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Abstract: Accurately predicting hydrological runoff is crucial for water resource allocation and power
station scheduling. However, there is no perfect model that can accurately predict future runoff. In this
paper, a daily runoff prediction method with a seasonal decomposition-based-deep gated-recurrent-
unit (GRU) method (SD-GRU) is proposed. The raw data is preprocessed and then decomposed into
trend, seasonal, and residual components using the seasonal decomposition algorithm. The deep GRU
model is then used to predict each subcomponent, which is then integrated into the final prediction
results. In particular, the hyperparameter optimization algorithm of tree-structured parzen estimators
(TPE) is used to optimize the model. Moreover, this paper introduces the single machine learning
model (including multiple linear regression (MLR), back propagation (BP), long short-term memory
neural network (LSTM) and gate recurrent unit (GRU)) and a combination model (including seasonal
decomposition–back propagation (SD-BP), seasonal decomposition–multiple linear regression (SD-
MLR), along with seasonal decomposition–long-and-short-term-memory neural network (SD-LSTM),
which are used as comparison models to verify the excellent prediction performance of the proposed
model. Finally, a case study of the Qingjiang Shuibuya test set, which considers the period 1 January
2019 to 31 December 2019, is conducted. Case studies of the Qingjiang River show the proposed
model outperformed the other models in prediction performance. The model achieved a mean
absolute error (MAE) index of 38.5, a Nash-Sutcliffe efficiency (NSE) index of 0.93, and a coefficient
of determination (R2) index of 0.7. In addition, compared to the comparison model, the NSE index of
the proposed model increased by 19.2%, 19.2%, 16.3%, 16.3%, 2.2%, 2.2%, and 1.1%, when compared
to BP, MLR, LSTM, GRU, SD-BP, SD-MLR, SD-LSTM, and SD-GRU, respectively. This research can
provide an essential reference for the study of daily runoff prediction models.

Keywords: runoff prediction; seasonal decomposition; machine learning; gated recurrent unit;
hyperparameter optimization

1. Introduction

Hydrological runoff forecasting is an important area of research that aims to accurately
predict runoff, and can greatly improve the effectiveness of integrated watershed manage-
ment for relevant departments. In the last few decades, numerous researchers have made
significant progress in runoff prediction. Hydrological runoff forecasting can be divided
into two categories: traditional physical models (such as the SHE model [1], Xin’anjiang
model [2,3], and SWAT model [4] and data-driven models such as the autoregressive mov-
ing average model (ARMA) [5–7], multiple linear regression (MLR) [8,9], artificial neural
networks (ANN) [10,11], and others [12,13].
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There has been significant progress in using AI algorithms for hydrological forecasting
in recent years. For instance, He [14] proposed a model that uses Bayesian model averaging
with multiple machine learning models to predict medium-term streamflow. This model
was tested on the Three Gorges Reservoir and demonstrated good prediction performance,
proving its accuracy. Similarly, Niu [15] proposed a new streamflow prediction model
with ELM-QPSO that combines the quantum particle swarm optimization (QPSO) and
limit learning machine (ELM). In addition, Dai [16] proposed improving the accuracy
of hydrological prediction by using an LSTM-seq2seq model for short-term water level
prediction. Furthermore, Wu [17] used data-driven models, such as the long-short term
memory (LSTM), gated recurrent unit models (GRU), support vector machine (SVM), and
multi-layer perceptron (MLP), to predict GWL. The dynamic prediction case study of GWL
in the Hebei Plain shows that the GRU model performs the best.

Forecasting reservoir inflow accurately is increasingly challenging due to the unpre-
dictable nature of factors such as climate change and runoff. To overcome this, a combi-
nation forecasting method has been developed, which merges signal processing methods
with deep learning techniques. For example, Qi [18] proposed a decomposition-ensemble
learning model based on the long short-term memory neural network (DEL-LSTM) for daily
reservoir inflow forecasting. The proposed DEL-LSTM model outperforms other represen-
tative models in terms of prediction accuracy. Yousefi [19] proposed a framework called
causal multivariate empirical mode decomposition (CED), using it as a pre-processing step
to complement a day-ahead inflow forecasting problem. Li [20] developed a hybrid model
of adaptive variational mode decomposition (VMD) and bidirectional–long- and-short-
term memory (Bi-LSTM), which was based on energy entropy for daily inflow forecast.
The application of the models shows that the proposed model is superior to the other
contrast models.

