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Abstract: The risk of aquifer contamination is determined by the interaction between the pollutant
load and the vulnerability of an aquifer. Owing to the decomposition of bodies and degradation
of artefacts, cemeteries may have a negative impact on groundwater quality and suitability for
use due to the leaching of organic compounds (e.g., biodegradable organics, pharmaceuticals, and
formaldehyde), inorganic compounds (e.g., nitrate and heavy metals), pathogenic bacteria, and
viruses. Factors such as burial and soil type, rainfall amount, and groundwater depth may increase
aquifer vulnerability to pollutants generated in cemeteries. The potential for groundwater contami-
nation was investigated in two cemeteries of the Soure region in Portugal (Samuel–UC9 and Vinha
da Rainha–UC10), using the classic DRASTIC model, followed by some adjustments, depending on
the particularities of the locations, resulting in a Final Classification considered as Specific DRASTIC.
By combining Remote Sensing (RS), Geographic Information System (GIS), and Analytical Hierarchy
Process (AHP), groundwater potential zones (GWPZs) were identified, and aquifer vulnerability
was assessed, which included the elaboration of thematic maps using GIS operation tools. The
maps allowed for the identification of areas with different susceptibilities to contamination: from
“Low” to “Very high” for the DRASTIC index and from “Very Low” to “Very high” for the Specific
DRASTIC index. Although the difference between the UC9 and UC10 cemeteries is negligible, UC10
is more vulnerable because of its proximity to the community and critically important mineral water
resources (such as Bicanho Medical Spa). The Specific model seems better-suited for describing
vulnerability to cemeteries. Although there is limited groundwater quality data for the area, the
development of vulnerability maps can identify areas that can be sensitive spots for groundwater
contamination and establish procedures for pollution prevention.

Keywords: cemeteries; groundwater contamination; vulnerability map; GIS tools; DRASTIC; Specific
DRASTIC

1. Introduction

Cemeteries are places where institutional funeral practices take place and have a
special meaning for storing and transforming dead bodies and serving as a collective
historical memory [1–6].

People and societies have long considered contaminated groundwater near estab-
lished and unplanned cemeteries to be an urgent concern [7], because it is a slow, chronic,
and asymptomatic process [8,9] and should be referred to as decomposition labs [10].
Human cadavers typically contain approximately 35% organic material, 15% bone, and
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50% water [11]. According to the authors [11], when a person weighing about 70 kg de-
composes, 30–40 L of necro leachate is released into the environment between 72 h and
3 years after death [12] and it takes between 15 and 25 years for the person to completely
break down into a skeleton [11]. The decomposition process releases organic materials,
inorganic materials, gases, and trace elements into the groundwater, which harms both
the environment and humans [9,12,13]. The primary sources of pollution in cemeteries,
according to Guttman et al. [1], are materials used to manufacture coffins and embalming
fluids. Toxic metals (e.g., Fe, Cu, Ni, Pb, and Zn) are released into the soil by varnishes,
sealants, metal handles, and decorations found on wooden coffins [11,14–20].

As the world population increases and because of urban land development, cemeteries
that were previously located on the outskirts of communities are now located in their centre.
Many regions of the world have reported graveyard soil contaminated with extreme phys-
ical, chemical, and biological elements [21–23]. Certain dangerous substances can linger
in the atmosphere for extended periods as ultrafine or nanoparticle-sized particles [24–26].
In the soils of urban cemeteries in Passo Fundo, Brazil, the concentrations of toxic metals
were higher than those naturally occurring in control samples [2,27]. Dent’s [28] research
at the Australian Botanical Cemetery indicates that the electrical conductivity (or salin-
ity) around recent burials has increased noticeably. High levels of Cl−, NO3

−, NO2
−,

NH4
+, PO4

3−, Fe, Na+, K+, and Mg2+ were found beneath the cemetery [28]. Additionally,
previous research has shown that a variety of contaminants, including bacteria, viruses,
phosphorus, and nitrogen, can contaminate groundwater and pose a health risk to the
general public [1,2,5,10,29–34].

Groundwater contamination is significantly influenced by burial practices, including
individual or collective graves, grave depth, proximity to water sources, size of cemeter-
ies, and number of burials. Additional factors such as coffin material, soil characteristics
(e.g., lithology, mineralogy, grain size distribution, structure, thickness, leaching potential,
permeability, plasticity, chemical properties, and presence of porous/fissured zones), topog-
raphy, land use (e.g., presence of vegetation, agricultural practices, and urbanised areas),
climatic characteristics (e.g., precipitation, temperature, and actual evapotranspiration),
geological and hydrogeological aspects (e.g., groundwater flow mechanisms), abstraction
rates, extension of source protection zones, depth of the water table, and seasonal fluctua-
tions also play a crucial role in groundwater quality [2,11,14,17,31,35–38]. In cases where a
cemetery is situated on permeable and porous soil, such as gravel or sand, leachate from
decomposing corpses and coffin seepage can rapidly move and blend with the groundwater
below [2]. Optimal decomposition requires homogeneous soils with balanced proportions
of sand, silt, and clay (roughly 30% of each). During periods of high precipitation, intense
runoff, and infiltration, when the water table is close to the soil surface, chemicals and
pathogens can swiftly migrate to the groundwater [14]. It is advisable to assess ceme-
teries for potential risks using a comprehensive framework that takes into account risk
significance, consequences, magnitude, and hazard identification [35].

Groundwater vulnerability is the tendency or likelihood of contaminants to reach a
specific position in the groundwater system after their introduction at a location above the
uppermost aquifer. The term first appeared in the 1970s [39] and gained notoriety in the
1980s [40]. It involves intrinsic vulnerability, which refers to the characteristics that affect the
migration of pollutants towards groundwater [41], and specific vulnerability, which depicts
the susceptibility to a specific contaminant or group of contaminants, considering aspects
such as biogeochemical attenuation processes [42]. Because groundwater vulnerability
cannot be measured directly [43], several indicators have been proposed to assess current
groundwater quality or predict future scenarios [44,45]. Taghavi et al. [46] classified these
evaluation methods into four categories: (i) overlay- and index-based methods [40,42,43],
(ii) process-based simulation models [43,47], (iii) statistical methods (including orthodox
and Bayesian methods) [42,43,48,49], and (iv) hybrid methods [50,51]. Other techniques
have been put forth to assess the vulnerability of groundwater resources. These include
the model of intrinsic groundwater vulnerability and specific vulnerability to pesticide



Water 2024, 16, 585 3 of 31

pollution [52,53], techniques for determining karst aquifer vulnerability [54], an approach
that incorporates impact modelling, and an index-based approach to determine how
vulnerable groundwater resources are to climate change [55].

The DRASTIC index proposed by Aller et al. [40] has already been used for ground-
water vulnerability assessment in many studies [56–58], and it can be used to assess the
risk of groundwater contamination associated with cemeteries. To reduce the subjectivity
of the evaluation associated with the original model, modified or updated versions have
been developed to identify appropriate ratings and determine weights for the DRASTIC
parameters [58–61].

As cemeteries are sensitivity places with large spatial structures, they need to have a
well-designed layout to allow funeral services [62–66]. Generating vulnerability DRASTIC
maps involves handling substantial data, and GIS tools have been employed to manipulate
hydrogeomorphological, hydrogeological, soil characteristics, and land-use data [67,68].
Map algebra calculations facilitate mathematical operations among thematic maps to gen-
erate composite spatial maps or charts, such as vulnerability or suitability maps [69]. GIS
has been previously used to develop DRASTIC-based vulnerability maps, but mainly
focused on contamination risks from wastewater facilities, garbage deposits, underground
gas or fuel deposits, sanitary landfills, soils contaminated by industrial activities, and
agricultural soils contaminated with an excess of fertilizers (specifically nitrate) or pesti-
cides [45,51,57,70–72]. For example, Sinan and Razack [73] evaluated the vulnerability of
Marrakech’s Haouz aquifer to various pollution sources, including Marrakech’s industrial
park, industrial facilities, cemeteries, and waste deposits near Ourika and Tahanaout.

