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Abstract: The high water content of the surrounding rock in loess tunnels will lead to the deterioration
of rock strength, causing deformation and damage to the initial support structure and thereby affecting
safety during construction and operation. This article first analyzes the strength characteristics of
loess under different water contents through indoor physical and mechanical tests. Secondly, based on
numerical simulation results, the ecological environment, and design requirements, the water content
threshold is determined. Finally, a reinforcement scheme combining surface precipitation measures
and curtain grouting measures is proposed, and the reinforcement effect is analyzed based on on-site
monitoring data. The results show that as the water content of loess increases, the cohesion, internal
friction angle, and elastic modulus of the surrounding rock all decrease, leading to an increase in the
sensitivity of the surrounding rock to excavation disturbances and a deterioration in strength. During
the construction process, it shows an increase in the vault settlement and sidewalls’ convergence.
During the process of increasing the distance between the monitoring section and the palm face, the
settlement and convergence of the tunnel show a rapid growth stage, slow growth stage, and stable
stage. The water content threshold is determined to be 22%. The reinforcement scheme of combining
surface precipitation measures with curtain grouting measures not only meets the requirements of
the ecological environment but also makes the settlement and convergence values lower than the
yellow warning deformation values required by the design.

Keywords: loess tunnel; water content; deformation law; monitoring measurement; countermeasures

1. Introduction

With the rapid development of tunnel engineering in China, it is inevitable to en-
counter complex and unfavorable geological strata during the construction process [1–5].
Among them, the loess strata, due to their obvious structure, high permeability, collapsi-
bility, and vertical joint development [6–10], will face construction risks such as water
leakage, large deformation, falling blocks, and collapse when constructing tunnels in this
stratum [11–14]; especially, the collapsibility of loess often causes the sudden instability
of the surrounding rock in a short period, leading to disasters [15–17]. In addition, the
disaster characteristics of loess may also lead to the cracking of the lining structure, thereby
affecting the safe operation of tunnel engineering in the later stage [18–21].

Most loess tunnels are subject to waterfall erosion, lateral erosion, and headward
erosion [22,23] due to surface water infiltration or groundwater erosion during the con-
struction process, which in turn results in the reduction in the strength of the surrounding
rock [24,25], large deformations, and wet subsidence of the loess [26–28]; therefore, the
mechanism of structural failure in loess tunnels under different water contents is the fo-
cus of research. In addition, in groundwater flow simulation, the input parameters are
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uncertain [29] and certain methods are needed to predict the parameters [30]. As the water
content continues to increase, it contributes to the formation of a saturated zone at the
bottom plate, which in turn affects the overall displacement of the tunnel [31], and in
severe cases will lead to tunnel collapse [32]. Hong [33] conducted extensive literature
research and found that the types of collapse and failure in loess tunnels can be divided
into four types. Among them, the collapse and failure caused by water-rich loess in loess
tunnels account for about 90% of the total. At present, the research on the deformation
of loess water content on tunnel structure can be explored in depth based on the results
of experiments and numerical simulations, in addition to the way of literature research.
Liu [34] used a multipoint independent loading test system for tunnel lining to analyze
the deformation and cracking of the lining structure based on the degradation mechanism
of the mechanical properties of loess surrounding rock under the action of surface water.
It was found that the development order of cracks in the lining structure is Type I initial
cracks, Type L intermediate cracks, and Type Y later cracks, and the types of cracks in
the lining are mostly concentrated in Type L. Xue [35] obtained sample data through a
numerical simulation analysis of loess tunnels and proposed a model for predicting the
total deformation of loess tunnels in combination with the Bulletin of Engineering Geology
and the Environment (BPNN). The prediction model was applied to five loess tunnel engi-
neering examples, and the results showed that the model can accurately predict the total
deformation of loess tunnels. Qiu [36], based on the indoor model test combined with a
numerical simulation, studied the effect of pipe surge water on underground loess, and the
results showed that the maximum contact pressure appeared in the location of the bottom
of the arch, independent of the location of the water surge; after the occurrence of the water
surge, the surrounding rock will form a cavity area, and the whole area seems to experience
a conical distribution. Li [37] analyzed the stress state of the tunnel structure through
on-site large-scale immersion tests, and the results showed that as the water content of the
loess surrounding rock near the tunnel lining structure gradually increased, the inverted
arch began to produce upward displacement, and there was significant sinking at the arch
foot. Cui [38] used the model test to determine that the loess tunnel arch position should
be reserved as part of the deformation, and the deformation needs to be 2–4 times the
sidewall. In addition, some studies have shown that the closer the lining structure is to the
loess-wetted area, the greater the growth of its bending moment, axial force, and stress.
Shao [39] evaluated the collapsibility characteristics of loess by using sand well immersion
tests; during the experiment, the settlement rate of loess went from slow to fast, then to slow,
and finally tended to stabilize. The collapse deformation of unsaturated loess is sudden
and controlled by the water content. Many scholars have focused their research on the
influence of a single factor on the structure of loess tunnels due to changes in the water level,
with little consideration given to factors such as the water content or the distance between
the monitoring section and the tunnel face on the deformation mechanism of the initial
support structure of the tunnel. Regarding controlling the deformation of loess tunnel
structures, Wei [40] proposed using curtain grouting to control the deformation of tunnel
structures. Hong [33] proposed a scheme for reinforcing soft loess through the use of a pipe
roof, advanced small pipes, and grouting. Hong [11] proposed the use of segmented large
pipe sheds with grouting to reinforce collapsed areas. The above reinforcement schemes
are all directly applied in loess tunnels and have not taken into account the influence of
water content thresholds; after the implementation of the disposal plan, not only did it not
reflect the optimal effect of the reinforcement plan, but it also lacked environmental and
economic benefits.

