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Abstract: The optimization of the production scheme for enhanced geothermal systems (EGS) in
geothermal fields is crucial for enhancing heat production efficiency and prolonging the lifespan of
thermal reservoirs. In this study, the 4100–4300 m granite diorite stratum in the Zhacang geothermal
field was taken as the target stratum to establish a numerical model of water-heat coupling of
three vertical wells. However, relying solely on numerical simulation for optimization is time-
consuming and challenging for the determination of the globally optimal production plan. The
present study proposes a comprehensive evaluation method for optimizing the performance of EGS
power generation based on the integration of particle swarm optimization with backpropagation
neural network (PSO-BPNN) and analytic hierarchy process (AHP). Five different PSO-BPNN models
were constructed based on the numerical simulation data to predict different EGS power generation
performance indexes, including the production temperature, the injection pressure, the total electricity
generation, the electric energy efficiency and the levelized cost of electricity. Based on these PSO-
BPNN models, the weights of various thermal development evaluation indexes were calculated
by AHP to conduct a comprehensive evaluation of the power generation performance of the three
vertical wells EGS. The results show that the PSO-BPNN model has good prediction accuracy for EGS
prediction of various performance indicators, with a coefficient of determination (R2) exceeding 0.999.
The AHP evaluation of all production schemes reveals that the optimal power generation scheme
entails a well spacing of 580 m, water injection rate of 56 kg/s, injection temperature of 38 ◦C and
fracture permeability of 2.0 × 10−10 m2. Over a span of 30 years, this scheme can provide a total power
generation capacity amounting to 1775 GWh, with an associated LCOE value of 0.03837 USD/kWh.
This not only provides a reference for the development and optimization of geothermal systems
in the Zhacang geothermal field but also provides a new idea for the optimization design of other
geothermal projects.

Keywords: enhanced geothermal system; optimization; PSO-BPNN models; analytic hierarchy
process; LCOE
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1. Introduction
Background

Geothermal resources are a stable, reliable, green and low-carbon renewable resource,
and compared with fossil fuels, geothermal energy is a valuable resource with large reserves
and is environmentally friendly and sustainable [1–3]. Since 2010, geothermal energy in
China entered into a period of rapid development for the use of heating and cooling
buildings and for the generation of electricity [4]. Geothermal energy from Hot Dry
Rocks (HDRs) can be used to generate electricity, and an appropriate amount of power
stations are established to utilize geothermal energy to generate electricity [5,6]. The annual
utilization of geothermal energy is equivalent to saving 25.4 million tons of fuel oil and
reducing carbon emissions by 24 million tons per year [7]. Although China has made initial
forays into exploring HDR resources and conducting preliminary research on enhanced
geothermal system (EGS) technology, it is still in its nascent stages. As of now, China
has yet to establish its first EGS demonstration base [8]. The Guide Basin, located in the
southeast of Hainan Tibetan Autonomous Prefecture, Qinghai Province, was designated
as a geothermal development demonstration area in China [9]. Between 2013 and 2018,
two geothermal wells (ZR1 and ZR2) were successfully drilled by the Qinghai Provincial
Bureau of Environmental Geological Survey in the Zhacang geothermal field at depths
reaching 3050.68 m and 4602 m, respectively. These wells recorded peak temperatures of
151.34 ◦C and 214 ◦C, respectively, indicating significant potential for establishing a long-
term enhanced geothermal system (EGS) power plant [10]. Consequently, this geothermal
field was chosen as the case study.

One of the major challenges facing the industry is to create an economically efficient
EGS [11]. A thermal–hydraulic–mechanical multi-field coupling technique underlies the
EGS functioning. The operation process of EGS is a multi-field coupling process of the
thermal–hydraulic–mechanical (THM) technique [12,13]. Numerical simulation is the
most effective and cost-effective method for studying the EGS heat generation process
and has been widely used in geothermal fields around the world in recent years [14–17].
Chen et al. [18] considered the influence of open and closed boundary conditions on the
temperature drop in the development of HDR reservoirs in the Gonghe Basin. Cui et al. [19]
used COMSOL Multiphysics software to establish a vertical two-dimensional planar double
pore medium permeability water flow heat transfer model based on the theory of heat-flow-
solid coupling. Lous et al. [20] developed a deep-well heat transfer model considering a
homogeneous porous medium and investigated the outlet temperature, thermal efficiency
and the range of influence of the system, respectively. Wang et al. [21] combined field
experiments and numerical simulations to investigate the effects of injection flow rate,
injection temperature and flow regime on the heat transfer modeling. Sun et al. [22]
established a mathematical model of the THM coupling process in the fractured HDRs
and established a fracture–matrix model for the mining process of the EGS project in the
Cooper Basin by using the COMSOL Multiphysics numerical simulation software in order
to study the heat transfer characteristics in the geothermal reservoirs.