The main goal of this study was to develop a DRASTIC index-based vulnerability
map for assessing the risk of aquifer contamination associated with two cemeteries in the
Soure Region (Portugal) using GIS interpolation tools. Using the DRASTIC method [40],
a geological analysis of the study area was conducted in two phases: the first phase
considered the index independently of the pollutant load, and the second phase was
developed based on the locations of particularities, resulting in a Final Classification that
was considered the Specific DRASTIC [74]. The main innovation of this study is the use
of this methodology to create maps that can be useful for defining measures to avoid
groundwater pollution from cemeteries, both in existing spaces and new spaces. The
DRASTIC approach was selected because it is the easiest to use and fits well with the GIS
framework. Moreover, the approach is a computationally efficient model as it eliminates
the need for intricate numerical analysis or multi-parameter simulation processes. What
is more, though, is that it produces excellent results with little application cost. Due in
part to the large number of input data points used, this methodology improves evaluation
performance, thereby reducing the impact of errors on the final product.

Design of Cemeteries in Portugal

The construction of new public cemeteries was mandated by a decree dated 9 August
1834 [75]. As a result of the high number of deaths in the Portuguese Civil War (1832–1833)
and during the cholera epidemic of 1833, the method of burying bodies in the ground
was finally regulated [75]. The Decree of 21 September 1835 established that municipal
authorities should allocate an area of land for the construction of cemeteries in all urban
areas (villages, towns, and cities), but located at a safe distance to avoid contamination
and health problems. With the new law, bodies had to be buried for 5 years in a pit made
of individual soil at least 1.1 m deep and at least 0.33 m apart between graves. In 1962,
Decree No. 44,220 appeared, defining the type of soil for burial: siliceous limestone, clayey
limestone, or siliceous clayey, and the area must be designed for 50 years. The use of
metal (zinc or lead) and solid wood coffins was prohibited to allow the bodies to degrade
within five years, with the bones being able to be removed or buried deeper in the ground.
Six years later (in 1968), the use of 20 L and 80 L of hydrated lime in wooden and metal
coffins, respectively, was authorised to accelerate the decomposition of bodies. Graves and
crypts that were unused or unmaintained for 10 years were transferred to the management



Water 2024, 16, 585 4 of 31

of local authorities. In 1982, a new law was published (Decree-Law No. 274/82) with
instructions on how to bury or cremate mortal remains.

The 1998 law (Decree-Law no. 411/98) authorises that only zinc coffins can be buried
in a crypt and prohibits the burial of bodies in mass graves, unless the law is revoked
for special cases. The ashes of incinerated bodies can be kept in a burial urn, ossuary, or
crypt or kept in the care of a family member. The graves must remain closed for at least
five years, and the period may be extended if the remains are not degraded. Completely
decomposed human remains can be transferred to an ossuary or a family grave or even be
cremated at the request of relatives. However, if the bodies are not decomposed at the time
of exhumation, they should remain closed until the skeletonization process is complete [75].

2. Materials and Methods
2.1. Location of Cemeteries and the Study Area

This work involved the study of two cemeteries (Samuel, with identification UC9; and
Vinha da Rainha, with identification UC10), both in the municipality of Soure (central region
of Portugal) (Figure 1). As no other important sources of anthropogenic pollution are known
in the vicinity, these units represent the most serious threat to the quality of groundwater
and public health from pollution. Whereas UC9 is situated higher up and farther away
from the urban agglomeration, UC10 is situated almost flatly and nearer to urbanisations,
where it may initially pose a greater risk of contamination. Despite their approximate linear
distances of 2.5 Km (UC10) and 3.3 Km (UC9) from the hydromineral resource, Bicanho
Spa, it may still be necessary to investigate the possibility of contamination.
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Figure 1. Geographic locations of two cemeteries in the Soure region.

2.2. Assessment of Groundwater Vulnerability

An assessment procedure consisting of three steps was devised to evaluate the possible
effects of runoff from cemeteries to groundwater in the Soure area. The first step involved
delineating the GWPZs. This research aims to evaluate the vulnerability of groundwater
pollution using the DRASTIC index model and Specific DRASTIC technique, which was
performed during the second and third phases, respectively.

2.2.1. Mapping of GWPZs

In this section of the study, GWPZs were defined based on a variety of geological,
hydrogeological, and environmental factors using RS, GIS, and multi-criteria decision anal-
ysis (MCDA) [76–79]. Pairwise comparisons can be used to solve complex decision-making
problems by applying the AHP [79]. Figure 2 shows a flowchart that creates GWPZs using
GIS. Ten thematic maps were reclassified (Figure 3): Geology, Slope, Lineament density,
Drainage density (Dd), Precipitation, Land-Use/Land-Cover (LULC), Topographic Wetness
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Index (TWI), Stream Power Index (SPI), Distance to rivers, and Normalised Difference
Vegetation Index (NDVI).
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Figure 3. (a) Geological reclassification map; (b) Slope reclassification map; (c) Lineament den-
sity reclassification map; (d) Dd reclassification map; (e) Rainfall reclassification map; (f) LULC
reclassification map; (g) TWI reclassification map; (h) SPI reclassification map; (i) Distance to rivers
reclassification map; (j) NDVI reclassification map; (k) GWPZ map.
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The delineation of the GWPZ map is a complex process because different environmen-
tal, climatic, and topographical factors are not widely understood [80,81]. The development
of RS and GIS technologies has facilitated the delineation of large-scale GWPZs [82,83].

The different datasets used in the study to compute the GWPZs are detailed in Table 1.
Although the spatial resolution of the satellite images provided by ESA (European Space
Agency)-Sentinel-2 is generally higher, this implies more clarity and detail but also more
data and storage. The Landsat 8 satellite is distinguished by the presence of thermal
bands as well as band-8 (panchromatic), which is useful for improving image spectral
resolution, and data are distinguished by a high radiometric resolution (16 bits), allowing
the measurement of subtle variations in surface conditions.

Table 1. Data used for creating GWPZ input data.

Data Type Source Format Cell Size Date Used to Produce

DEM USGS Raster

30 × 30 m

2022

Lineament density, NDVI,
DTM—Distance to Rivers,

TWI, Slope, SPI,
Drainage density

Rainfall SNIAMB
Shapefile polygon

(1:1,000,000) converted
to raster

1931–1960 Annual
precipitation—Recharge

Geology LNEG Shapefile polygon (1:500,000)
converted to raster 1992 Geology

LULC DGT Shapefile polygon (1:25,000)
converted to raster 2018 LULC

Note: DEM—Digital Elevation Model; USGS—United States Geological Survey; DTM—Digital Terrain Model;
SNIAMB—‘Sistema Nacional de Informação de Ambiente’; LNEG—‘Laboratório Nacional de Energia e Geologia’;
LULC—Land use/Land cover; DGT—Direção Geral do Território.

Each raster was normalised using the geometric mean criteria following the evaluation
of weights using the AHP method. For every feature class, a rating value between 1 and
5 (meaning “very low”, “low”, “medium”, “high”, and “very high”) was assumed [84].
The rating values represented the suitability of the groundwater potential [84–89]. Table 2
displays each class’s normalised weight and normalised rank for each variable.

The geological characteristics play a crucial role in determining groundwater potential
because the hydraulic properties of the rock regulate the infiltration and percolation of
water [90]. The geological map of the study region was converted from vector to raster
format, and three categories were created once weight and rank had been assigned (Table 2,
Figure 3a): (3) Taveiro sandstones and clays, Boa Viagem sandstones, and Carrascal sand-
stones; (4) Cabaços limestones and marls, Cabo Mondego limestones and marls and Costa
de Arnes’ crowded limestones; (5) Alluvium and sands and clays with kaolinite. Sedimen-
tary rocks, such as limestones, possess substantial potential for storing groundwater.

