denotes the hydraulic head; w represents the sink/source; Ss is coefficient of specific
storage, and t represents the time.

A contaminant transport model serves as a simplified representation of geochemical
conceptual model, focusing on the predicting the concentration of a dissolved chemical,
such as Cr(VI), in an aquifer at a given location and time. This simplification is achieved
through dynamics equation describing convection-dispersion of contaminant transport in
three dimensions, including internal sources or sinks, can be written as [60]:

∂C
∂t

=
∂

∂xi

(
Dij

∂C
∂xj

)
− ∂

∂xi
(qiC) +

qs

θ
C′, (2)

where Dij is the dispersion coefficient, qi is the Darcy speed, C is concentration, θ denotes
effective porosity, C’ represents source or sink concentration, and qs represents the source
or sink flow rate per unit volume.

We use the dynamic models formulated in Equations (1) and (2) to simulate the
groundwater contaminant transport process. The dynamic model was solved using GMS
software (version 10.6). During the simulation, boundary conditions outlined in Figure 3
were applied, and the initial concentration for contaminant transportation was determined
based on the concentrations measured in 2017, as described in Figure 5 [61]. Additionally,
a constant concentration of 120 mg/L was hypothetically applied to the contaminant
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sources based on the observations from wells in close proximity to these sources. No
adsorption processes were assumed in the model for Cr(VI) contaminant transport, and
thus, the Cr(VI) can be considered as a conservative specie. The contaminant transport
model was simulated over the period from 2017 to 2020. All parameters, including the
calibrated hydraulic conductivity, as well as other parameter values of the confined aquifer
(i.e., medium sandsilt-round gravel layer) input to the numeric simulation, along with their
respective reasonable ranges [49], have been summarized in Table 1.
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Table 1. Values and ranges of parameters of medium sandsilt-round gravel confined aquifer.

Parameters Values Ranges

Hydraulic Conductivity (m/s) 5.32 × 10−5 4.25 × 10−5–6.38 × 10−5

Recharge Rate (m/s) 4.3 × 10−9 3.49 × 10−9–5.25 × 10−9

Specific Storage (m−1) 1.0 × 10−4 8.0 × 10−5–1.2 × 10−4

Specific Yield 0.20 0.16–0.24
Porosity 0.40 0.32–0.48

Longitudinal Dispersivity (m) 13 10.4–15.6

2.3. Variogram-Based Global Sensitivity Analysis (VARS)

In 2016, Razavi and Gupta [34,35] proposed a novel approach for a global sensitivity
analysis called Variogram Analysis of Response Surfaces (VARS), which builds upon the
Variogram concept. Variograms prove to be robust tools for describing the spatial or
spatiotemporal framework and variance of a target variable, such as a model response
across various perturbation scales in multi-parametric space [62]. Through the modeling
of spatial variation in the variogram, VARS establishes the two types of global sensitivity
approaches (GSA), variance-based [33] and derivative-based [32], making it significantly
efficient than these two most widely-used GSA methods, while still producing nearly
consistent results [34,35]. In addition, compared to other popular techniques like Morris [32]
or Sobol [33], VARS offers much more efficient GSA with a considerably lower number of
model evaluations [63].

VARS analysis characterizes the spatial variance and interrelation of the model out-
put within a domain delineated by a set of various parameters. Let’s consider a scenario
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where the model output, Z, this is a function dependent on n parameters y1, y2, . . . , yn.
Let y = {y1, · · · , yn} denote the position within the n-dimensional parameter space.
p = {p1, p2 · · · , pn} be the distance vector between any two points in the parameter space.
The multidimensional variogram γ(p) can be computed under intrinsic stationary assumptions as:

γ(p) =
1
2

Var(Z(y + p)− Z(y)) =
1
2

E
(
(Z(y + p)− Z(y))2

)
(3)

When the variogram is computed along dimension (parameter), such that pj = 0 for
all i ̸= j, the resulting variogram is one dimensional, known as a directional. Directional
variograms focus on the distance between pairs of points along specific parameter directions
rather than their locations in the parameter space.