The data-driven prediction model has produced numerous research results in related
fields. Grid load forecasting, similar to runoff prediction, can be studied by using the
data-driven model. The field of power grid load forecasting has produced extensive
research results on the deterministic and uncertain interval forecasting of power grid
loads. For deterministic forecasting, He [21] proposed a hybrid model for short-term load
forecasting based on variational mode decomposition (VMD) and long-short-term-memory
network (LSTM). Wood [22] utilized long-short-term memory recurrent networks, applying
empirical mode decomposition for feature engineering, and k-means clustering for outlier
detection in load forecasting. Wang [23] developed an online algorithm called singular
value thresholding (SVT), which efficiently recovers missing information by utilizing the
approximate low-rank property of load data matrices. Additionally, a combinatorial deep
learning method was developed that employs a multi-layer perception (MLP) neural
network and a long short-term memory (LSTM) neural network with gated recurrent unit
(GRU) to handle short-term and ultra-short-term load forecasting, respectively. Numerical
experiments conducted on real-world load data from North China confirm the effectiveness
of the proposed methodology. In addressing uncertainty forecast, He [24] proposed a
new method for short-term load probability density forecasting, which can forecast the
load curve for the next 24 h. This hybrid method uses a decomposition-based quantile
regression forest. The simulation results have shown that the model’s prediction results
are well-matched with the actual load curve. Moreover, the VMD method used in this
hybrid method has significant advantages in time series decomposition. More research
has shown that using decomposition algorithms, neural networks, and other methods for
data-driven model research is effective [25–30]. Similarly, in the field of wind and solar
power prediction, numerous research has been based on data-driven methods. For instance,
More [31] proposed a wind speed forecasting algorithm that uses deep learning (DL), and
specifically recurrent neural networks (RNNs). A case study was conducted on time series
data from windmills in the northeast of the U.S, and the research results indicated that
the proposed DL-based forecasting algorithm significantly improved short-term forecasts,
compared to widely used benchmark models. Sun [32] proposed a specialized CNN
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“SUNSET” to predict 15-min ahead PV output. And the case study indicates that the method
has a good prediction effect. Numerous related studies have shown the effectiveness of
combining data-driven models with neural networks and other advanced methods, and
provide good reference values for the research ideas proposed in this paper.

The main contributions of this paper include: (1) This article proposed a daily runoff
prediction method with a seasonal decomposition-based deep gated recurrent unit (GRU)
method (SD-GRU). The proposed hybrid method is based on decomposition and can be
applied to various types of runoff time series data. (2) The model first preprocesses the raw
data and then uses the seasonal decomposition algorithm to decompose the runoff series
into trend, seasonal, and residual components. The deep GRU model is then used to predict
each sub-component, which is then integrated into the final prediction results. (3) The
tree-structured parzen estimators (TPE) are used to optimize the model. (4) This paper
introduces the single machine learning model, including back propagation (BP), multiple
linear regression (MLR), long-short-term memory neural network (LSTM) and Gate Recur-
rent Unit (GRU), as well as a combination model that includes seasonal decomposition-back
propagation (SD-BP), seasonal decomposition-multiple linear regression (SD-MLR), and
seasonal decomposition-long-and-short-term-memory neural network (SD-LSTM) as the
comparison models that are used to verify the excellent prediction performance of the
proposed model.

The remaining part of this article is structured as follows: Section 2 introduces the
research methods used in this paper, and also includes the whole process of the proposed
model and the model performance evaluations; Section 3 selects Qingjiang Shuibuya as
the research area, and compares and analyzes the prediction performance of the proposed
model and the comparative model; Section 4 uses a case study to discuss the proposed
method; and Section 5 provides the conclusion of the research.

2. Methodology
2.1. Seasonal Decomposition (SD)

Seasonal decomposition algorithm is a method used to analyze seasonal changes in
time series data. When analyzing time series with seasonal cycles, it is necessary to extract
seasonal factors from the original time series and then analyze each factor separately. The
most commonly used method of existing SD methods is the X-12-ARIMA method, which is
the latest seasonal adjustment plan of the United States Census Bureau [33]. Therefore, this
study will choose X-12-ARIMA as the SD method.

The X-12-ARIMA method decomposes time series Xt into three components: trend
component Tt, seasonal component St, and residual component Rt.

Yt= Tt+St+Rt (1)

Yt= Tt × St × Rt (2)

where Tt is the trend component, St denotes the seasonal component, Rt represents the
residual component, and Yt is the original data.