Slopes in each area directly affect the rate of infiltration and also surface runoff, which
in turn affects the recharge of groundwater, which is impacted by topography and/or slope
gradient [91,92]. Steep slopes decrease infiltration and groundwater recharge because they
allow less water to remain on the surface for longer periods due to rapid runoff. At the same
time, because of their high rates of infiltration and low runoff, flat areas are better suited
for recharge [93]. The slope map (degrees) was produced by using the Digital Elevation
Model (DEM) and ArcMap’s “Slope Tool”. The study area’s slope led to the creation of five
categories: (1) >30, (2) 15–30, (3) 8–15, (4) 2–8, and (5) 0–2 (Table 2, Figure 3b).
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Table 2. Values taken for normalised weights and thematic layer classifications.

Variable Units NLW % Classes Class Rank NCR

Geology - 0.296 29.6

Alluvium 5 0.17
Sands and clays with kaolinite 5 0.14
Taveiro sandstones and clays 3 0.10

Carrascal sandstones 3 0.14
Costa de Arnes’ crowded limestones 4 0.14

Boa Viagem sandstones 3 0.10
Cabaços limestones and marls 4 0.10

Cabo Mondego limestones
and marls 4 0.10

Slope degree 0.218 21.8

0–2 5 0.33
2–8 4 0.27
8–15 3 0.20

15–30 2 0.13
>30 1 0.07

Lineament density Km/Km2 0.131 13.1

0–0.49 1 0.07
0.49–1.34 2 0.13
1.34–2.18 3 0.20
2.18–3.23 4 0.27

>3.23 5 0.33

Drainage density (Dd) Km/Km2 0.108 10.8

0–0.31 1 0.07
0.31–0.88 2 0.13
0.88–1.53 3 0.20
1.53–2.40 4 0.27

>2.40 5 0.33

Rainfall mm/year 0.090 9.0

0–298 1 0.07
298–740 2 0.13

740–1100 3 0.20
1100–2070 4 0.27

>2070 5 0.33

Land-use/Land-cover
(LULC)

- 0.046 4.6

Urban Area 1 0.07
Bare Ground 2 0.13

Water 3 0.20
Vegetation 4 0.27

Agricultural 5 0.33

Topographic Wetness
Index (TWI)

(%) 0.028 2.8

0–5.95 1 0.07
5.95–8.89 2 0.13
8.89–11.84 3 0.20

11.84–14.76 4 0.27
>14.76 5 0.33

Stream Power Index (SPI) (%) 0.028 2.8

0–5.68 1 0.07
5.68–11.36 2 0.13

11.38–21.33 3 0.20
21.33–57.11 4 0.27

>57.11 5 0.33

Distance to Rivers (m) 0.031 3.1

0–138.45 5 0.33
138.45–332.27 4 0.27
332.27–567.63 3 0.20
567.63–858.37 2 0.13

<858.37 1 0.07

NDVI - 0.024 2.4

−1–0.02 1 0.07
−0.02–0.09 2 0.13
0.09–0.22 3 0.20
0.22–0.31 4 0.27

>0.31 5 0.33

Note: NLW—Normalised Layer Weight; NCR—Normalised Class Rank.
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Lineaments, characterised by their straight or nearly straight form, are prominent land
features that are accentuated by the permeability of the soil and are widespread across
the Earth’s surface [94,95]. Intrinsic permeability and porosity can be used to broadly
characterize underlying fractures, faults, or joints [96,97]. The movement and storage of
groundwater as well as the facilitation of water infiltration into the subsurface depend on
the lineaments [98]. Following extraction, lineament discontinuities were examined using
Landsat images on ArcGIS, and the “Line Density Tool” was used to create a lineament
density map (Km/Km2). Based on natural breaks, the following five categories were
established: (1) 0–0.49, (2) 0.49–1.34, (3) 1.34–2.18, (4) 2.18–3.23, and (5) >3.23 (Table 2,
Figure 3c).

Drainage is a mechanism that has an important role in controlling the hydrogeological
characteristics of soils [85], and drainage density is defined as the surface area of a drained
basin divided by the total length of its watercourses [99]. The groundwater recharge volume
is correlated with the overall length of the drainage densities [84], and a zone with a high
drainage density contributes significantly to surface runoff while retaining relatively little
groundwater [100]. However, the drainage system is affected by several variables, including
topography, climate, slope gradient, rainfall, vegetation cover, subsurface features [96], and
the type and structure of the bedrock [101]. This variable makes it easier to understand
and assess data about groundwater infiltration, permeability, runoff potential, and relief by
providing a suitable numerical measurement [94]. The drainage density (Km/Km2) was
determined by using Equation (1) in conjunction with the Stream Network and the Line
Density Tool [82].

D = ∑n
i−1

Di
A

(1)

where (A) represents the basin area (Km2) and (Di) is the total length of all streams in
stream order i (Km). The “Hydrology Tool” in ArcMap, along with the Fill DEM, Flow
Direction, Flow Accumulation, Stream Order, and Stream to Feature procedures, was used
to create the Stream Network. Based on natural breaks, five categories were established:
(1) 0–0.25, (2) 0.25–1.02, (3) 1.02–1.79, (4) 1.79–2.56, and (5) >2.56 (Table 2, Figure 3d).

Rainfall is a hydrologic process that restores aquifers, and it is a major factor in
determining groundwater potential [86]. Although more recent total precipitation data
were calculated at the study site, data from 1931 to 1960 [102] were used in the GIS
environment because they were available in polygon shapefile format and the most recent
data were contained within the polygon. Based on natural breaks, the study area’s mean
annual rainfall intensity was split into five zones: (1) 0–298, (2) 298–740, (3) 740–1100,
(4) 1100–2070, and (5) >2070 (Table 2, Figure 3e).

LULC significantly influences how groundwater recharge occurs [103]. Plants and
trees can store water in their leaves and stems and allow it to enter the earth through their
roots and rhizomes, thus contributing to recharging groundwater. This circumstance leads
to the demand for groundwater extraction on agricultural and plantation land. However,
the increase in the use of concrete in urban areas leads to an increase in surface runoff
and a decrease in recharge. The COS2018 chart [104] provided the LULC data, and five
categories were created: (1) Urban Area, (2) Bare ground, (3) Water bodies, (4) Vegetation,
and (5) Agricultural (Table 2, Figure 3f).

The TWI map was created by Beve and Kirkby [105] and is the most often used map in
hydrological studies [102,106]. The TWI’s upslope area can be used to measure subsurface
lateral transmissivity or as a local slope indicator [107,108]. Soil moisture content is one
of the hydrological parameters that is significantly impacted by TWI in each area [109].
Because the zoning and extent of saturated areas affect the occurrence of springs [107], the
higher the TWI, the greater the groundwater potential. TWI calculations [110] provide an
overview of how foothill, hillslope, and topographic roughness affect lateral groundwater
flow. Equation (2) [111] was used to calculate TWI, which measures a cell’s propensity
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to retain water. It also makes it easier to find favourable locations with slow runoff
and concentration.

ln
α

tan b
(2)

Based on natural breaks, the following five categories were established: (1) 0–5.95,
(2) 5.95–8.89, (3) 8.89–11.84, (4) 11.84–14.76, and (5) >14.76 (Table 2, Figure 3g).

The SPI measures the effects of landform, elevation, and slope on groundwater re-
sources and is a useful metric for identifying areas where groundwater infiltration occurs.
The runoff influence increased with the SPI value, which was determined using slope and
flow accumulation parameters in ArcGIS [90]. Quantile breaks were used to create the
following five categories: (1) 0–5.68, (2) 5.68–11.36, (3) 11.36–21.33, (4) 21.33–57.11, and
(5) >57.11 (Table 2, Figure 3h).