Directional variograms serve as the foundational elements of VARS and describe the
sensitivity of model output to each parameter across a comprehensive range of perturbation
scales, denoted by pi. Integrated Variogram Across a Range of Scales (IVARS), a unique
sensitivity index can be calculated by integration of variograms for the ith parameter up to a
designated perturbation scale of concern Pi (e.g., 10%, 30% or 50% of the parameter range):

Γ(Pi) =
∫ Pi

0
γ(pi)dpi (4)

The γ(pi) value indicates how the sensitive of model output is to parameter i at
any specific ranges pi. IVARS50 (Pi = 50% of the parameter range) is known as total
variogram effect and can be regarded as the most inclusive index within the VARS structure
to evaluating global sensitivity of a response surface to each respective parameter.

A novel and robust “star-based” sampling approach, denoted as STAR-VARS has
been developed for the VARS numerically implementation, enhancing computational
efficiency [35]. First, a sampling technique such as the Latin Hypercube or Progressive
Latin Hypercube [64] is used to choose N star centers from the parameter space. Next,
equidistant points, or ‘stars,’ are created along each parameter dimension for each star
center. These stars are employed in computing sensitivity metrices like IVARS, based on a
defined resolution (∆p). The total number of sample (computational cost) associated with
implementation of STAR-VARS is calculated using Equation (5).

Total number o f sample = N
[

D
(
(

1
∆p

)− 1
)
+ 1
]

, (5)

where N, D, and ∆p represent the number of star centers, respectively, the number of input
parameters, and perturbation resolution (that is minimum space between pairs of point
within the parameter space).

In our study, we utilized a comprehensive version of the recently developed VARS-tool
package in Python to implement the STAR-VARS. Our experimental setup of VARS involves
following steps:

(1) The parameters listed in Table 1 were selected for sensitivity analysis. A ±20% variation
range was set for each sensitive parameter.

(2) A total 300 random sample points are created by employing a star-based sampling method
within defined parameter ranges. The sampling attributes utilized in STAR-VARS are
detailed in Table 2.

(3) Generated random sample points were input into the numeric simulation model. The
numeric simulation model outputs concentrations of the Cr(VI) contaminant at three
test points. The locations of three test points are illustrated in Figure 3.

(4) The output concentrations of the Cr(VI) contaminant were then processed further in
the VARS model. Specifically, the IVARS-50 index was executed to calculate a set of
sensitivity indices for each test point.
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Table 2. Sampling attributes for STAR-VARS.

Number
of Stars Sampling Resolution (∆p) Perturbation

Resolution Sampler Bootstrap Size Confidence
Interval (%)

5 0.1 0.1, 0.3, 0.5 Latin Hypercube 1000 90

2.4. Surrogate Model Based on Extreme Gradient Boosting

Chen and Guestrin [65] introduced Extreme Gradient Boosting (XGBoost) in 2016 as
an advanced ensemble learning algorithm within the boosting framework. Its foundation
in decision tree methodology enhances predictive modeling capabilities. Boosting algo-
rithms construct base estimators to correct errors, fostering strong interdependence. In
contrast, bagging creates independent base estimators for diversity. The strong correlation
in boosting reflects cooperative model improvement [65]. Unlike the gradient boosting struc-
ture, XGBoost regularizes the loss function within the objective function. This regularization
contributes to smoother learning weights and reduces the risk of overfitting [66]. XGBoost
algorithm iteratively refines the model’s structure and parameters using an objective function,
contributing to enhanced predictive accuracy [67].

This approach uses an ensemble of trees to predict the results, relying on total num-
ber of M trees in the ensemble denoted as E1(xi, yi), . . . EM(xi, yi), where xi denotes the
feature values associated with sample i, and yi signifies the actual value of the sample for
prediction; E is the space of trees in the ensemble. The final prediction ŷi for a given sample
is determined by the cumulative sum of predictions generated by each individual tree,
expressed mathematically:

ŷi =
M

∑
m=1

fm(xi), fm ∈ E (6)

Within provided dataset, fm corresponds to an independent tree. The leaf weights
wp represent the values associated with each leaf node p in the regression trees, where
p ∈ {1, 2, 3 . . . , P} and P is the entire number of leaves on the M tree. The objective function
can be specifically described as:

Obj(Θ) =
n

∑
i=1

l(yi, ŷi) + γP +
1
2

λ
P

∑
p=1

w2
p (7)

where l(yi, ŷi) denotes the loss function which measure the difference between predicted ŷi
and actual yi values; n is total number of samples in dataset used to train or evaluate the
model. Gamma (γ) and lambda (λ) in the objective function contribute to the regularization
of model, with γ controlling the tree structure and λ penalizing the magnitude of the

weights. The regularization terms (γP + 1
2 λ

P
∑

p=1
w2

p) prevent models from becoming overly

complex and fitting the training data too precisely, thereby enhancing the model’s ability to
generalize well to new, unseen data and avoiding overfitting.

In the training phase of XGBoost, the construction of tree structures occurs in a
sequentially. The creation of a new tree is influenced by the predictive outcome of the
preceding tree, leading to adjustments in the residuals within the predicted values. The
Equation (8) defines optimum weight ω*

p for a specific leaf p in a fixed tree structure.

ω*
p = −

∑i∈Ip gi

∑i∈Ip hi + λ
(8)

where terms gi = ∂ŷ(d−1) l
(

yi, ŷ(d−1)
i

)
, hi = ∂2

ŷ(d−1) l
(

yi, ŷ(d−1)
i

)
are the first and second-order

derivatives of the loss function during the dth iteration. With determined optimum leaf
weight ω*

p, the optimal objective function can be formulated as:
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obj(Θ)∗ = −1
2

P

∑
p=1

(
∑i∈Ip gi

)2

∑i∈Ip hi + λ
+ γP (9)

The Surrogate model is a black box which effectively captures the non-linear corre-
lations between input and output of the simulation model. The surrogate model reduces
computational workload and calculation time. Thus, XGBoost surrogate model is imple-
mented to alleviate the computational burden caused by frequent invoking of the simulation
model, thereby enhancing overall computational efficiency. We further developed Random
Forest (RF) [68] surrogate model in order to compare the performance of XGBoost surrogate
model. Random forest is an ensemble learning method wherein numerous decision trees
are constructed with limited interdependencies, which has been used to establish surrogate
model for uncertainty analysis in groundwater numerical simulation and has achieved
good results [69]. The surrogate model building involves following steps:

(1) Key parameters were selected through VARS sensitivity analysis, treated as stochas-
tic variables to assess the influence of uncertainty related to these parameters on
simulation outcomes.

(2) Key parameters were sampled based on their probability distributions and range
of values using Latin hypercube sampling (LHS) method [70] to generate 140 in-
put datasets (various combinations of the three key parameters). The values of the
remaining model parameters were kept constant with previous adjustments.

(3) These datasets were input into the simulation model. The simulation model was resolved
using GMS software to produce corresponding output datasets (Cr(VI) contaminant
concentrations observed in 8 monitoring wells), forming Input-output dataset.

(4) Two methods (XGBoost and RF) were employed to build the surrogate model. The
input and output datasets were partitioned, allocating 75% for training the model
and reserving 25% for validating the accuracy of the surrogate model. This study
employed python programming language (version 3.11.5) and the XGBoost library
(version 2.0.0), as well as scikit-learn library for Random Forests (version 1.3.0).

(5) To craft optimal surrogate model architectures, hyperparameters were carefully se-
lected to address overfitting during training, thereby enhancing the accuracy of the
model (Table 3). The lower and upper values used for these hyperparameter are
shown in Table 3. In this study, Optuna Hyperparameter Optimization (OHPO) [71]
was employed to automatically fine-tune the hyperparameters of the surrogate model.