In summary, this article first comprehensively analyzes the influence of groundwater
in rock strata on the mechanical properties of loess. Secondly, based on the numerical
simulation results of tunnel excavations under the influence of groundwater in different
rock strata, the deformation mechanism of the initial support structure is explored under
the influence of two factors: the water content and the distance between the monitoring
section and the palm face. The groundwater action in rock strata is simulated in numerical
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calculations by controlling the water content of the surrounding rock. Finally, a recom-
mended threshold value for controlling the water content and corresponding measures for
controlling tunnel structural deformation are proposed, reducing environmental damage
and the construction safety risks caused by excessive water blocking or precipitation. The
research results have good theoretical significance and application value for controlling the
water content and deformation of the surrounding rock of loess tunnels and optimizing
construction technology measures.

2. Project Overview

The Shangge Village Tunnel of the Yinxi High-Speed Railway (the Ganning Section)
has a total length of 6782.45 m (DK 207 + 517.55-DK 214 + 300), with a burial depth of
5.5–102 m. The IV grade surrounding rock is 2560 m long and the V grade surrounding
rock is 4222.45 m long. The tunnel longitudinal and cross-section drawings are shown in
Figure 1. The geological strata in the tunnel site area are mainly composed of Quaternary
Middle Pleistocene aeolian clay loess, mainly hard plastic, with developed vertical joints.
The section of the tunnel body passes through shallow buried slow slopes, hard plastic
loess, and underground water-affected sections, which pose high construction risks and
safety risks. The main type of groundwater in the Shangge Village Tunnel is pore water
in the Quaternary loose layer, which is mainly distributed in the upper part of the loess
plateau. The aquifer is mainly the middle Pleistocene loess. The loess layer has both the
general characteristics of loose layer pore water and the hydraulic properties of fissure
water. The particles in this layer are coarse, the structure is loose, and the porosity is high. It
is the main aquifer in the loess plateau area, as well as a storage space and transport channel
for groundwater. The groundwater level line is located above the tunnel body and is deeply
controlled by factors such as rainfall, the size of the loess plateau, terrain cutting, and the
thickness of the loess layer. According to drilling data and the investigation of water wells
in the loess plateau area, the groundwater level is buried at a depth of about 50–70 m,
and the thickness of the aquifer is 10–30 m within the exploration depth. The area of the
loess plateau where the tunnel passes through is complete and open, and the groundwater
storage conditions in the center of the loess plateau are relatively good, with a shallow water
level burial depth. In areas with deep valley cutting, the discharge conditions of the surface
water and groundwater are good, while the storage conditions of the groundwater are
relatively poor.