Because local alluvial layers are typically found near river courses and because sites
along rivers are best-suited for effective infiltration and subsequent recharge of groundwa-
ter, the distance from hydrographic networks is significant in hydrogeological research [112].
Rivers contribute to groundwater potential zones within watersheds, which in turn affects
them. To begin the distance categories, the Euclidean distance tool from the ArcGIS spatial
analyst tools was utilised. Based on natural breaks, the following five categories were es-
tablished: (1) >858.37, (2) 567.63–858.37, (3) 332.27–567.63, (4) 138.45–33.27, and (5) 0–138.45
(Table 2, Figure 3i).

The NDVI layer quantifies vegetation by measuring the difference between near-
infrared light, which vegetation strongly reflects, and red light, which vegetation absorbs.
It was created using ArcMap and Landsat 8 images, with water being the most likely result
given the negative values. Conversely, there is a strong likelihood that it has dense green
leaves if the NDVI value is near +1. On the other hand, a region with an NDVI close to zero
is probably urbanised and lacks vegetation. Based on natural breaks, the following five
categories were established: (1) −1–(−0.02), (2) −0.02–0.09, (3) 0.09–0.22, (4) 0.22–0.31, and
(5) >0.31 (Table 2, Figure 3j).

The AHP approach was used to determine the weight of various layers. The first step
was to create a Pairwise Comparison Matrix (PCM) (Table 3) using Saaty’s (1–9) relative
importance scale (Table 4) [113].

Table 3. Matrix for pairwise comparison of variables in the AHP method.

Seven-Variable Pairwise Comparison Matrix for the AHP Method

Variable Geology Slope Lineament
Density Dd Rainfall LULC TWI SPI Distance

to Rivers NDVI

Geology 1 2 3 4 7 8 8 8 7 7
Slope 0.500 1 3 2 5 5 8 8 7 7
Lineament Density 0.333 0.333 1 2 5 3 4 4 4 5
Drainage Density 0.250 0.500 0.500 1 3 3 4 4 4 5
Rainfall 0.143 0.200 0.200 0.333 1 4 5 5 3 7
LULC 0.125 0.200 0.333 0.333 0.250 1 3 3 2 1
TWI 0.125 0.125 0.250 0.250 0.200 0.333 1 1 1 2
SPI 0.125 0.125 0.250 0.250 0.200 0.333 1.000 1 1 2
Distance to Rivers 0.143 0.143 0.250 0.250 0.333 0.500 1.000 1.000 1 3
NDVI 0.143 0.143 0.200 0.200 0.143 1.000 0.500 0.500 0.500 1
SUM 2.887 4.769 8.983 10.617 22.126 26.167 35.500 35.500 30.500 40.000
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Table 4. Saaty’s scale of relative importance.

Scale Definition Explanation

1 Equal significance Each of the two activities contributes equally to the goal

3 moderate significance over the other One activity is strongly preferred over another by
experience and judgment

5 Essential or strong significance One activity is favoured over another by experience
and judgement

7 Very strong significance An activity is highly preferred, and its practical
dominance is evidenced

9 Extreme significance The strongest possible order of affirmation is present in the
evidence supporting one activity over another

2, 4, 6, 8 Values in the middle of the two close decisions When a compromise is required

A PCM for variables was produced by comparing each layer based on its relative
importance (Table 2). To minimise the related subjectivity, the normalised weights were
computed in the second step of this procedure. Equation (3) [114] was also used to calculate
the sum of the values in each column, which is shown in Table 5.

Lij = ∑n
n=1 Cij (3)

where
(
Cij

)
represents the variable used in the analysis and

(
Lij

)
represents the PCM’s

total column value.

Table 5. Normalised matrix for pairwise comparison of variables in the AHP method.

Normalised Pairwise Comparison Matrix

Variable Geology Slope Lineament
Density Dd Rainfall LULC TWI SPI Distance

to Rivers NDVI Total NWT

Geology 0.347 0.419 0.334 0.377 0.317 0.306 0.225 0.225 0.229 0.179 2.958 0.296
Slope 0.173 0.210 0.334 0.189 0.226 0.191 0.225 0.225 0.229 0.179 2.181 0.218
Lineament Density 0.115 0.070 0.111 0.189 0.226 0.115 0.113 0.113 0.131 0.128 1.311 0.131
Drainage Density 0.087 0.105 0.056 0.094 0.136 0.115 0.113 0.113 0.131 0.128 1.078 0.108
Rainfall 0.049 0.042 0.022 0.031 0.045 0.153 0.141 0.141 0.098 0.179 0.901 0.090
LULC 0.043 0.042 0.037 0.031 0.011 0.038 0.084 0.084 0.065 0.026 0.461 0.046
TWI 0.043 0.026 0.028 0.023 0.009 0.013 0.028 0.028 0.033 0.051 0.282 0.028
SPI 0.043 0.026 0.028 0.023 0.009 0.013 0.028 0.028 0.033 0.051 0.282 0.028
Distance to Rivers 0.049 0.030 0.028 0.023 0.015 0.019 0.028 0.028 0.033 0.051 0.304 0.031
NDVI 0.049 0.030 0.022 0.019 0.006 0.038 0.014 0.014 0.016 0.026 0.234 0.024

To create the Normalised Pairwise Comparison Matrix (NPCM), each column value
was divided by the sum of the column values [87,114]. Each variable’s normalised weight
(NWt) was calculated by averaging all the values in the associated row of the NPCM
(Table 5) [83,93]. Each normalised weight multiplied by all is equal to 1.

Because the AHP method is dependent on subjective or individual judgements, its ap-
plication may lead to some inconsistencies [96]. The Consistency Ratio (CR) was computed
to assess the accuracy. First, each PCM column was multiplied by the variable weight.
The weighted sum value was then obtained by adding the values of each row. A division
between the variable’s weight and the weighted sum value was then performed, yielding a
λ value [87]. Equation (4) [115] can be used to determine the maximum eigenvalue (λ max):

λ max =
C1 + C2 + C3 . . . Cn

n
(4)

The (λ) values are (C1) through (Cn), and the number of criteria is (n). A ( λ max)
value of 11.283 was found in this study.
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The value of the Consistency Index (CI) was then calculated using Equation (5) [115]:

CI =
λ max−n

n − 1
(5)

where (λ max) is the judgement matrix’s maximum eigenvalue and (n) is the number of
criteria. This study yielded a CI value of 0.143.

Finally, Equation (6) was used to calculate the CR [115]:

CR =
CI
RI

(6)

where, according to [115], (RI) denotes the Random Consistency Index and (CI) stands
for CI (Table 6). A consistency ratio value of 1.51 was found in this investigation.

Table 6. Random Consistency Index (RI) values for n variables.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 1.52 1.54 1.56 1.58 1.59

If the CR is less than 0.10, the inconsistency is acceptable; if the CR is greater than 0.10,
the judgements must be updated. The value 0.094 was determined to be a valid CR value
in this investigation.

The GWPZ map was created by Equation (7), which integrates all parameters in order
of significance using the Groundwater Potential Index (GWPI) [87].

GWPI = ∑m
W=1 ∑n

j=1(Wj × Xi) (7)

(Wj) is the normalised weight of the
(

jth
)

variable, and (Xi) is the normalised weight
of the variable’s

(
ith

)
class. The Raster Calculator Tool in ArcGIS was used to perform the

corresponding integration.
Table 7 summarises the assigned normalised weights and ranks of thematic layers

found for each cemetery.

Table 7. Assigned normalised weights of thematic layers.