Evaluating the prediction accuracy and efficiency of the surrogate model is essential,
as inaccurate models can squander resources and impair optimization, predictions, and
feasibility analysis [72]. In this study, the evaluation of surrogate model accuracy in ap-
proximating the simulation model involves the use of key metrics, namely the coefficient of
determination (R2), mean relative error (MRE), mean-squared error (MSE), and root mean-
squared error (RMSE). These metrics, essential for assessing performance, are computed in
the following manner:

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳi)

2 (10)

MRE =
∑n

i=1 |(yi − ŷi)/yi|
n

× 100 (11)

MSE =
∑n

i=1 (yi − ŷi)
2

n
(12)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(13)

where n represents number of samples, yi, and ŷi denote outcomes of the simulation model
and predictions of the surrogate model for the ith sample, respectively. ȳi is the mean of
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n simulation model results. R² values range from 0 to 1, with 0 indicating that the surrogate
model does not explain any variability in the actual values, and 1 indicating the surrogate
model explains all the variability in the actual values. A lower MRE, MSE, and RMSE
indicate better accuracy, while a higher MRE, MSE, and RMSE suggest larger discrepancies
between predicted and actual values. Especially, an MRE of 1 suggests that, on average, the
predictions are off by the same magnitude as the actual values. Overall, R² value and MRE
can provide a reference of standard metric values for the evaluation of surrogate model.
The surrogate model achieves higher accuracy with R² values approaching 1 and smaller
MRE, MSE, and RMSE values.

Table 3. Optimized hyperparameters generated by Optuna hyperparameter optimization.

Surrogate Model Hyperparameter Description Lower Value Upper Value

XGBoost

n_estimators Total Number of boosting trees 50 1000
max_depth Maximum tree depth 1.0 10

learning_rate Boosting rate 0.01 0.2
gamma Tree growth control 1.0−5 1.0

reg_lambda L2 regularization term weight 1.0−5 1.0
reg_alpha L1 regularization term weight 1.0−5 1.0
subsample Random sampling fraction 0.5 1.0

colsample_bytree Feature selection fraction 0.5 1.0
scale_pos_weight Class imbalance correction factor 1.0 10.0

RF
n_estimators Total number of trees in forest 50 1000
max_depth Maximum tree depth 1.0 10

2.5. Monte Carlo Simulation

Based on statistical probability theory, the Monte Carlo simulation is the most widely
employed technique for analyzing the uncertainty resulting from complicated mathematical
models [73]. The Monte Carlo simulation is characterized by its conceptual simplicity,
versatility across various applications, and its unique capability to thoroughly quantify the
uncertainties associated with model outputs [74]. Monte Carlo simulation is divided into
the following steps [60]:

(1) Determine the random/key parameters by means of sensitivity analysis.
(2) Generation of randomly samples using Latin hypercube sampling method within the

feasible region of key parameters.
(3) Run a simulation model for each sample dataset to extract the corresponding model output.
(4) After the completion of all simulations, the construction of a histogram of all sim-

ulation results for the uncertain quantity of interest. From the frequency plot, the
probability at any level can be estimated. The mean, variance, confidence limit, and
other statistical parameters can also be determined.

3. Results and Discussion

We carried out experiments to validate the efficiency of the proposed method. The
experiments were conducted on an ordinary PC equipped with an Intel Core i7-6700
processor (3.4 GHz, 8 GB RAM) on a 64-bit Windows 10 system.