During the excavation process of the Shangge Village Tunnel on the Yinxi Railway
(the Ganning section), the surface of the initial support structure was damp, and wa-
ter seepage was more severe, flowing out in drops or lines. In some sections, water
flowed out in streams along the pipe shed drilling. The arch foot softened severely, the
arch settlement was greater, and the local sections had more severe falling blocks, re-
sulting in the significant deformation of the palm surface. Moreover, during the exca-
vation of shallow buried sections, cracks appeared to varying degrees on both sides of
the surface along the direction of the tunnel. At the same time, circumferential cracks
appeared in the initial support-lining structure, with significant settlement of the arch
crown and several sudden instability disasters leading to collapse. The disaster situa-
tion of the initial support structure is shown in Figure 2. If the water content of loess
is high, it will significantly increase the probability of construction risks such as large
deformation, falling blocks, and collapse during construction. As the tunnel excavation
progresses, the water content of the excavation section also changes. In addition, after
excavation, the water content will further increase due to the relaxation of the unloading
surrounding rock.
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3. Physical and Mechanical Properties of Loess

In order to reduce the disturbance to undisturbed soil samples, after sampling the loess
surrounding rock on site, immediately seal the samples with preservative film, wrap the
samples with damping foam, and send them to the laboratory for physical and mechanical
tests within 24 h. The physical and mechanical parameters of the loess sample obtained
through statistical analysis are shown in Figure 3. The range of the water content of the
loess samples in this test is 22~30.5%. The weight of loess increases with the increase
in the moisture content, but the growth rate changes with a trend of “increase-decrease-
increase-decrease-increase”. The Poisson’s ratio of loess is positively correlated with its
water content, with a growth rate of 34.4%. The elastic modulus, internal friction angle,
and cohesion of loess decrease with the increase in the water content, and the degradation
of the internal friction angle is very significant, decaying from 35.0 kPa to 2.15 kPa; the
attenuation amplitude of internal friction is relatively small, only decreasing by 18.3%.
When the water content ranges from 27.4% to 29.5%, there is a rate change zone in the
elastic modulus, internal friction angle, and cohesion. The attenuation rate of the internal
friction angle increases, while the attenuation rate of the elastic modulus and cohesion
decreases. However, the rate change is small, and there is no obvious step in the curve. As
the water content of loess increases, water molecules will form a lubricating layer between
loess particles, reducing the contact area and internal friction angle between particles.
In addition, after absorbing water, loess will expand, leading to larger voids in the soil
and reduced interaction forces between particles. The above are the main reasons for the
changes in the mechanical parameters of loess. Therefore, water is an important factor
affecting the deterioration of loess surrounding rock; if the water content continues to
increase, the strength of the surrounding rock will also decrease synchronously.
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4. Analysis of Deformation Mechanism of Primary Support Structure
4.1. Numerical Model