Cemetery Geology Slope Line Density Dd Rainfall LULC TWI SPI Distance
to Rivers NDVI GWPZ

UC9 4 4 5 1 3 4 2 4 2 5 Moderate
UC10 4 5 1 4 3 5 4 1 1 3 Good

The cartography created for the GWPZs will be used to map the areas where aquifer
recharge is favoured, as well as to define the various indices in the R parameter used in the
DRASTIC index.

2.2.2. Mapping of DRASTIC Index Vulnerability

To map the DRASTIC index vulnerability, seven thematic maps were created: depth to
groundwater (D), net recharge (R), aquifer material typology (A), soil type (S), topography
(T), impact of the vadose zone (I), and hydraulic conductivity (C) [40]. Each parameter
was further separated into representative classes, each of which was assigned an index
(i), as presented in Table 7, to correlate with the local hydrogeological characteristics
(Equation (8)).

DI = Di × Dw + Ri × Rw + Ai × Aw + Si × Sw + Ti × Tw + Ii × Iw + Ci × Cw (8)
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where (D), (R), (A), (S), (T), (I), (C) are the hydrogeological parameters, (i) is the rating
for the area being evaluated (1–10), and (w) is the weight of the factor (1–5) (Table 8) [40].
The weight (w) of each DRASTIC index parameter represents its relative importance to
other attributes. The vulnerability of the aquifer to pollution increases with increasing
DRASTIC index.

The procedures for creating the DRASTIC-based vulnerability map are presented in
Figure 4. The adopted weights and indices were proposed by Aller et al. [40] and have
already been successfully validated in other works [60,69,70,116–122].
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Figure 4. Flowchart that uses the GIS DRASTIC index to create a groundwater vulnerability map.

The seven hydrogeological layers were overlayed to produce the DRASTIC vulnera-
bility index map using the ArcGIS raster calculator. Table 9 displays the quantitative and
qualitative classifications of aquifer pollution susceptibility, which are categories modified
from the values presented in Hamza et al. [57] and LNEC. In Portuguese studies, this
division is the most prevalent.

Equation (10) presents the computational procedure used to generate the DRASTIC-
based vulnerability map. It was adapted from [68] and involved arithmetic operations of
maps according to Equation (9) and the values in Table 8 to overlap the seven thematic
maps. Equation (10) was used to generate the value of every cell in the vulnerability map by
performing an arithmetic operation. Values were stored in every cell of each thematic map.
To create the vulnerability map, Equation (8) was added to the raster calculator function.

(
Mk

ij

)
mn

× W = ∑tm
k=1




Mk
11 Mk

12
Mk

21 Mk
22

...
...

Mk
m1 Mk

m2

· · · Mk
1n

· · · Mk
2n

· · ·
...

· · · Mk
mn

× Wk

 (9)

where
(

Mk
ij

)
is the vector of cell values from each thematic map in line (i) and row (j),

(m) and (n) are the dimensions of the thematic grid map, (k) is the thematic map, (tm) is
the number of thematic maps, and (W) is the vector of values associated with each cell.
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Table 8. Partial indices (Ip) used for calculating the DRASTIC index (DI) according to the various parameters and classes.

Parameter Partial Indices (PIs) Function of the Various Parameters and Their Classes

D
Depth (m) <1.50 1.50–4.60 4.60–9.10 9.10–15.20 15.20–22.90 22.90–30.50 >30.50

Ip 10 9 7 5 3 2 1

R

Recharge
(mm/year) <51 51–102 102–178 178–254 >254

Ip 1 3 6 8 9

A

Aquifer
material

clayey schist,
clay-stone

metamorphic/
igneous rock

metamorphic/
igneous-

altered rock

glacial
deposits

sandstone,
limestone,

and claystone,
stratified

sandstone limestone sand and
gravel basalt carsified

limestone

Ip 1–3 2–5 3–5 4–6 5–9 4–9 4–9 4–9 2–10 9–10

Ip Typical 2 3 4 5 6 6 6 8 9 10

S
Soil Type thin or absent gravel sand peat

consistent
clay and/or
expansible

sandy loam silty clayey muddy non-expan. Clay

Ip 10 10 9 8 7 6 5 4 3 2 1

T
Slope (%) <2 2–6 6–12 12–18 >18

Ip 10 9 5 3 1

I

Unsaturated
zone

confining
layer

clay/
silt

clayey
schist,

claystone
limestone sandstone

sandstone,
limestone,

and claystone,
stratified

sand and
gravel with
many fines

metamorphic/
igneous rock

sand and
gravel basalt carsified

limestone

Ip 1 2–6 2–5 2–7 4–8 4–8 4–8 2–8 6–9 2–10 8–10

Ip Typical 1 3 3 6 6 6 6 4 8 9 10

C
K (m/day) <4.1 4.1–12.2 12.2–28.5 28.5–40.7 40.7–81.5 >81.5

Ip 1 2 4 6 8 10
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Table 9. Classes of vulnerability defined for DRASTIC [123].

DRASTIC Index

Quantitative Classes Qualitative Vulnerability

23–79 Insignificant
80–99 Extremely low

100–119 Very low
120–139 Low
140–159 Average
160–179 High
180–199 Very high
200–226 Extremely high

(
Sij

)
mn =


S11 S12
S21 S22
...

...
Sm1 Sm2

· · · S1n
· · · S2n

· · ·
...

· · · Smn

 (10)

where
(
Sij

)
is the vector of cell values for the suitability map in lines (i) and (j) and (m)

and (n) are the dimensions of the suitability grid map.

2.2.3. Mapping of Specific DRASTIC Vulnerability

Changes were then introduced to the specific DRASTIC [124], considering the current
groundwater abstractions in the territory, in two phases: (i) first, the lithological units
were classified according to the classic DRASTIC index (DI), with the same values that
define potential vulnerability, degree of vulnerability, and qualitative vulnerability class
(Table 10); (ii) second, the various units were reclassified according to the location of water
catchments and springs; factors considered: (a) presence of geological singularities (OGSs),
such as lithological contacts, veins, faults, and fractures, with real or potential connection
to water catchments and aquifers; (b) location of the geological unit (LGU) in relation to
water catchments and springs. Depending on the circumstances listed below, detailed
reclassification may result in a higher or lower degree of classification; the final classification
was identified as Specific DRASTIC to differentiate it from the typical situation. Several
scenarios were considered for the OGS Factor: (i) the unit maintains the vulnerability
class under the general DRASTIC index (DI) if there were no discontinuities with an
actual or potential connection to the water abstractions and aquifers; (ii) if there were
discontinuities or springs connected to the aquifer, these locations were classified as “very
high” to “extremely high” vulnerability (G = 7 to 8); (iii) if there were discontinuities or
locations with the potential for springs, these areas were classified as “medium” to “high”
vulnerability (G = 5 to 6, Table 10). The following scenarios were considered when it
came to the LGU Factor: (i) if the unit was located upstream of areas that either currently
or potentially discharge water (groundwater abstractions and springs), it must maintain
its vulnerability class under the general DRASTIC index (DI); (ii) if the unit was located
downstream of established or prospective areas of natural groundwater discharge, the
unit’s class must be lower than the overall DRASTIC index (DI). In certain cases, the unit
class may even go from high vulnerability to low vulnerability, depending on the details of
each case. Units with a very high vulnerability index may not be accessible to other types
of occupation and, as long as the quality of underground resources is maintained, it is often
necessary to use the entire area.
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Table 10. Drastic index and associated vulnerabilities [124].

Normal DRASTIC
Index [40]

Potential
Vulnerability (%) Degree Qualitative Vulnerability

<80 <30 1 Nonexistent
80–99 30–39 2 Very very low

100–119 40–49 3 Very low
120–139 50–59 4 Low
140–159 60–69 5 Moderate
160–179 70–79 6 High
180–199 80–89 7 Very high

>199 >90 8 Extremely high

When applying the methodology to the case study, the main objective was to maintain
good water quality at the different extraction points around the cemeteries.