3.1. Numerical Simulation of Flow Field and Cr(VI) Contaminant Transport

Figure 6 illustrates the east-to-west flow of groundwater within the study area. Hy-
draulic head is higher in the northwest and lower in the southeast, by the topography of
the area. Groundwater primarily flows laterally towards the Lianshui River, exhibiting a
gradual decline in vertical hydraulic gradient. The depth of the groundwater flow is 15 m
according to the depth of impermeable based layer (i.e., moderately weathered mudstone)
of aquifer. The water head values presented in Figure 6 are indicative of the water table
within the aquifer system. The aquifer, in this case, is deemed as having a simple and
singular structure [11].
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Observation data acquired from ten groundwater level monitoring wells in 2019
(Figure 6) was used to calibrate the numeric groundwater model. The results in Figure 7
of the calibration process indicate a high alignment between the simulated and observed
hydraulic heads (Figure 7a), with a significant correlation coefficient of 0.973 within the
study. Residual analysis indicates a low residual between simulated and observed hydraulic
heads, with a mean residual of 0.0023, a mean absolute residual of 0.14, and a root mean
squared residual of 0.17. These values fall within allowable range. Figure 7b shows the
comparison between simulated and observed hydraulic heads across ten monitoring wells.
Both lines exhibit similar trend, indicating that simulation closely matches the observed
hydraulic heads. This calibration results shows a good fit between the simulated and
observed hydraulic heads.
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The spatial and temporal changes in Cr(VI) over 6, 12, 18, 24, 30, and 36 months are
illustrated in Figure 8. As illustrated in Figure 8a–f, the contamination area for Cr(VI)
progressively expanded with increasing simulation time under natural conditions. Addi-
tionally, the movement of the Cr(VI) contaminant plume consistently followed the direction
of groundwater flow. Over the 36-month simulation period, the Cr(VI) pollution plume
at the contaminated site continuously spread towards the northern boundary of contam-
inated site near Lianshui River. Consequently, a lot of attention has been drawn to the
water quality. The concentration variation of Cr(VI) in the monitoring wells, presented in
Figure 9, illustrates a progressive increase in Cr(VI) contaminant concentration within the
groundwater across all monitoring wells (O1 to O8). The concentration curves of each well
indicate a consistent rise in Cr(VI) levels over the 36-month period. While the concentration
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in each well shows a distinct upward pattern, contamination of groundwater near the
affected site and downstream areas of the Lianshui River, as highlighted by monitoring
wells O3, O5, O6, and O7, posed a significant threat due to elevated levels of Cr(VI).
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The above results indicate that hexavalent chromium (Cr(VI)) primarily moves down-
stream due to convection (fluid flow). However, there is also diffusion of Cr(VI) occurring
in the upstream direction, creating a more complex migration pattern in the system. In fact,
the movement and behavior of hexavalent chromium (Cr(VI)) in groundwater highlight the
influence of two factors: hydraulic gradients and concentration gradients [11]. Areas with high
gradients of hydraulic heads facilitate rapid downstream movement, while high concentration
gradients drive convection from areas of high concentration to areas of low concentration.
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As the contaminant plume continuously expands and the area of high concentration
regions gradually increases due to the migration of Cr(VI), it is necessary to set remediation
facilities, such as pumping wells and permeable reactive barriers (PRBS), in the downstream
location of the site to effectively reduce the risk of chromium pollution in the downstream area.

3.2. Sensitivity Analysis
3.2.1. Directional Variograms

Figure 10 presents in the directional variograms of hydraulic conductivity, recharge,
and porosity. The results distinctly illustrated that hydraulic conductivity, recharge, and
porosity have the most substantial influence on the numeric simulation model output (Cr(VI)
contaminant concentrations observed at three testing points at the end of simulation period).
Conversely, the remaining parameters exhibit lower sensitivity. Moreover, it is essential to
recognize that the sensitivity is influenced by the perturbation scale. Parameters display
intricate sensitivity when subjected to a greater magnitude of variations across the perturbation
scale, and conversely, sensitivity decreases with smaller magnitude. Parameters characterized
by less sensitivity exhibited constrained variability in variograms over the perturbation scale,
indicating their comparatively minor influence on the model outputs.
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3.2.2. Sensitivity Index IVARS-50

The VARS-based most comprehensive sensitivity index IVARS-50, called ‘Total-Variogram
Effect’ is selected. The results of analysis are shown in Figure 11. The parameters are ordered
by parameter sensitivity. Overall, hydraulic conductivity, recharge, and porosity are the most
influential parameters, followed by longitudinal dispersivity. The remaining parameters have
minimal effect on the model outputs.

Given the IVARS-50 in Figure 11, hydraulic conductivity (K), recharge (R), and porosity (n)
were identified as key parameters to assess the impact of uncertainty on the model’s predictions.

The Variogram-based global sensitivity results e.g., directional variogram and sensi-
tivity index IVARS-50 at three different locations of test points show that the substantial
influence of hydraulic conductivity, recharge, and porosity on numerical simulation model
output (i.e., Cr(VI) concentration), as well as minimal effect of longitudinal dispersivity,
specific storage, and specific yield on the Cr(VI) concentration migration.