Previous research primarily concentrated on the impact of a single component on an
EGS performance index and has not considered the significance of multi-factor interaction
on the power generation performance of EGS. The numerical simulation method is accurate
in calculation but requires the establishment of many models and consumes a lot of time, so
the machine learning method can be introduced to replace numerical simulation to complete
a large number of numerical calculations [9,23]. The most commonly used machine learning
method in the geothermal field is an artificial neural network (ANN), which is mainly used
in EGS drilling position judgment, microseismic prediction and power plant performance
optimization [24–26]. Akın et al. [27] proposed the use of ANNs to optimize well location,
injection depth and rate for enhanced oil recovery. The predictions were validated using
actual drilling data with satisfactory results. Yilmaz et al. [28] analyzed the performance
of geothermal power plants through a simulation of geothermal energy production and
optimization using the thermal economic cost method combined with ANN.
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Optimizing geothermal systems based on economic and safety considerations is a
crucial task for sustainable EGS construction. To achieve optimal EGS production, decision-
making methods are necessary due to the complex relationship between various influ-
encing factors and geothermal productivity performance indexes, making it challenging
to determine the global optimal plan. Currently, the evaluation of geothermal mining
primarily relies on a single index, neglecting the comprehensive consideration and quan-
titative analysis of multiple performance indexes. Consequently, the evaluation results
fail to comprehensively account for various factors and lack accuracy in optimizing out-
comes [16,17,29,30]. The analytic hierarchy process (AHP) is a widely used decision-making
method that has been applied mainly in geothermal energy suitability analysis and geother-
mal resource potential evaluation [31–33]. In this study, we propose combining neural
network techniques with AHP to optimize the EGS production plan, aiming to enhance
power generation performance.

In this study, the particle swarm optimization with backpropagation neural network
(PSO-BPNN) and AHP methods was introduced to establish a comprehensive evaluation
method for the EGS power generation performance of three vertical wells in the Zhacang
geothermal field. Firstly, based on the site data of previous studies and indoor experiments,
a numerical model of water-heat coupling in three vertical wells was established by us-
ing TOUGH2-EOS1 software, and sensitivity analysis was performed to obtain the main
influencing factors. Then, a PSO-BPNN model was established by using the numerical
simulation data to predict the production temperature (Tpro), the injection pressure (Pinj),
the total electricity generation (Wt), the electric energy efficiency (ηe) and the levelized
cost of electricity (LCOE) of the production schemes. Finally, a comprehensive evaluation
system was established by using AHP to search for optimal production scenarios of the
EGS. This comprehensive evaluation method provides a valuable reference for the EGS
optimization of Zhacang geothermal and can be effectively applied to other geothermal
development models.