This article uses FLAC 3D software to simulate the excavation and support of tunnels,
with a burial depth of 64.7 m. The excavation is carried out by using the three-step reserved
core geotechnical method. The excavation sequence is to first excavate the upper step, then
excavate the core soil, and finally excavate the lower step. The excavation cycle footage is
2 m/d. The model stipulates that the direction of the longitudinal mileage increase along
the tunnel is in the X-direction, the vertical direction is in the Z axis direction, and the
centerline of the tunnel excavation cross-section is in the positive direction of the Y axis
to the right. According to the Saint Venant principle, in order to reduce the influence of
boundary effects on tunnel construction, the distance between the tunnel and the model
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boundary is 3–5 times the diameter of the excavated hole, and the model has a size of
100 m in the X-, Y-, and Z-directions 100 m × 100 m × 100 m. The boundary conditions are
displacement constraints, with Y-direction constraints applied to the left and right sides
of the model, X-direction constraints applied to the front and rear boundaries, Z-direction
constraints applied to the bottom surface, and a free boundary applied to the upper
boundary. Set up vault-settlement monitoring points (GD01) and sidewall-convergence
monitoring points (SL02 and SL03) inside the tunnel. The whole tunnel model and its
excavation and measuring point layout diagram are shown in Figure 4.
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The surrounding rock was analyzed by using the Mohr–Coulomb constitutive model [3]
with eight different water contents in the surrounding rocks. The detailed mechanical pa-
rameters are shown in Figure 3. The lining structure adopts an elastic model [24], among
which the initial support structure adopts C30 concrete with a thickness of 30 cm. The
secondary lining structure adopts C40 concrete with a thickness of 50 cm [41], and its
mechanical parameters are shown in Table 1.

Table 1. Mechanical property parameters of support.

Supporting Structure Unit Weight
(kN/m3)

Elastic Modulus
(MPa)

Poisson
Ratio

Thickness
(cm)

Initial support structure 22 25,000 0.25 30
Secondary lining 25 32,000 0.25 50

4.2. Results
4.2.1. Settlement

According to the analysis of the numerical simulation results, it can be seen that
the relationship between the excavation distance and settlement under different water
contents is shown in Figure 5. When the distance between the monitoring point and the
palm surface is constant, as the water content increases, the settlement of the vault also
increases synchronously, and the settlement rate shows a trend of first increasing and then
decreasing. During the process of increasing the distance between the monitoring point and
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the palm face from 0 m to 30 m, the settlement of the surrounding rock increased sharply,
with the largest increase in settlement reaching 187 mm when the water content of the
surrounding rock was 30.5%. As the distance between the monitoring point and the palm
surface increases from 30 m to 40 m, the settlement rate of the surrounding rock begins to
decrease. The smaller the water content of the surrounding rock, the earlier the settlement
tends to stabilize. The settlement rate of the surrounding rock with a water content of
22.0% is the smallest, only 0.6 mm/d. When the distance between the monitoring point and
the palm surface is 40–60 m, the settlement under various working conditions tends to be
constant. As the excavation distance increases, there are three stages of rapid growth, slow
growth, and stable deformation of the vault settlement; the lower the water content of the
surrounding rock, the earlier the settlement of the vault enters the stable stage. Therefore, a
lower water content in the surrounding rock is beneficial for controlling the settlement of
the vault.
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4.2.2. Convergence

According to the analysis of the numerical simulation results, it can be seen that
the relationship between the excavation distance and convergence under different water
contents is shown in Figure 6. When the distance between the monitoring point and the
palm surface is constant, the convergence of the sidewall increases with the increase in
the water content. The convergence rate of the sidewall and the settlement rate of the
arch show a trend of first increasing and then decreasing. In addition, as the excavation
distance increases, the convergence of the sidewall undergoes three stages: rapid growth,
slow growth, and stable stability. When the distance between the monitoring point and the
palm face is 0–40 m, the convergence is in a rapid growth stage, and the deformation of
the surrounding rock with a water content of 30.5% is the largest, reaching 184 mm. When
the distance between the monitoring point and the palm face is between 40 and 50 m, the
convergence is in a slow growth stage, and the deformation decreases with the decrease in
the surrounding rock water content. When the distance between the monitoring point and
the palm face is greater than 50 m, the convergence begins to enter a stable and unchanging
stage. The lower the water content of the surrounding rock, the earlier the time to enter the
stable stage. Among them, the convergence of the sidewall with a water content of 22.0% of
the surrounding rock enters the stable stage first when it is 50 m away from the palm face.
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4.3. Discussion