Hydraulic conductivity plays a direct role in shaping the convective movement of
contaminants by affecting pore-fluid velocity. Higher hydraulic conductivity facilitates
faster contaminant movement, thereby significantly impacting groundwater transport
and resulting in higher contaminant concentrations. Recharge rates significantly influence
contaminant concentration by cyclically introducing contaminants into groundwater during
water table fluctuations and surface infiltration. Thus, variations in recharge rate directly
impact contaminant influx and concentration. Porosity directly impacts the groundwater
transport in two key ways: by influencing seepage velocity, which governs convective
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transport, and by determining the volume of void space available to store groundwater and
contaminants. Variations in porosity can lead to changes in the distribution and retention
of contaminants, affecting their transport behavior and ultimately impacting contaminant
concentration levels in groundwater.
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Conversely, longitudinal dispersity, specific storage, and specific yield have a rel-
atively lower sensitivity in influencing contaminant transport. Longitudinal dispersity,
although relevant for characterizing the dispersion of contaminants, has minimal influence
on contaminant migration. This is attributed to the fact that contaminant dispersion in
groundwater, when contrasted with the dominant influence of contaminant convection, is
evidently inconsequential. Specific storage and specific yield play a crucial role in regu-
lating groundwater flow dynamics by managing the storage and release of water within
the aquifer. However, their impact on contaminant transport, particularly in terms of
concentration, may be overshadowed by other parameters such as hydraulic conductivity,
recharge, and porosity.

Combining the results in Figures 10 and 11, it is seen that, in proximity to the con-
taminant source’s location, the magnitude of variations across the perturbation scale and
sensitivity index of IVARS-50 is comparatively lower. Conversely, at test points situated
farther from the contaminant sources, the magnitude of variations across the perturbation
scale and sensitivity index of IVARS-50 exhibits a gradual increase. This phenomenon
reflects to the inherent uncertainty associated with the model parameters.

3.3. Evaluation and Comparative Analysis of Surrogate Model Performances

We construct surrogate models for uncertainty estimation of simulation models. To
construct robust surrogate models, a total of 300 trials were conducted for hyperparameter
optimization using OHPO to systematically explore and search for the optimal combination
of hyperparameters [75]. The number of trials are determined by the convergence of
searched hyperparameters. As we will see in the results in Section 3.4, this number of
trails are enough to build reliable surrogate model within the scope of our study. The
MSE, and R2 were chosen as metrics to assess the accuracy of the model during the
hyperparameter optimization process. The regularization parameters such as reg_lambda
and reg_alpha, are chosen through OHPO, to minimize MSE and maximize the R2 for
XGBoost surrogate model. Figure 12 shows the variation of MSE, and R2 during the
hyperparameter tuning with the OHPO. The optimal hyperparameters for the model,
characterized by the minimum MSE value and a high R2 were identified at the 201st and
265th trial of XGBoost and RF, respectively. The enhancement in performance for XGBoost
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surrogate model with (OHPO) approach is notably more substantial compared to the
improvement observed in the RF surrogate model.
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Table 4 provides a summary of the optimal hyperparameter values identified through OHPO.

Table 4. Optimal hyperparameter values captured by Optuna hyperparameter optimization.

Surrogate Model Hyperparameter Optimal Value

XGBoost

n_estimators 984
max_depth 2.00

learning_rate 0.069
gamma 0.012

reg_lambda 0.929
reg_alpha 0.105
subsample 0.584

colsample_bytree 0.872
scale_pos_weight 2.877

RF n_estimators 318
max_depth 2.00

The results of accuracy evaluation metrics for the surrogate models have been pre-
sented in Table 5. Figure 13 illustrates the fitting curves results, comparing the output of the
XGBoost and Random Forest surrogate models with the output of the simulation model. In
addition, we conducted a comparison of the accuracy metrics (R2, MSE, RMSE, and MRE)
for surrogate models based on individual monitoring wells. The findings are illustrated
in Figure 14, indicating a superior performance of the XGBoost surrogate model over the
RF surrogate model. Specifically, the R2, MSE, RMSE, and MRE (%) values of surrogate
models developed for seventh and eighth Cr(VI) contaminant concentration monitoring
wells exceeded those of other monitoring wells. This variation can be attributed to the
uncertainty in contaminant concentration output.