2. Background of the Study Site

The Guide Basin is a Meso-Cenozoic faulted basin in the western part of the West
Qinling region of Qinghai Province, China. It is designated as a demonstration area for
geothermal development in China. The Zhacang geothermal field is located in the western
edge of Guide Basin and developed composite high-temperature geothermal resources
(Figure 1). The sedimentary strata in the area are mainly the Neoproterozoic Pliocene
Guide Formation (N2Gd), followed by the Middle–Lower Triassic Longwuhe Formation
(T1-2l) and the Quaternary (Q), which are good insulating cover layers. The magmatic rocks
in the area are dominated by Late Triassic granodiorite (T3γδ), mostly distributed in the
central and western regions, and the granodiorite fissures and tectonic fracture zones are
the tectonic water-bearing thermal storage system [34]. The Zhacang area is controlled by
the Hercynian tectonic system, and the main fractures are the Reguang fault (F1) and the
Zhacang fault (F5) [35]. The F1 fault is a compressive–torsion reverse fault that blocks water,
and the F5 fault is a tension–torsion normal fault that conducts water [36]. The atmospheric
precipitation infiltrated through the near east–west tensile fracture zone and was heated
by the deep heat source, flowed through the F5 fault and was blocked by the mudstone of
the lower disk of the F1 fault and then exposed to the surface to form the Zhacanggou Hot
Springs. The hot springs are located at the intersection of two sets of faults, which overflow
linearly in the northwest direction. The length of the overflow zone is about 150 m, and
there are nearly 30 hot springs exposed, with the flow rate of a single spring ranging from
0.1 to 0.29 L/s, the water temperature ranging from 35 to 93 ◦C and the total water output
ranging from 8.0 to 15.0 L/s [37].

The Qinghai Bureau of Environmental Geology Exploration completed the construc-
tion of two geothermal geological drilling wells, ZR1 and ZR2, in the Zhacang geother-
mal field in 2013. In 2018, logging work was carried out after the construction of the
ZR2 well was completed. A total of two fracture-concentrated development zones were
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identified, 4210–4220 m and 4310–4320 m, respectively, with fracture orientations in the
north-northeast and northeast directions, and the maximum principal stress directions
dominated in the northeast and north-northeast directions [10]. Zhang Yu et al. used
MIDAS GTS to invert the principal stresses based on the drilling core data of ZR1 and ZR2
wells and the seismic source ground stress survey of the National Electric Power Company,
and the results showed that the maximum principal stresses in the thermal reservoirs of
4000~4700 m ranged from 83.2 to 99.1 MPa, and the minimum principal stresses ranged
from 61.2 to 75.4 MPa (Figure 2) [29]. The measured temperature of the fissure-type thermal
storage at 3000 m in well ZR1 is 151.34 ◦C, and the measured temperature of the HDR
thermal storage at 4600 m in well ZR2 is 214 ◦C (Figure 2). The average temperature
gradient at the basement is about 4.94 ◦C/100 m, indicating a huge potential for geothermal
resources, which means that the Zhacang geothermal field has the potential to build a
long-term EGS power plant. Therefore, this field was selected as a case study.
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3. Methodology

The present section provides a concise summary of the proposed evaluation method
for assessing the performance of EGS power generation based on PSO-BPNN and AHP,
aiming to offer valuable insights for vertical-well geothermal extraction in the Zhacang
geothermal field.

Firstly, the EGS hydrothermal coupling model of three vertical wells was established
using the TOUGH2-EOS1 software. Then, different factors are analyzed, including well
spacing, water injection rate and thermal reservoir thermal conductivity. After comparing
the degree of influence for each factor, those with significant impacts on EGS power
generation performance are selected as optimization objectives: injection temperature,
water injection rate, fracture permeability and well spacing. A total of 81 numerical models
were established based on different parameters to determine five performance indicators
for the system to operate for 30 years, namely, Tpro, Pinj, Wt, ηe and LCOE.

Secondly, PSO-BPNN was used to estimate the power generation capacity of EGS
based on 81 sets of datasets produced by TOUGH2-EOS1 software. Five PSO-BPNN models
were built to predict the corresponding five performance indicators, respectively. Prior to
training, the data underwent standardization in order to enhance the predictive accuracy of
the model. Subsequently, a PSO-BPNN model was employed to forecast power generation
performance for 340,000 EGS production schemes.

Lastly, the prediction results obtained from the PSO-BPNN model were utilized to
establish an evaluation method for assessing the performance of EGS power generation
through the application of analytic hierarchy process. Additionally, considering both
production temperature and injection pore pressure restrictions, an optimal production
strategy was selected for the Zhacang geothermal field. The flowchart of this study is
shown in Figure 3.
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Lastly, the AHP method is applied to establish an evaluation method for the EGS
power generation performance based on the PSO-BPNN strategy prediction results. At
the same time, the best production strategy for the Zhacang geothermal field is chosen
while taking the constraints of the injection pore pressure and production temperature into
account. The flowchart of this study is shown in Figure 3.