In general, an additive decomposition model is suitable when the amplitude or trend
cycle of seasonal fluctuations remains constant over time. When there are changes in the
amplitude of seasonal fluctuations or the trend cycle over time, multiplication decomposi-
tion is a more appropriate method to use. Therefore, this article chooses the additive model
to study hydrological forecasting.

2.2. Gated Recurrent Unit (GRU)

The GRU model is a variant of the LSTM model; both belong to the RNN, and are
specialized in processing non-linear sequential data [34,35]. The GRU is a more efficient
variant of the LSTM network, with a simpler structure that performs well [36]. Therefore, it
is also a kind of network that is very manifold at present. In LSTM, three gate functions,
respectively the input gate, forget gate, and output gate, are used to control the input
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value, memory value, and output value. In contrast, the GRU model has only two gates,
namely the update gate and reset gate. The specific structure of the GRU model is shown
in Figure 1.
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Usually, a neural network with three layers is capable of approximating any kind of
function. however, it is easier to overfit and the results usually do not meet the requirement.
Therefore, recent advances in computer power have contributed to the rapid development
of deep neural networks (DNNs). The structure of DNN is shown in Figure 2.
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2.3. Tree-Structure Parzen Estimator (TPE)

The tree-structured parzen estimators (TPE) is a global optimization Bayesian opti-
mization algorithm based on sequence models proposed by Bergstra et al. [37]. Compared
to the Gaussian process direct prediction p(y|x), the TPE strategy can simultaneously
obtain p(x|y) and p(y). One important task of hyperparameter optimization algorithms is
to optimize the expected improvement (EI), which is defined as:

EIy∗(x) :=
∫ ∞

−∞
max(y∗ − y, 0) pM(y|x)dy (3)

where x is the hyperparameter set, y is the measured value of the objective function at
the hyperparameter set x, y∗ is the threshold of the objective function, and p(y|x) is a
conditional probability model that represents the probability of y at hyperparameter set x.

In the tree structure Parzen estimator, the definition p(x|y) is:

p(x|y) =
{

l(x) i f y < y∗

g(x) i f y > y∗
(4)

where y is the measured value of the objective function, and y∗ is the threshold of the
objective function.
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When using a tree structure parzen estimator to optimize the expected increment,
according to the Bayesian formula, the expected increment can be transformed into the
following form:

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy (5)

Suppose γ = p(y < y∗), p(x) =
∫

R p(x|y)p(y)dy = gl(x) + (1 − g)g(x), the upper
formula can be expressed as:

∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy = l(x)

∫ y∗

−∞
(y∗ − y)p(y)dy = gy∗l(x)− l(x)

∫ y∗

−∞
p(y)dy (6)

Therefore, the final expression for the expected increment EIy∗(x) is:

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗
−∞ p(y)dy

γl(x) + (1 − γ)g(x)
∝
(

γ +
g(x)
l(x)

(1 − γ)

)−1

(7)

From the upper equation, it can be seen that to obtain the optimal expected increment
EIy∗(x), the hyperparameter set x should have the highest possible probability at l(x) and
the lowest possible probability at g(x). Therefore, each iteration can obtain the maximum
expected increment of the hyperparameter set x.

2.4. The Proposed Model’s Entire Process

In this chapter, a daily runoff prediction method that utilizes a seasonal decomposition-
based deep GRU method is proposed, which combines a seasonal decomposition algorithm
with a GRU deep learning model. The proposed method’s flow chart is displayed in
Figure 3.

The detailed steps are as follows:
Step 1: Collate the raw data and use the augmented Dickey-Fuller test (ADF Test)

method to test the stationarity of the sequence [38]. If it is not stationary, the following
formula can be used to make the raw data stationary.

∆xj = xi+1 − xi, (i = 0, 1, 2, . . . N, j = 0, 1, 2, . . . N − 1) (8)

where xi and xi+1 represent the runoff data at time (i + 1) and i-th, respectively, ∆xj are
runoff data at time j after the first order difference.

Then, the following formula is used to normalize the raw data.

Xi =
xi − xmin

xmax − xmin
(9)

where xi is the runoff series at the time i; xmin, and xmax represent the minimum and
maximum values of the runoff sequence, respectively; and Xi is the normalized results.

Step 2: The dataset is split into three parts: the training set, the validation set, and
the test set. The training set is utilized to train the model, the validation set is utilized
to fine-tune the model parameters, and the test set is utilized to evaluate the predictive
performance of the model. And the SD method is used to decompose the original data into
trend component, seasonal component, and residual component.