The above results indicate that the XGBoost surrogate model achieved the highest
level of accuracy. Hence, due to its superior accuracy, the XGBoost surrogate model has the
potential to serve as a replacement for the simulation model in uncertainty analysis.
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Table 5. Comparison of accuracy of surrogate models.

Surrogate
Model R2 Mean Relative

Error (%) MSE RMSE

XGBoost 0.976 1.554 0.475 0.689
RF 0.934 2.711 1.238 1.113
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3.4. Uncertainty Analysis of Groundwater Contaminant Transport

We used the XGBoost as the surrogate model to carry out uncertainty analysis to our
simulation model. In GMS 10.6 software, solving the simulation model took about 50 s. The
1000 runs of simulation model for uncertainty analysis took 13.8 h. The surrogate model
was established through 140 runs of the simulation model, taking 1.94 h. Employing the
surrogate model in the Monte Carlo simulation reduced the calculation time by 85.94%,
taking only 4 s.

Utilizing the simulation and surrogate models introduced earlier, we generated
1000 datasets through the application of the Latin Hypercube sampling method. This
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sampling was conducted within the parameter values’ range identified by global sensi-
tivity analysis in the model. The outcomes of the sampling were input into the trained
surrogate model to conduct a Monte Carlo simulation. Subsequently, the statistical analysis
of the Cr(VI) concentration in the output from individual monitoring wells was performed
using SPSS software (version 22). Frequency histograms of Cr(VI) concentration in each
monitoring well are shown in Figure 15.
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Figure 15a,b,d demonstrate that the uncertainty resulting from variability in key
parameters had a lesser impact on wells O1, O2, and O4, which were in close proximity to
the contaminant source. In contrast, Figure 15g,h indicate a significant impact on wells O8,
and O7, positioned at a considerable distance from the contaminant source.

In uncertainty analysis, standard deviation plays a crucial role in quantifying the uncer-
tainty or variability associated with a set of measurements, observations, or model predictions.
Results of standard deviation are presented in Table 6. A higher standard deviation implies
greater dispersion in the outputs, signifying increased uncertainty. Owing to the stochastic
nature of key parameters, the Cr(VI) concentration in each well exhibited significant variations.
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Table 6. Statistical summary of concentration output values for contaminant in monitoring wells.

Well Number Maximum Value Minimum Value Mean Value Standard Deviation

O1 22.62 16.58 20.28 1.15
O2 38.99 29.70 35.11 1.76
O3 109.75 92.48 101.09 3.49
O4 6.74 4.11 5.51 0.56
O5 84.97 70.83 79.27 2.93
O6 105.93 89.36 99.46 3.29
O7 82.72 28.35 56.90 11.53
O8 36.14 1.04 14.12 6.87

Among the monitoring wells, O4, O1, and O2 exhibited the least discreteness in their
outputs, while O7 and O8 displayed the highest discreteness. This suggests that the later
wells were more significantly influenced by the variability of the key parameters.

In the SPSS software, we also calculated the confidence intervals for Cr(VI) ion con-
centrations in each well at confidence levels of 60% and 90%. In the context of uncertainty
analysis, confidence intervals are useful for conveying the precision or uncertainty associ-
ated with estimates, predictions, or model outcomes. The width of the confidence interval
reflects the level of uncertainty: a wider interval suggests greater uncertainty, while a
narrower interval implies more precision in the estimate.

As shown in Table 7, well O7 exhibited the widest confidence interval among all
considered wells for the identical confidence level. At a confidence level of 90%, the
confidence interval for well O7 ranged from 56.31 to 57.51 mg/L, highlighting its heightened
susceptibility to uncertainty in the three key parameters. Conversely, the confidence
interval for O4 was the smallest, indicating that it is less susceptible to uncertainty in these key
parameters. Thus, the confidence interval results indicate that as the confidence level increases,
the interval range also increases; conversely, as the confidence level decreases, the interval
range diminishes, resulting in a more concentrated distribution around the mean.