4. EGS Numerical Model of Three Vertical Wells
4.1. Modeling and Model Conditions

In this paper, the hydrothermal coupling model of three vertical wells is established
using the TOUGH2-EOS1. The EOS1 module of TOUGH2 software is frequently used in the
simulation study of geothermal exploitation, and the model is displayed in Figure 4. The
hydraulic–thermal coupling model focuses on the strata located at a depth of 3700~4700 m
underground within the Zhacang geothermal field. The geothermal system can be divided
into three layers, from top to bottom: overburden (400 m), thermal reservoir (200 m) and
underlying layer (400 m). It consists of one injection well and two production wells with a
designed well spacing of 500 m. Because the original formation is dense granite diorite,
hydraulic fracturing is required to increase the porosity and permeability of the thermal
reservoir. According to the well logging data, the maximum principal stress direction in the
range of 4200~4400 m downhole of ZR2 well is NE-SW direction. The connection direction
of three wells should be approximately parallel to the maximum horizontal stress direction,
thus ensuring that the injection well and the production well can be connected by hydraulic
fracturing. As shown in Figure 4, the model size is 1500 m × 1000 m × 1000 m, with a
total of 20,064 units. The artificial fractures extend along the y-direction, and the size is
divided according to the extension range of the fracture network after fracturing. In order
to improve the accuracy of the simulation results, the grid is refined in the vicinity of the
injection well, the production well and reservoirs.
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The initial pore pressure field and temperature field of the numerical model are
assigned based on a gradient approach. At the top of the model, the pore water pressure
and temperature are set to 37 MPa and 166 ◦C, respectively, while at the bottom, they
are set to 47 MPa and 219 ◦C. The model boundary is set as no water flow and heat flow
exchange. Clear water is used as the heat exchange fluid, and the output fluid is cooled and
re-injected into the reservoir after passing through the power station. In the base model, the
injection temperature after condensation is set at 50 ◦C. According to the actual engineering
experience of other EGS projects in the world, the injection fluid speed is usually between 5
and 80 kg/s. It is assumed that the water injection speed of a single fracture in the model
is 40 kg/s. During the operation of the system, fluid filtration is not considered, and the
conductivity of the fracture remains unchanged during the operation. Table 1 presents the
relevant parameters of the geothermal mining model. The thermal and physical parameters
of reservoir are obtained from laboratory tests, simulating 30 years of EGS operation.

Table 1. Reservoir properties of the base model.

Parameters Value

Rock density 2711 kg/m3

Rock porosity 1.86%
Rock permeability (kx = ky = kz) 3.66 × 10−16 m2

Rock thermal conductivity 3.36 W/(m·K)
Rock-specific heat capacity 713 J/(kg·K)

Fracture porosity 50%
Fracture permeability (kx = ky = kz) 2.0 × 10−11 m2

Initial reservoir temperature T = 219 − 0.053z (◦C)
Initial reservoir pressure P = 4.7 × 107 − 10,000z (Pa)

Productivity index 5.0 × 10−12 m3

Operation time 30 years

There are many factors that affect the ability of EGS to generate electricity. The
internal factors include geothermal gradient (dT/dz), thermal conductivity (λ), fracture
permeability (k) and porosity (φf) after reservoir reconstruction [16,30]. The external
factors include water injection temperature (Tinj), water injection rate (q) and well spacing
(d) [17,29]. This study is based on the base model; the single factor control variable
method was used to explore the influence of various factors on each index: (a) reducing
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λ to λ = 2.5w/(m · °C), (b) increasing dT/dz to dT/dz = 6.0 °C/100 m, (c) reducing
φf to φf = 30%, (d) increasing k to k = 2 × 10−10m2, (e) reducing Tinj to Tinj = 30 °C,
(f) increasing q to q = 60 kg/s, (g) increasing d to d = 600 m. Through the analysis of
various influencing factors, the factors that have a greater impact on the power generation
performance of EGS are selected as the input set of the PSO-BPNN model.

4.2. The Performance Indicators

The power generation performance of EGS is typically comprehensively evaluated
using five key performance indicators: Tpro, Pinj, Wt, ηe, LCOE.