3. Results and Discussion
3.1. Development of Maps Depicting Site Characteristics

Parameter D affects the extent and degree of physical and chemical attenuation and
degradation, as well as the degree of interaction between subsurface constituents and
percolating pollutants. Parameter D was estimated using lithology and correlation with
studies carried out in that area [124,125].

Parameter R signifies the volume of water that infiltrates through the ground surface
and reaches the water table within a specified land area The expected recharge rate was
computed by the Thornthwaite method [126] and, additionally, it will be connected to the
GWPZ map.

Geotechnical properties are intricately connected to parameter A, which denotes the
attenuation potential based on the lithology within the saturated zone. The geological
map of Portugal, sourced from LNEG at a scale of 1:500,000 [127], supplied the necessary
information for computing the partial indices A, I, and C. The importance of parameter
I in determining vulnerability is due to its impact on the residence time of pollutants in
the unsaturated zone, and consequently, the probability of attenuation. The capacity of
the aquifer to transport water, as indicated by parameter C, affects both the hydraulic
gradient and the groundwater flow. High conductivity readings indicate a high risk of
contamination. Singhal and Gupta’s abacus [128] was used to calculate this parameter.

A geological map of the study area is shown in Figure 5. With a geological history
spanning approximately 180 million years, the Figueira da Foz region is distinguished by
both the more recent geodynamic setting of the Cenozoic deposits and the numerous Meso-
zoic evolutionary stages of the Lusitanian Basin [129]. Stratigraphic units within the study
region are arranged in a substantial column extending from the Mesozoic (Upper Triassic) to
the present, positioned discordantly over Precambrian and Paleozoic metasediments [129].
Cemetery UC9 is located within the Cabaços limestone and marl units, categorised within
the middle to upper Oxfordian period. The brown or black fine-grained flint nodules are
connected to the micro-sparitic and clayey micritic limestone decimetre scales deposited in
freshwater limnic environments [130]. This unit has a thickness of about 250 m, attitudes
of N20◦ W, 10–15◦ W; the limestone expresses itself more towards the base; this unit has
poor aquifer suitability despite being quite fractured. Cemetery UC10 is in the Costa de
Arnes crowded limestone unit, which consists of marly limestones, limestone sandstones,
and marls with a lapped surface that is concreted or piled [130]. This unit has a thickness
of 50 to 60 m, with a semi-parallel attitude to the previous unit; the base is composed of
marls with detrital components, acquiring aquifer–aquitard characteristics. Clayish soils
with a high specific surface area and cation-exchange capacity (CEC) are the most common
because they maximise the retention of fluids and metals [131]. For a few reasons, limestone
aquifers are especially susceptible to pollution namely due to the karst morphology that
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they are prone to develop. Sinkholes and sinking streams are excellent ways for pollutants
to seep from the topsoil into an underlying aquifer.
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Figure 5. Geological map of the study area (adapted from [132]).

The cemeteries are in the Mondego River Basin. One of the Mondego River’s tributaries
on the left bank, the Pranto River, forms the western boundary of the municipality of Soure.
It is distinguished by a low-lying area with elevations below 50 m until it joins the Mondego
River at a height of roughly 2 m, known as the Vale do Pranto [124,132]. The river basin
receives water from multiple streams and flows over alluvium that has been deposited
on clays, marls, and limestones [124,129]. The extent of the fluctuations in water levels
between the wet and dry seasons, along with the significant alterations in the flow of the
springs through which they discharge, suggests that the self-regulating capacity of the
karst aquifer systems is limited. There could be a 50–60% infiltration rate [132]. UC10
and the Bicanho Medical Spa are situated in the same lithological unit. Cemetery UC9
is in the ‘Orla Ocidental Indiferenciada da Bacia do Mondego’ (OOIBM) aquifer system
(Figure 6). Cemetery UC10 is in the ‘Figueira da Foz-Gesteira’ aquifer system (Meso–
Cenozoic) (Figure 7).

UC10 and the Bicanho Medical Spa are both located in the same aquifer system, as are
UC9, numerous water wells, and some springs. The conceptual flow model of the ‘Figueira
da Foz-Gesteira’ aquifer system (a) is essentially a geological volume composed primarily
of porous detrital sediments that exhibit a diverse array of textures and lenticular structures.
The system appears multi-layered because the clayey layers divide the multiple aquifer
units. Owing to the wide range of granulometric compositions, hydraulic properties can
vary significantly between sites. Karstification also affects the transmissive and storage
capacities. These aquifers are especially susceptible to pollution owing to infiltration and
rapid flow through karst structures. They also have a very low capacity for self-cleaning
and the rapid spread of pathogens. A conceptual model (Figure 7) proposed by Portugal
Ferreira [125] for the study area suggests that recharge occurs to the NE and at higher
elevations, particularly in the Cabo Mondego limestone and marl units, and then evolves
to the SW until the Pranto Fault.
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c [124,125].

The cemeteries are located near the Atlantic coast and nested within the climate region
of the west coast. Their Köppen Geiger classification is Csb, meaning that their climate is
mesothermal (humid temperate) with a long and hot dry season in July. This climate is
typical of the Mediterranean region owing to the influence of the ocean [133]. The coastal
climate of the Mondego Basin is classified as type C2 B’2 according to the Thornthwaite
climate classification [126] and it becomes wetter as the height of the basin increases. Using
information gathered from the Portuguese Climate website [133], the Thornthwaite method
(Figure 8) was used to determine the region’s actual annual evapotranspiration. The air
temperature in the study area ranges from 14.2 ◦C to 29.1 ◦C, with an average annual
precipitation of 852.4 mm and actual evapotranspiration of 587.9 mm. The hydrological
balance results led to the following conclusions: there is a dry period and a wet period. The
first, known as the wet period, is represented by the water deficit (DH), which lasts from
May/June to September, and the second, known as the water surplus (SH), extends from
November to May. The water surplus is divided into two components: surface runoff (R)
and underground runoff (G), resulting in SH = R + G = 264.5 L/m2, which is initially very
modest due to the contribution from underground recharge.
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Parameter S assesses soil characteristics in the upper weathered zone to minimize the
risk of pollution. Despite the endogenous features of cadavers influencing decomposition
(e.g., age at death, cause of death, and fat content), concerns about burial soil and its impact
on human taphonomy remain significant. The soil comprises an aqueous phase with
dissolved elements, a gas phase, as well as biological and solid components, encompassing
both organic and inorganic materials. Ferreira Gomes [124] looked closely at the data
regarding each unit’s soil type. The soil of both cemeteries is clay loam. This soil has a high
potential for surface runoff when fully saturated. Permeability, or the ability of water to
pass through soil, is either low or very low. Usually comprising less than 50% sand and
more than 40% clay, they have a clayey texture. In some areas, they might also have a
high potential for contraction and expansion. All soils that are less than 50 cm deep to a
restrictive layer and all soils that have a groundwater table within the first 60 cm of depth
were included in this group [132]. Soils with a range of intermediate characteristics, such
as clayey sand and sandy clay [134–136], are best-suited for cemetery locations.

Changes in slope affect the T parameter as they influence drainage patterns. Flatter
regions have become vulnerable to contaminant flows that can reach aquifers. Using
topographic data from the USGS [137] and a previously prepared DTM, the slope map
(Figure 9) was developed, which delineates zones suitable for aquifer recharge and prone
to infiltration of pollutants. According to the slope map, cemetery UC9 has a higher slope
(6–12%) than cemetery UC10 (<2%).
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3.2. Development of the Thematic Maps and the DRASTIC-Based Vulnerability Map

Based on the data presented in Table 11, seven thematic maps (Figure 10) were created
and reclassified for each DRASTIC parameter.
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DRASTIC model.