Table 7. Interval estimation for each contaminant monitoring well.

Monitoring
Wells

Confidence
Level (%)

Confidence
Interval (mg/L)

Confidence
Level (%)

Confidence
Interval (mg/L)

O1 90 20.22–20.34 60 20.25–20.31
O2 90 35.01–35.20 60 35.06–35.15
O3 90 100.91–101.27 60 101.00–101.18
O4 90 5.48–5.54 60 5.49–5.53
O5 90 79.12–79.42 60 79.19–79.35
O6 90 99.29–99.63 60 99.37–99.55
O7 90 56.31–57.51 60 56.59–57.21
O8 90 13.77–14.48 60 13.94–14.31

In summary, the uncertainty analysis shows how the variability of key parameters
affect the simulation results. This helps us to figure out the best ways to improve simulation
accuracy for ensuring the reliability of our model’s predictions.

This study’s findings suggest the critical need to strategically place repair measures,
like implementing a Permeable Reactive Barrier (PRB) and Pumping Wells, to reduce the
Cr(VI) contamination downstream. Wells closer to the contamination source show less
variability, indicating that they are less influenced by key parameters. Hence, prioritizing
remediation efforts near the source, specifically at monitoring wells O1, O2, and O4, is
crucial. Installing PRBs at these locations holds significant promise in intercepting and
treating the contaminant plume. Continuous monitoring of these wells is vital to assess the
effectiveness of the remediation interventions.

Given the wider confidence intervals observed in monitoring wells positioned farther
from the contamination source, such as O7, addressing simulation uncertainties becomes
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crucial, particularly focusing on PRB placement. Uncertainty in PRB placement could
greatly impact its effectiveness in intercepting and treating the contaminant plume. There-
fore, reducing simulation uncertainties, particularly regarding PRB deployment, is essential
to ensure the precision and reliability of remediation strategies targeting Cr(VI) contamina-
tion reduction. This, in turn, effectively protects groundwater quality and public health.

4. Conclusions

In this study, we propose a Variogram-based Global Sensitivity Analysis (VARS) to
identify the most influential parameters affecting the numeric simulation model output,
serving as key parameters. Based on these key parameters, an XGBoost surrogate model
was established for approximating the inherent association between groundwater param-
eters and contaminants distribution. This approach aimed to reduce the computational
burden of Monte Carlo simulation for uncertainty analysis while maintaining the accuracy
of the model predictions.

The following conclusions can be made:

(1) Through global sensitivity analysis, hydraulic conductivity (K), recharge (R), and
porosity (n) were identified as the key parameters to conduct the comprehensive
evaluation of uncertainty’s impact on numeric simulation model results. Sensitivity
analysis serves a dual purpose by diminishing the input dimensions of the surrogate
model, thereby enhancing its precision, and providing guidance for the investigation
of contaminated site.

(2) During the uncertainty analysis, an XGBoost-based surrogate model not only effec-
tively captured the non-linear correlations between input and output of the numeric
simulation model, but also markedly mitigated computational workload and calcula-
tion time. Using an XGBoost-based surrogate model, instead of directly calling the
numeric simulation model leads to an 85.94% reduction in computation time, making
the Monte Carlo simulation with this surrogate model viable and efficient.

(3) Utilizing the Monte Carlo simulation to consider the impact of random variations of
key parameters on the numeric simulation model, results showed how later wells
were influenced by the variability in the key parameters, which provided insights for
improving the accuracy of groundwater simulation.

(4) The Numeric Simulation model illustrated that the movement of the Cr(VI) contami-
nant plume is toward downstream. In order to effectively reduce the risk of chromium
pollution in the downstream area, some pollution remediation measures such as PRB
and pumping wells are suggested be set in the downstream location of the site.

In future studies, we’ll develop Auto Machine Learning (ML) method to automate model
selection and hyperparameter optimization in machine learning engineering, reducing human
intervention and saving time in the process of simulation. However, the current simulation
lacks validation against independently measured values of concentrations, emphasizing the
need for a rigorous validation step. Such validation is indispensable for ensuring the reliability
and accuracy of our model’s predictions by benchmarking them against real-world data.
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