(1) Tpro is the temperature of the production water, ◦C. In order to ensure the stable power
generation of the system, the production temperature drop should be less than 10%
during the 15–20 years of designed operating life [38].

(2) When Pinj exceeds the minimum horizontal principal stress of the reservoir, the
proppant will relax or even fall off in the reservoir fracture, and the fallen proppant
will pile up at the bottom of the fracture, forming a “pipe” with high conductivity,
which will result in a thermal short-circuit phenomenon. Therefore, it must be ensured
that the injection pressure is not greater than the minimum horizontal principal stress
of the reservoir (Equation (1)) [39].

Pinj ≤ σhmin (1)

where σhmin is the minimum horizontal principal stress of the target reservoir, and the
minimum principal stress of the reservoir 4100~4300 m below ground is 63.2~67.3 MPa.

(3) Wt is the total electricity generation by EGS in 30 years (Equations (2)–(4)) [6].

Wt =
∫ Γ30

0
Wedt (2)

We = 0.45q f
(
hpro − hinj

)
(3)

f = 1 − Trej/Tpro (4)

where We is the electricity generation rate (MW), the energy conversion efficiency is
assumed to be 0.45, hpro is the specific enthalpy of the production fluid (kJ/kg), hinj is
the specific enthalpy of the injection fluid (kJ/kg), Trej is the average heat rejection
temperature (K), with the annual average temperature of Guide Basin is 7.2 ◦C, and
the heat rejection temperature is 280.35 K.

(4) The electric energy efficiency (ηe) is defined as the ratio of the total power generation
energy to the internal energy consumption, which can be written in Equation (5) [17].
The internal energy consumption (Wp) is the sum of the energy consumption of the
injection and production pumps, which can be expressed in Equation (6) [17].

Wp = q(Pinj − ρgh1 + ρgh2 − Ppro)/ρηp (5)

ηe =
We

Wp
=

0.45ρηp
(
hpro − hinj

)
(1 − Trej/Tpro)(

Pinj − Ppro
)
− ρg(h1 − h2)

(6)

where ρ is the density of water (kg/m3), ηp is the efficiency of the pump, ηp = 80%,
g is the acceleration of gravity (m/s2), h1 is the depth of the injection wells, h2 is the
depth of the production wells, h1 = h2 = 4200 m.

(5) The levelized cost of electricity (LCOE) is the most commonly used method for
evaluating the economics of power plants, which is the present value of costs over the
life cycle/present value of electricity generation over the life cycle. This paper uses a
simplified LCOE method to evaluate EGS, calculating the total costs of a designed
EGS over its life cycle, divided by the total electricity generation over its life cycle.
For EGS projects, the total costs can be divided into reservoir exploration cost (Cexp),
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equipment installation cost (Cequ), drilling cost (Cdrill), reservoir development cost
(Cdev) and operation and maintenance cost (CO&M). For the Zhacang geothermal
field, Cexp is about 4.3 M USD [29]. Cequ is related to the installed power capacity,
and the unit capital cost is estimated to be 2000 USD/kW. Based on the scale of the
project, the unit capital cost is estimated at 2000 USD/kW, Cequ can be expressed in
Equation (7) [40]. Cdrill is based on the 5100 m GPK3 and GPK4 wells at Soultz EGS
in France, which cost 6.57 M USD and 5.14 M USD, respectively [41]. The depth of
the three vertical wells in this project is all 4300 m, and Cdrill can be calculated by
Equation (8), where hv = 12, 900, Pv = 1100$. Cdev can be made up of logging cost and
hydraulic fracturing cost. The estimated cost of a high-precision logging at a depth of
4300 m is 4.5 M USD, and the cost of hydraulic fracturing to reservoir modification
at a spacing of 300–600 m is 4.5 M USD. CO&M is usually inversely proportional to
the installed capacity and CO&M can be expressed as Equation (9) [29]. Consequently,
Ctotal for the Zhacang EGS power plant can be expressed in Equation (10), and the
LCOE can be written in Equation (11).

Cequ =
2000 × Wa

103 (7)

Cdrill = hv × Pv × 10−6 (8)

CO&M =
Wt × 20 × exp(−0.0025 × (Wa − 5))

103 (9)

Ctotal = Cexp + Cequ + Cdrill + Cdev + CO&M

= 19.39 + 2000×Wa
103 + Wt×CO&M

103
(10)

LCOE = Ctotal/Wt (11)

where Wa is the average electrical power generation (MW).