Water molecules play a lubricating role in soil, reducing the cohesion inside the soil.
When the water content increases, water molecules fill the gaps between soil particles,
reducing the contact area between particles and thereby reducing the friction and cohesion
between particles. This leads to a decrease in the overall strength of the surrounding
rock, making it more susceptible to excavation disturbances, which in turn leads to an
increase in vault settlement and sidewall convergence. At the same time, the presence
of water molecules can also change the pore structure of the soil, increase the porosity of
the soil, and further reduce the strength of the surrounding rock. Therefore, as the water
content increases, the strength of the surrounding rock decreases, leading to the increased
settlement of the vault and convergence of the sidewalls. In addition, more seepage
channels in the soil are interconnected, and the influence of excavation disturbances on
the surrounding rock is expanded, which leads to an increase in the vault settlement and
sidewall convergence.

The lower the water content of the loess surrounding rock, the lower the settlement
of the vault and the convergence of the sidewall of the surrounding rock; however, the
lower the water content of the loess surrounding rock, the better. If the water content is
too low, it will damage the ecological environment. Therefore, the water content of the
loess surrounding rock should not only be suitable for the ecological environment of the
Shangge Village Tunnel but also be conducive to controlling the deformation of the initial
support structure of the tunnel. This water content is called the water content threshold.
According to on-site geological survey data, the surface of the Shangge Village Tunnel is
distributed in villages, and some sections have orchards. If the water content of the loess is
excessively reduced, it will damage the ecological environment of the orchards; therefore, it
is necessary to select a moisture threshold from the actual water content dataset of on-site
soil samples. Indoor experiments have measured that the on-site soil samples have eight
water contents, which are 22.0%, 24.2%, 25.4%, 26.5%, 27.4%, 28.5%, 29.5%, and 30.5%.
Therefore, 22.0% is selected as the water content threshold for the Shangge Village Tunnel.
In addition, the net clearance of this tunnel is 13.38 m. According to Code 8.5.5 [42] of the
Technical Code for Railway Tunnel in Loess (Q/CR 9511-2014), the limit value of the arch
settlement is 180.63–254.22 mm.
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When the settlement value of the vault is 180.63 mm, the water content of the loess
is 24.95%. Because 22% is less than 24.95%, it is reasonable to choose 22.0% as the water
content threshold for the Shangge Village Tunnel.

5. Treatment Measure
5.1. Surface Precipitation
5.1.1. Design Scheme

During on-site construction, the surface precipitation well scheme is used to control
the water content of the surrounding rock in the DK 208+560-DK 208+660 section of the
Shangge Village Tunnel. The surface precipitation wells are symmetrically arranged on
both sides of the tunnel (as shown in Figure 7), located 9 m outside the tunnel contour
line and 20 m away from the same side wells. A total of 12 precipitation wells are set
up. The diameter of the precipitation well is 0.325 m and the burial depth is 120 m. The
casing length of the well tube is 80 m, the filter tube length is 36 m, and the lower sand
settling tube length is 6 m. The filter tube section is wrapped with 80 mesh steel wire mesh.
We backfill gravel as a filter layer, with a gravel thickness of approximately 20 cm and a
gravel gradation of 10–20 mm. After drilling is completed, immediately lower the well
pipe; backfill the filter layer; and clean the precipitation well until the water is clear, the
sand is clean, and there is no sediment.

Water 2024, 16, x FOR PEER REVIEW 9 of 16 
 

 

[42] of the Technical Code for Railway Tunnel in Loess (Q/CR 9511-2014), the limit value 
of the arch settlement is 180.63–254.22 mm. 

When the settlement value of the vault is 180.63 mm, the water content of the loess is 
24.95%. Because 22% is less than 24.95%, it is reasonable to choose 22.0% as the water 
content threshold for the Shangge Village Tunnel. 