Parameter D assumes a rating of nine for both cemeteries because the unsaturated zone
depth is between 1.5 and 4.6 m. The index is relatively high because possible pollutants
can enter the aquifer due to the water table being relatively close to the surface (Table 11
and Figure 10a).

The hydrological balance computation and the GWPZ chart indicate that both ceme-
teries have an index of eight for parameter R. The two cemeteries were evaluated with a
recharge rate of 178–254 mm/year because they are situated in lithological units of karst
limestones, which are favoured for aquifer recharge (Table 11 and Figure 10b).
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Table 11. Characteristics of lithological units for the development of thematic DRASTIC maps.

Unit Parameter Class Index Weight Partial
Index DRASTIC Vulnerability

I—Recent alluvium
(free aquifer)

D <1.5 m 10 5 50

148

Pollution is usually
moderate but can

occasionally be very
high; it spreads quickly

in flooded areas and
along gravel lenticles.

R 102–178 mm/year 6 4 24

A Sand and gravel with
many fines 8 3 24

S Muddy 2 2 4
T <2% 10 1 10

I Sand and gravel with
many fines 6 5 30

C 4.1–12.2 m/day 2 3 6

II—Taveiro sands
and clays

(Upper Cretaceous,
free aquifer)

D 1.5–4.6 m 9 5 45

136

In general, low, because
clay minerals
allow heavy-

metal adsorption.

R 102–178 mm/year 6 4 24
A Sand and gravel with clay 7 3 21
S Clay loam 3 2 6
T 2–6% 9 1 9
I Sand and gravel with clay 5 5 25
C 4.1–12.2 m/day 2 3 6

III—Costa de
Arnes crowded

limestones (Upper
Cretaceous,
free aquifer)

D 1.5–4.6 m 9 5 45

197

The presence of karst
limestones makes the
lithological unit that

contains UC10
very vulnerable.

R 178–254 mm/year 8 4 32
A Karsified limestone 10 3 30
S Clay loam 3 2 6
T <2% 10 1 10
I Karsified limestone 10 5 50
C 40.7–81.5 m/day 8 3 24

IV—Carrascal
Sandstones

(Middle
Cretaceous, free to

confined/semi-
confined aquifer)

D 1.5–4.6 m 9 5 45

159 In general, average

R 178–254 mm/year 8 4 32
A Sand and gravel 8 3 24
S Silty loam 4 2 16
T 2–6% 9 1 9

I Sand and gravel with
many fines 6 5 30

C <4.1 m/day 1 3 3

V—Sands and
clays with

kaolinite (Pliocene,
free aquifer)

D 1.5–4.6 m 9 5 45

136

In general, low, because
clay minerals
allow heavy-

metal adsorption.

R 102–178 mm/year 6 4 24

A Sand and gravel
with kaolinite 7 3 21

S Clay loam 3 2 6
T 2–6% 9 1 9

I Sand and gravel
with kaolinite 5 5 25

C 4.1–12.2 m/day 2 3 6

VI—Cabaços
Limestones and

Marls (Upper
Jurassic, free to
confined/semi-

confined aquifer)

D 1.5–4.6 m 9 5 45

192

The presence of karst
limestones makes the
lithological unit that

contains UC9
very vulnerable.

R 178–254 mm/year 8 4 32
A Karsified limestone 10 3 30
S Clay loam 3 2 6
T 6–12% 5 1 5
I Karsified limestone 10 5 50
C 40.7–81.5 m/day 8 3 24

VII—Cabo
Mondego

Limestones and
Marls (Middle
Jurassic, free to
confined/semi-

confined aquifer)

D 1.5–4.6 m 9 5 45

189

The presence of karst
limestones makes the

lithological unit
very vulnerable.

R 102–178 mm/year 6 4 24
A Karsified limestone 10 3 30
S Clay loam 3 2 6
T <2% 10 1 10
I Karsified limestone 10 5 50
C 40.7–81.5 m/day 8 3 24

VIII—Boa Viagem
Sandstones (Upper

Jurassic, free to
confined/semi-

confined aquifer)

D 4.6–9.1 7 5 35

131 In general, low

R 102–178 mm/year 6 4 24

A Sandstone, limestone, and
claystone, stratified 6 3 18

S Clay loam 3 2 12
T 2–6% 9 1 9

I Sandstone, limestone, and
claystone, stratified 6 5 30

C <4.1 m/day 1 3 3
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Pollutant dilution and dispersion were significantly impacted by saturation zone
water content and net recharge. Parameter A is determined by the lithological material
in the saturated zone; lithological unit III—Costa de Arnes crowded limestones (Upper
Cretaceous, free aquifer), and lithological unit VI—Cabaços limestones and Marls (Up-
per Jurassic, free to confined/semi-confined aquifer), were assigned an index of 10, the
maximum because they were classified as Karstified limestones, units that are extremely
permeable and allow for much faster water flow within the saturated zone (Table 11 and
Figure 10c). As a pollutant reservoir and filter, the soil solid phase’s capacity to retain and
release hazardous chemical species and microbes is essential. Both cemeteries received an
index of three due to their location on clay loam soil. Clay, which is composed of smaller
particles, has a greater surface area and can retain more water (Table 10 and Figure 10d).

The UC9 cemetery is situated in a convex area with medium slopes (6–12%), earning a
rating of five on the T parameter. In contrast, the UC10 cemetery is situated in a flat area
with a 2% slope, earning a rating of 10. Contaminants in UC10 can linger long enough on
the surface to penetrate (Table 11 and Figure 10e).

In terms of parameter I, both the UC9 and UC10 cemeteries are in lithological units
with a lithological index of 10, the highest level, because they are Karstified limestones
with a very short contact time with the pollutant (Table 11 and Figure 10f).

Lastly, an index of eight was given to the UC9 and UC10 cemeteries concerning param-
eter C. For the respective units where the cemeteries are located, a hydraulic conductivity
of approximately 40.7 to 81.5 m/day was estimated (Table 11 and Figure 10g).

The vulnerability map (Figure 11) was then produced using the raster calculator
function and Equation (8), weights from Figure 4, ratings from Table 8, and GIS matrix
operations through Equations (9) and (10). The study area’s values ranged from 105
(extremely low vulnerability) to 197 (very high vulnerability). The cemeteries at UC9
and UC19 are in areas with values of 192 and 197, respectively, indicating extremely high
vulnerability (Figure 11a). It is required that an environmental monitoring programme
is implemented at cemetery UC10, akin to that described in Directive 1999/31/EC [138],
for groundwater uses (e.g., wells, holes, springs, and hot springs). With less clay present,
weaker, less purifying soils at the surface, and a location in a flat area where pollutants
are more likely to seep into the aquifer, UC10 is more vulnerable than UC9. The following
factors contributed to vulnerability: I > D > R > A > C > S > T.

The occupation rate map (Figure 11b) was constructed from the cemetery surface area
(TSC), grave surface area (SAB) (typically 2.6 m × 1.5 m, length × width), and occupancy
rate (SAB/TSC ratio) observed for 2014 in [139]. A flow direction map was also created
to safeguard water quality (Figure 11c). Pedrosa et al. [139] note that UC9 (14.0%) has a
marginally lower occupancy rate than UC10 (15.4%) for each cemetery (Figure 11b).

According to the flow direction tool, surface waters in UC9 flow to the north and
in UC10 to the west (Figure 11c, blue arrows)Although the 500 m buffer applied to all
georeferenced water points is still quite far from the cemeteries in question, it is important
to remember that the shared aquifer units are quite close (Figure 11c). However, it is estab-
lished that in this case, there is no reason for the cemeteries under study to be concerned
about any water hole becoming contaminated. It is critical to remember that many homes
have water extraction points that are not listed in any database.