Step 3: Each sub-component is trained by a deep GRU model, and rainfall data are
added to each sub-component. Then, the TPE hyperparameter optimization algorithm is
used to optimize the model hyperparameters, and then predict the model results.

Step 4: The final prediction results are obtained by integrating all the prediction results
and denormalizing the prediction results.
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2.5. Model Performance Evaluations

The accuracy evaluation of runoff prediction determines the quality of the model.
Therefore, it is necessary to introduce several evaluation indexes to evaluate the prediction
results comprehensively. In this paper, we introduced four evaluation indexes, including
mean absolute error (MAE), root mean square error (RMSE), coefficient of determination
(R2), and Nash-Sutcliffe efficiency (NSE). The definitions of MAE, RMSE, R2, and NSE are
as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (10)
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RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (11)

R2 = 1 −

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − y)2

(12)

NSE = 1 − ∑N
i=1

(
yi − ŷi)

2

∑N
i=1(yi − y)2

(13)

where N denotes the number of runoff data series. yi and
∧
yi mean the real and prediction

runoff values, respectively.

3. Case Study
3.1. Study Area Introduction

This section focuses on Qingjiang Shuibuya and illustrates how the proposed model
can be effective. The Qingjiang River, located in Hubei Province, is a significant tributary of
the Yangtze River in China. Its average annual flow is 464 m3/s, and it has a drainage area
of 16,700 km2. The area receives an annual precipitation of 1415 mm. During the summer
months, there is a significant amount of rainfall, with maximum runoff occurring in July
and minimum runoff in January. The Qingjiang Shuibuya Power Station is the leading
power station in the Qingjiang Cascade. Accurate inflow runoff prediction is critical for
improving the reservoirs’ overall optimization and management in the basin.

3.2. Data Analysis and Partitioning

In this section, we selected the daily runoff of Qingjiang Shuibuya in the period from
1 January 2013, to 31 December 2019 as the validation dataset for the model. Figure 4
displays the average rainfall and runoff data from the Qingjiang Shuibuya station. To
train the model, we followed a flowchart and divided the dataset into three sets—training,
validation, and testing. The training set was used to train the model, the validation set was
used to optimize the model’s hyperparameters, and the test set was used to test the model’s
results. As per the flowchart, we used the data from 1 January 2013, to 31 December 2017 for
training; from the 1 January 2018, to 31 December 2018 for validation; and from 1 January
2019, to 31 December 2019 for testing.
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To analyze the runoff series of Qingjiang Shuibuya, we first need to process the runoff
series, including missing data compensation and data conversion. It is especially important
to conduct a stability analysis of the data series, and we therefore introduce the ADF Test
method to test the stability of the runoff dataset. The ADF Test method assumes that the
series is not stable at first. If the test results accept the null hypothesis, the data series is
not stable, and the data needs to be checked and processed to make the results stable. The
results of the ADF test for the Qingjiang Shuibuya runoff series are presented in Table 1. As
per the table, the test results for Qingjiang Shuibuya are less than 1%, 5%, and 10% result,
and the p-value is close to 0. Thus, the test results reject the null hypothesis, indicating that
the Qingjiang Shuibuya runoff series is stationary.

Table 1. The ADF test results for the Qingjinag Shuibuya runoff series.

Sequence Date Range Test Result p-Value 1% 5% 10%

Runoff 1 January 2013–31 December 2019 −5.83 4.01 × 10−7 −3.42 −2.86 −2.57

In the process of the proposed model, data processing is followed by the seasonal
decomposition algorithm decomposing the runoff into three components, namely the trend
component, seasonal component, and residual component. Figure 5 shows the seasonal
decomposition chart of runoff.
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3.3. Parameter Settings

In this section, we explored the parameters of various contrast methods, including
both single machine learning models and combination models. We implemented these
methods using Python(version: 3.9) programming languages and the TensorFlow-based
Keras framework(version: 2.10.0). The single machine learning models included BP, MLR,
LSTM, and GRU. For combination models, we used Seasonal Decomposition–Back Propa-
gation (SD-BP), Seasonal Decomposition–Multiple Linear Regression (SD-MLR), Seasonal
Decomposition–Long-Short-Term-Memory Neural Network (SD-LSTM), and proposed
Seasonal Decomposition–Gate Recurrent Unit (SD-GRU). For the structure of the GRU
model, we set one–two hidden layers of deep GRU neural network to ensure that the
network can accurately fit the time series data of runoff into the reservoir and efficiently
predict the runoff. We also set the loss function of the GRU model to mse, the activation
function to adam, and added a dense layer to the output layer. In addition, in order to
avoid overfitting, LSTM and GRU models were set to a dropout of 0.2. We also utilized
partial autocorrelation function (PACF) analysis to determine the input dimension of the
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model. As shown in Figure 6, the lag number of the runoff series is 26, and we therefore set
the input dimension of the runoff series to 26.
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3.4. Results Analysis