5. Treatment Measure 
5.1. Surface Precipitation 
5.1.1. Design Scheme 

During on-site construction, the surface precipitation well scheme is used to control 
the water content of the surrounding rock in the DK 208+560-DK 208+660 section of the 
Shangge Village Tunnel. The surface precipitation wells are symmetrically arranged on 
both sides of the tunnel (as shown in Figure 7), located 9 m outside the tunnel contour line 
and 20 m away from the same side wells. A total of 12 precipitation wells are set up. The 
diameter of the precipitation well is 0.325 m and the burial depth is 120 m. The casing 
length of the well tube is 80 m, the filter tube length is 36 m, and the lower sand settling 
tube length is 6 m. The filter tube section is wrapped with 80 mesh steel wire mesh. We 
backfill gravel as a filter layer, with a gravel thickness of approximately 20 cm and a gravel 
gradation of 10–20 mm. After drilling is completed, immediately lower the well pipe; 
backfill the filter layer; and clean the precipitation well until the water is clear, the sand is 
clean, and there is no sediment. 

 
Figure 7. Layout diagram of surface precipitation well. 

5.1.2. Results and Analyses 
Two monitoring wells are set up at the tunnel construction site to obtain the water 

content of the strata at different burial depths. The G1 monitoring well is located in the 
area without surface precipitation, and the G2 monitoring well is located in the area with 
surface precipitation. The burial depth of the monitoring well should be consistent with 
that of the surface precipitation well. The distribution of the water content in the loess 
strata before and after surface precipitation is shown in Figure 8. Before taking the surface 
precipitation well measures, the maximum and minimum water content in the formation 
were 35.21% and 11.26%, respectively, with an average water content of 25.77%. After 
adopting the surface precipitation well measures, the maximum water content in the for-
mation is 23.34%, the minimum water content is 11.78%, and the average water content in 

Figure 7. Layout diagram of surface precipitation well.

5.1.2. Results and Analyses

Two monitoring wells are set up at the tunnel construction site to obtain the water
content of the strata at different burial depths. The G1 monitoring well is located in the area
without surface precipitation, and the G2 monitoring well is located in the area with surface
precipitation. The burial depth of the monitoring well should be consistent with that of the
surface precipitation well. The distribution of the water content in the loess strata before
and after surface precipitation is shown in Figure 8. Before taking the surface precipitation
well measures, the maximum and minimum water content in the formation were 35.21%
and 11.26%, respectively, with an average water content of 25.77%. After adopting the
surface precipitation well measures, the maximum water content in the formation is 23.34%,
the minimum water content is 11.78%, and the average water content in the formation is
19.92%. When the depth range below the surface is about 0–30 m, the degree of influence of
the surface water vapor evaporation is deeper, resulting in larger water content in the strata
with a depth of 0–120 m before and after the implementation of the surface precipitation
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well measures. Therefore, the analysis should be based on the water content of the strata
with a burial depth of 30–120 m. Before surface precipitation, the average water content
of the strata with a burial depth of 30–120 m was 31.03%; after surface precipitation, the
average water content of the strata with a burial depth of 30–120 m was 21.81%, which
is close to the threshold of the water content. From this, it can be seen that the surface
precipitation well scheme can meet the requirements of water content control.
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5.2. Curtain Grouting
5.2.1. Design Scheme

Firstly, the water content of the surrounding rock around the tunnel is adjusted
to around 22% through surface precipitation. Secondly, the grouting parameters were
adjusted, as shown in Table 2. Finally, the surrounding rock behind the palm face was
reinforced by curtain grouting, as shown in Figure 9. To prevent grout and fissure water
from gushing out from the grouting face and to ensure the expected quality of grouting, it
is necessary to set up a C30 concrete grout stop wall with a thickness of 2 m on the grouting
face between the initial support structure and the temporary inverted arch structure. The
grouting material is ordinary Portland cement (P.O.42.5) with a slurry ratio of W: C=0.8:1.
The length of grouting toward the back of the palm is 25 m, with a forward segmented
grouting method used for 0–10 m and a sleeve valve tube bundle grouting method used
for 10–25 m. The radial reinforcement range of grouting is 5 m above the initial support
structure and 1.3 m below the bottom of the grout stop wall. A total of 54 grouting holes
are set on the upper section of the palm face, including 15 Class A grouting holes, 12 Class
B grouting holes, 15 Class C grouting holes, and 12 Class D grouting holes.