Every lithological unit’s unique DRASTIC analysis is displayed in degrees in Table 12,
and the representation is shown in Figure 12. Because Unit I have no OGS and does not
affect the locations of cemeteries or georeferenced water sources, it will move from degree 5
to 4. Unit II behaves similarly to Unit I, but because UC10 has a superficial flow to the west
that is draining in that direction, it will keep the degree at 4, not drop it to 3. Considering
that Unit III is a part of the same aquifer system as the mineral water resource at Bicanho
Medical Spa, there are numerous particularities to consider. The OGS reports that there
are no discontinuities or faults near the UC10. Meanwhile, the LGU notes that although
the cemetery is situated downstream of the georeferenced water points, the grade of 7 will
be preserved because of the significance of these same resources. Georeferenced water
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points are present in Unit IV, but they are all upstream of Unit 10 itself. Even though there
are a lot of discontinuities in the unit in question, none of them seem to be dangerous for
moving potential contaminants from UC10. The grade of five will be upheld for security
concerns. There are large discontinuities and some faults cross-unit V, but they do not
affect where the cemeteries are located. Upstream, there is only one georeferenced water
point, so the grade will drop from 4 to 3. Unit VI contains UC9 as well as a water point that
provides a public supply upstream. The degree will persist because UC9 is in an area with
northerly surface runoff. Because of how far away UC9 is from the water point, it has not
been raised to a higher level. Unit VII features a georeferenced water point, discontinuity,
and a few faults; however, because it is situated upstream of the cemeteries, the grade will
drop from 7 to 6. Unit VIII is finally distinguished from the other units by a density of
lineament and two clearly defined faults crossing it. Nevertheless, they do not affect the
cemeteries’ susceptibility to pollution. If the grade was dropped from 4 to 3, georeferenced
water points were also protected.
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Table 12. Drastic index and Specific Drastic index in degrees.

Unit DRASTIC Index Potential
Vulnerability (%) Degree Qualitative

Vulnerability

Specific
Vulnerability

Degree

Qualitative
Vulnerability

I—Recent alluvium
(free aquifer) 148 60–69 5 Moderate 4 Low

II—Taveiro sands and clays
(Upper Cretaceous, free aquifer) 136 50–59 4 Low 4 Low

III—Costa de Arnes crowded
limestones (Upper Cretaceous,
free aquifer)

197 80–89 7 Very high 7 Very high

IV—Carrascal Sandstones
(Middle Cretaceous, free to
confined/semi-confined aquifer)

159 60–69 5 Moderate 5 Moderate

V—Sands and clays with
kaolinite (Pliocene, free aquifer) 136 50–59 4 Low 3 Very Low

VI—Cabaços Limestones and
Marls (Upper Jurassic, free to
confined/semi-confined aquifer)

192 80–89 7 Very high 7 Very high

VII—Cabo Mondego
Limestones and Marls (Middle
Jurassic, free to
confined/semi-confined aquifer)

189 80–89 7 Very high 6 High

VIII—Boa Viagem Sandstones
(Upper Jurassic, free to
confined/semi-confined aquifer)

131 50–59 4 Low 3 Very LowWater 2024, 16, x FOR PEER REVIEW 26 of 34 
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3.3. Final Considerations

Despite the large number of studies that have evaluated the quality of groundwater un-
der the influence of cemeteries [140–142], relatively few have looked at soil and unsaturated
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zone characteristics in their evaluations. The only study that examined cemeteries was
conducted by Razack and Sinan [73], who discovered that the observed DRASTIC indices
ranged from 71 to 204. By applying the alternative GOD method to create vulnerability
maps in four cemeteries in Santa Maria (Brazil), Kemerich et al. [143] determined that these
cemeteries were the cause of bacterial contamination in the groundwater.

Owing to urban sprawl, a growing population, and ongoing conflicts between different
land uses, the number of deaths is currently rising, while the amount of available land
is decreasing. According to several sources [35,56,141], cemeteries should be located
250–500 m away from sources of potable groundwater and 30 m away from water courses or
springs to reduce the risk of groundwater contamination; sands underlain by impermeable
layers, for example, are not suitable as a burial substrate due to their high permeability; It
is advantageous to have a thick aeration layer and a deep underground water table; the
ground between graves and tombs must be made watertight; they must not be situated in
sloped terrain or areas susceptible to landslides; there are no water-filled graves. According
to previous studies, cemeteries have a high potential for pollution, especially if improperly
built [144]. Cemeteries should have their surrounding groundwater and surface water
quality investigated. In the absence of specific guidelines, monitoring should adhere to
the Landfill Directive’s best practices for water monitoring near landfill sites (Directive
1999/31/EC) [53].

Human decomposition can contaminate groundwater in the vicinity of cemeteries,
but not because of any specific toxicity, but rather because it raises naturally occurring
organic and inorganic substance levels to a point where the groundwater becomes un-
suitable for any use [145,146]. Cemetery and burial ground risk management has been
researched [28,127,147–152]. Increased nutrient concentrations, particularly nitrate com-
pounds [7,13], have been found, and groundwater has been identified as the primary
cemetery pollutant receptor [28,144,153–155].

The impact of numerous anthropogenic sources of pollution is the driving force
behind most studies on groundwater vulnerability assessment; however, because of the
location of the equipment and the lack of other notable nearby sources of pollution, this
study particularly focused on pollution from cemeteries. People who use contaminated
groundwater as their household water supply are at risk of spreading regional epidemics.
As a result, because it contains important information, management organisations for
cemeteries as well as entities in charge of environmental vulnerability and public health
vigilance should replicate this study. A risk-based decision-making framework proposed
by Pollard et al. [155] has been widely adopted in the UK and other European countries.

Future societal challenges will encourage the construction of technologically advanced
cemeteries with digital systems (humidity, temperature, pH, and physical–chemical param-
eters sensors) that will allow the state of degradation of bodies to be accurately assessed
without the need to open the graves. Currently, “green funeral” practices are increasing,
where a tree is planted next to the buried body, and there are already forest cemeteries, eco-
cemeteries, and natural memorial reserves. In the future, new contaminants will emerge
related to the development of medical, industrial, and agricultural practices (so-called
emerging contaminants), which will generate concern in the management of municipal
services, such as cemeteries, as they can affect the water cycle.

4. Conclusions

This investigation made it possible to identify areas at risk of groundwater contam-
ination from surface runoff from two cemeteries in the Soure region (Portugal), through
the construction of a vulnerability map based on the DRASTIC and DRASTIC-specific
indices and applying GIS tools and operations. Cemeteries can be a significant source of
water contamination, particularly in vulnerable areas where this practice is the main source
of pollution. The vulnerability map allowed for the identification of areas with different
susceptibilities to contamination (ranging from “Low” to “Very high” for the DRASTIC
index and from “Very Low” to “Very high” for the Specific DRASTIC).
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Both cemeteries are in an area of high vulnerability to aquifer contamination, though
UC10 is slightly more vulnerable in quantitative terms. Its location in an area with a lower
slope (2%), which promotes infiltration, along with a higher drainage density and more
favourable soil occupation and use—along with a higher TWI—all contribute to this. UC9
is in an area that has higher line density, SPI value, distance to rivers, and NDVI, but the
environment is not as favourable for aquifer recharge and infiltration as UC10. The two
cemeteries are situated in nearly identical lithological units in terms of hydraulics, which
justifies the same vulnerability in terms of quality. Because the UC10 cemetery is close to
the mineral resource of the Bicanho Medical Spa, within the same aquifer unit, and is a
highly unique and sensitive resource, it must be closely monitored.

Hydrogeological cartography and groundwater vulnerability maps are excellent re-
sources for helping the description, analysis, modelling, and communication of groundwa-
ter resource management. The production of maps from hydrogeological models like the
DRASTIC index is made possible by the high potential of GIS for processing and analysing
complex geo-referenced data. Particularly now that space is an issue in densely populated
areas, GIS has shown to be an effective cemetery management tool.
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