In this section, the forecasting effects of single machine learning models, including
BP, MLR, LSTM, GRU, and combination models, including SD-BP, SD-MLR, SD-LSTM,
and SD-GRU were analyzed and compared. Training each model with historical runoff
and rainfall data, and then using the trained models to predict daily runoff data for a total
of 365 days in the period from 1 January 2019 to 31 December 2019, made it possible to
analyze the predictive ability of each model. Figure 7 shows a comparison of prediction
results and error release chart for different models. The scatter plots of prediction results
for various models are displayed in Figure 8.
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Figure 8. Scatter plots of prediction results for different models.

The bottom section of Figure 7 displays the prediction effect of the combination models,
while the middle section of Figure 7 shows the prediction effect of the single machine
learning models. The top part of Figure 7 shows the monthly average prediction error of
different models. As shown in Figure 7, the proposed method’s forecast results better fit the
real values. However, predicting the peak value of daily runoff is extremely challenging,
as researchers have not developed a perfect model for predicting the peak value of daily
runoff. Both the proposed model and the comparative model show limitations when
predicting the peak value of daily runoff. Nevertheless, the proposed model outperforms
other comparative models, in terms of predicting results. Table 2 provides further details
about error indicators, including MAE, MSE, NES R2, and RMSE.

Table 2. Comparison statistics of forecast errors for each model.

Date Range Index BP MLR LSTM GRU SD-BP SD-MLR SD-LSTM SD-GRU

1 January
2019–31

December 2019

MAE (m3/s) 62.5 53.9 54 47.9 35.1 34.4 42.3 38.5
MSE 13,301 12,634 12,227.1 12,030.4 5552.7 5364 4843.3 4179.4
NSE 0.78 0.78 0.8 0.8 0.91 0.91 0.92 0.93
R2 0.59 0.61 0.62 0.63 0.83 0.83 0.85 0.87

RMSE (m3/s) 115.3 112.4 110.6 109.7 74.5 73.2 69.6 64.6

Note: Values in bold means the best performance of all model.

On the basis of Table 2, it can be concluded that the fitting abilities of each single
machine learning model are different. The MSE, NSE, R2, and RMSE indicators of the
proposed SD-GRU model showed the best performance, with values of 4179.4, 0.93, 0.87,
and 64.6, respectively. The comprehensive performance of the BP model showed the worst
performance, with MAE, MSE, NSE, R2, and RMSE indicators of 62.5, 13,301, 0.78, 0.59,
and 115.3, respectively. Figure 9 shows the Taylor diagram of the proposed model and
the comparison models, and Figure 10 shows the comparison chart of prediction errors of
various models. Specifically, the indicators in Figure 10 have been normalized so they can
be displayed in one image.
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4. Discussion
4.1. Comparison of Prediction Performance between Single Machine Learning Models and
Combination Models

In the case study section, we compared and analyzed the model using data obtained
in the period 1 January 2019, to 31 December 2019 from the Qingjiang Shuibuya as the
test set. Of them, we selected two major types of models, namely single machine learning
models (including BP, MLR, LSTM, GRU) and combination models (including SD-BP, SD-
LSTM, SD-LSTM and SD-GRU) to verify the performance of the models. We found that
the combined machine learning models showed better prediction performance than the
individual models. The worst performing comprehensive indicators in the combination
model are SD-BP, with MAE, MSE, NSE, R2, which showed RMSE indicators of 35.1, 5552.7,
0.91, 0.83, and 74.5, respectively. The best performing comprehensive indicators in the
single machine learning model are GRU, with MAE, MSE, NSE and R2 showing RMSE
indicators of 47.9, 12030.4, 0.8, 0.63, and 109.7, respectively. It can be observed that the
worst-performing combination model outperforms the best-performing single machine
learning model in all indicators. On this basis, we assert that combining models can
improve predictive performance.
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4.2. Comparison of Prediction Performance for Different Model Parameters