Table 2. Detailed grouting parameters.

Type Parameter Value

Grouting diffusion radius 2 m
Injection pressure 3–5 MPa
Grouting aperture 90 mm

Injection into orbit rate 10–100 L/min
Number of grouting holes 54
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5.2.2. Results and Analyses

We conducted deformation monitoring on three tunnel sections at the construction
site for 30 days. Surface precipitation measures and curtain grouting measures were not
taken from the DK208+570 section. Surface precipitation measures were not taken from the
DK207+710 section; only curtain grouting measures were taken. For the DK208+630 section,
we adopted dual measures of surface precipitation and curtain grouting. The settlement
and convergence of the three monitoring sections are shown in Figure 10. The settlement
of section DK208+570 reaches its maximum deformation rate from 0 to 15 days after
excavation, reaching 7.78 mm/d. During the period of 15 to 30 days, the settlement begins
to stabilize and eventually reaches approximately 118.74 mm. The convergence has the
highest deformation rate from 0 to 13 days after excavation, reaching 4.56 mm/d. During
the period of 13 to 30 days, the convergence begins to stabilize and eventually reaches about
60.14 mm. For the DK207+710 section, we adopted curtain grouting measures based on the
DK208+570 section, reducing settlement by about 17.69% and convergence by about 11.86%.
After adjusting the water content of the surrounding rock around section DK208+630
to about 22% through surface precipitation measures, curtain grouting reinforcement
measures were carried out. The settlement of section DK208+630 ultimately stabilizes
at around 73.88 mm, which is about 37.29% lower than that of section DK208+570 and
about 23.81% lower than that of section DK207+710. The maximum convergence of section
DK208+630 reaches 39.54 mm, which is about 34.26% and 25.41% lower than that of section
DK208+570 and section DK207+710, respectively.

According to the Technical Code for Railway Tunnel Loess (Q/CR 9511-2014) [42] and
Technical Code for Monitoring Measurement of Railway Tunnel (Q/CR 9218-2015) [43], the
range of the cumulative deformation yellow warning values is determined to be 75–150 mm.
If the deformation value of the tunnel section reaches the yellow warning value range, it
indicates that the initial support structure of the tunnel is in an unstable state and may be
damaged at any time. According to Figure 10, the settlement of section DK208+570 is within
the range of yellow warning deformation values. Although the settlement value of section
DK207+710 decreased compared to section DK208+570, it is still within the yellow warning
deformation value range, and there is a risk of damage to the initial support structure.
The settlement and convergence of section DK208+630 are both less than 75 mm, meeting
the specification requirements [42,43]. Therefore, the combination of surface precipitation
measures and curtain grouting measures can ensure the safe construction of loess tunnels.
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6. Discussion

In soil, the presence of water molecules has a significant effect on its mechanical
properties. With the increase in the water content, water molecules fill the gap between soil
particles and reduce the contact area between particles, thus deteriorating the mechanical
parameters of loess and reducing the overall strength of the soil. At the same time, the
presence of water molecules also changes the pore structure of the soil and further reduces
the strength of the soil. In addition, more seepage channels in the soil are connected to each
other, which expands the influence range of the soil. Therefore, the lower water content of
loess is more conducive to the stability of the surrounding rock. However, adjusting the
water content of the surrounding rock too low by precipitation measures not only destroys
the ecological environment but also makes it easier for water molecules in the surrounding
high-moisture loess strata to reincrease the water content of the surrounding rock through
the seepage channel [44,45]. In summary, this article proposes a water content threshold
and reinforces the loess surrounding rock on the basis of the water content threshold.

The flow chart of the loess tunnel reinforcement is shown in Figure 11. Firstly, the
mechanical parameters of loess are obtained through indoor physical and mechanical tests.
Secondly, based on the ecological environment where the loess tunnel is located, the water
content threshold is determined to be 22% in order to avoid economic and environmental
losses caused by excessive precipitation and grouting. Then, through surface precipitation
measures, the water content of the surrounding rock around the tunnel is reduced to be
around the water content threshold, thereby improving the shear strength, compressive
strength, and enhancing the ability of the surrounding rock to resist disturbance. Finally,
curtain grouting reinforcement measures are adopted to further improve the overall stability
and bearing capacity of the surrounding rock. The reinforcement scheme proposed in
this article can effectively ensure the construction and operation safety of loess tunnels.
According to the on-site monitoring data of the Shanghai Village Tunnel, our proposed
rock reinforcement scheme effectively controls the settlement of the tunnel vault and the
convergence of the sidewalls while meeting the requirements of the ecological environment,
thereby improving the safety and stability of the project. This study mainly focuses on
the ecological environment and regulatory requirements of the Shangge Village Tunnel to
determine the threshold of the surrounding rock water content. But in other loess tunnels,
there may be other factors to consider, such as construction convenience, engineering
economy, etc. Therefore, it is necessary to combine more practical engineering cases and
summarize more systematic methods to determine the threshold of the loess water content.
In addition, this article has not conducted an in-depth exploration of the research of curtain
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grouting materials. However, future research can consider using more advanced and
superior new materials.
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7. Conclusions

(1) As the water content of loess increases, water molecules will form a lubricating layer
between loess particles, reducing the contact area and internal friction angle between
particles. At the same time, after absorbing water, loess will expand, causing the voids
in the soil to become larger and the interaction forces between particles to decrease.
Therefore, during the construction process of loess tunnels, the water content of the
surrounding rock increases, which reduces the cohesion, internal friction angle, and
elastic modulus of the surrounding rock, leading to the deterioration of the strength of
the surrounding rock, making it more sensitive to subsequent excavation disturbances,
and ultimately causing damage to the initial support structure.

(2) As the water content of the loess surrounding rock increases, the settlement of the
vault and the convergence of the sidewalls of the surrounding rock show an increasing
trend. In addition, the settlement of the vault undergoes three stages: rapid growth,
slow growth, and stable stability within the range of 0~30 m, 30~40 m, and 40~60 m
from the monitoring section to the palm surface, respectively. The convergence of
the sidewalls occurs within the range of 0~40 m, 40~50 m, and 50~60 m from the
monitoring section to the palm surface, exhibiting rapid growth, slow growth, and
stable stages, respectively. It is worth noting that compared to the vault settlement of
the surrounding rock, the convergence of the sidewalls has a significant lag.

(3) Based on the deformation mechanism of the initial support structure of the Shangge
Village Tunnel and the requirements of the ecological environment, a water content
threshold of 22% is set for the surrounding rock. Based on this threshold, a rock rein-
forcement scheme combining surface precipitation and curtain grouting is adopted.
By taking these measures, the settlement of the vault and the convergence of the
sidewalls are both lower than the yellow warning deformation value. Compared
with unreinforced and single-curtain grouting measures, the settlement of the vault
decreased by 37.29% and 23.81% respectively, and the convergence of the sidewalls
decreased by 34.26% and 25.1%, respectively. This indicates that adopting a combina-
tion of surface precipitation and curtain grouting for surrounding rock reinforcement
has a significant effect on reducing the settlement of the vault and the convergence of
the sidewalls.
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(4) The reinforcement scheme for loess tunnels based on the water content threshold
is analyzed through on-site monitoring data, which prove that this reinforcement
scheme can effectively reduce vault settlement and sidewall convergence, ensuring the
safety of tunnel construction and operation periods. Therefore, similar studies in the
future can further propose more systematic methods to determine more accurate water
content thresholds from the aspects of construction convenience and the engineering
economy based on this study and try different reinforcement measures to provide
more scientific technical support for the construction and operation of loess tunnels.
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