In this section, we explored the impact of different parameters on the model prediction
performance, and used the TPE hyperparameter optimization algorithm to optimize the
parameters and minimize the MSE index of the validation set to obtain the optimal hyper-
parameter sets. The results showed that the model had the best prediction performance
when the number of hidden layers was two, the number of nodes in the first layer was
five, and the number of nodes in the second layer was 10. We selected seven models with
different numbers of hidden layers and nodes (including one hidden layer with 10, 50, and
100 nodes, and two hidden layers with 5–10, 10–20, 25–50, and 50–100 nodes, respectively)
for comparison. Table 3 shows a comparison chart that sets out prediction indicators for
different hyperparameter models. Of them, Nodes (10) represents one hidden layer with
10 nodes, and Nodes (10–20) represents two hidden layers, with 10 nodes in the first layer
and 20 nodes in the second layer. As in Figure 10, the indicators in Figure 11 have been
normalized so they can be displayed in one image.

Table 3. Comparison of the prediction performance of proposed models SD-GRU that have different
numbers of neural network nodes.

Date
Range Index Nodes (10) Nodes (50) Nodes

(100)
Nodes
(5–10)

Nodes
(10–20)

Nodes
(25–50)

Nodes
(50–100)

1 January
2019–31

December
2019

MAE (m3/s) 66.6 57 47.7 38.5 40.8 48.4 44.9
MSE 14,871 11,023.9 7699.1 4179.4 5178.6 6822.1 7149
NSE 0.75 0.81 0.87 0.93 0.92 0.89 0.88
R2 0.54 0.66 0.76 0.87 0.84 0.79 0.78

RMSE (m3/s) 121.9 105 87.7 64.6 72 82.6 84.6

Note: Values in bold means the best performance of all model.
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On the basis of Table 3 and Figure 11, it is clear that the model’s prediction performance
varies significantly in different hyperparameter sets. The model with 10 nodes in the first
hidden layer and 20 nodes in the second layer shows the best prediction performance, with
MAE, MSE, NSE, R2, and RMSE indicators of 38.5, 4179.4, 0.93, 0.87, and 64.6, respectively.
Additionally, models with two hidden layers perform better than those with one layer. In
models with one hidden layer, the greater the number of neural network nodes, the better
the prediction performance. However, in models with two hidden layers, the greater the
number of neural network nodes, the worse the prediction performance. This could be
due to the fact that in models with one hidden layer, a larger number of neural network
nodes can better fit the runoff sequence. However, in models with two hidden layers,
there may not be sufficient training samples to train the model when the number of neural
network nodes increases, which could result in the model underfitting, leading to poorer
forecast performance.
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5. Conclusions

In this article, we propose to predict daily runoff by using a seasonal decomposition-
based deep GRU method. The proposed model preprocesses the data and uses the seasonal
decomposition method to decompose the runoff sequence into trend components, seasonal
components, and residual components. Each component is predicted using a deep GRU
model. The TPE hyperparameter optimization algorithm is then used to optimize the
hyperparameters of the proposed model. To verify the performance of the proposed model,
several single machine learning models, including BP, MLR, LSTM, GRU, and combination
models, including SD-BP, SD-LSTM, and SD-LSTM, were chosen as comparison methods.
The study offers the following conclusion:

(1) By drawing on the prediction results of the proposed SD-GRU model and comparative
models of the test set conducted in the period 1 January 2019 to 31 December 2019
at the Qingjiang Shuibuaya, we conclude that the proposed model exhibits the best
forecasting performance. The MAE, MSE, NSE, R2, and RMSE indicators of the
proposed model showed the best performances, with values of 38.5, 4179.4, 0.93, 0.87,
and 64.6, respectively.

(2) By comparing the single machine learning models, including BP, MLR, LSTM, GRU,
and combination models, including SD-BP, SD-LSTM, SD-LSTM, and SD-GRU, it was
observed that the prediction performance of combination models was superior to that
of single machine learning models in all indicators. On this basis, it was asserted that
combining models can improve prediction performance.

(3) A comparison of different model parameters of GRU neural networks showed that,
within a certain range, the greater the number of nodes of the single hidden layer
model, the better the prediction effect of the model. However, in the multi-hidden
layer model, the greater the number of nodes, the worse the prediction performance,
which was due to the influence of the insufficient number of training samples. On the
whole, it was however found that the prediction performance of multi-hidden layer
neural networks was better than that of single-hidden layer models.
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