4.3. Simulation Results and Analysis

Figure 5 shows the evolution of production temperature (Tpro), electricity generation
rate (We), injection pressure (Pinj) and electric energy efficiency (ηe) of the base model
during a period of 30 years. The Tpro decline process can be divided into two stages. In the
stable stage (0–10 years), Tpro decreased by less than 1%. In the decline stage (10–30 years),
the average annual Tpro decreased by more than 1%. Tpro decreased from the initial 192.5 ◦C
to 169.1 ◦C (reduced by 12.2%) in the period of 30 years. The trend of We was approximately
the same as that of Tpro; We decreased from 5.0 MW to 3.9 MW (reduced by 21%), which
was too large and required further adjustment of the operating parameters to optimize the
EGS. During the operation of the system, Pinj increased from 54.8 MPa to 62.2 MPa, with an
average value of 60.6 MPa. Pinj was less than the minimum principal stress (σhmin) of the
reservoir and met the design requirements. ηe during the operation of the system is 3.9. In
the early stage of the system operation, the rapid increase of pore pressure at the injection
well causes a sharp increase in internal energy consumption, resulting in a sharp drop in ηe.

As depicted in Figure 5a–d, distinct factors exert varying influences on different
performance indicators. k, q and d exhibit a greater impact on Tpro; k, Tinj and q demonstrate
a stronger influence on Pinj; k, Tinj, q and d have a more pronounced effect on We; while
k, Tinj and q possess a higher degree of influence on ηe. Increasing k is more favorable for
fluid flow in a thermal reservoir, which can effectively reduce Pinj and Wp, so it is beneficial
to increase ηe. Meanwhile, increasing k shortens the continuous extraction time of reservoir
thermal energy, so the decline speed of Tpro and We is accelerated. An increase in q will lead
to an increase in the extraction of heat from the hot reservoir, and the reservoir temperature
will decrease accordingly. Tpro will decrease significantly with the increase of q, while We
will increase significantly. Higher q means more fluid enters the heat exchange channel,
resulting in higher Pinj and Wp at the bottom of the water injection well, and therefore, ηe
will also decrease accordingly. The viscosity of water increases as Tinj decreases, leading
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to higher Pinj. The augmented viscosity hampers fluid circulation within the reservoir,
resulting in a rise in Wp and consequently causing a decline in ηe. According to Equation (3),
a decrease in Tinj will result in an increased enthalpy difference between the injected and
produced fluids, leading to a significant increase in We. Increasing d means a larger reservoir
volume, so more geothermal energy is stored between the injection well and the producing
well, so both Tpro and We increase. At the same time, as d increases, the flow path from the
injection well to the producing well will also be extended, resulting in higher Pinj.
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5. Optimization Model for Power Generation Performance of EGS
5.1. PSO-BPNN Model of EGS

According to the analysis in the above section, well spacing, water injection tempera-
ture and velocity and fracture permeability have a great influence on the power generation
performance of EGS, and the relationship between each factor and system parameters is not
a simple linear relationship. In order to design economical and safe geothermal production
schemes and improve the power generation capacity of geothermal power plants, about
340,000 production schemes need to be formed by combining various factors and analyzing
the performance indexes of EGS corresponding to each scheme. It can be seen that the work-
load is too large to be realized. As such, the PSO-BPNN model with numerical simulation is
used in this work to estimate EGS power generation performance, providing a foundation
for the rational development of geothermal resources in the Zhacang geothermal field.
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5.1.1. The Steps of PSO-BPNN

The steps of PSO-BP neural network are as follows (Figure 6):

(1) Initialization operations are carried out on the parameters of the BP neural network,
such as weights and thresholds, to ensure their proper starting values.

(2) Initialize the parameters of the PSO algorithm, including the velocity and position of
the particle, inertia weight and acceleration.

(3) The fitness of each particle in the population is calculated, and the position and
velocity of the particle are continuously updated based on their fitness values to
obtain the optimal position for the entire population. Upon meeting the maximum
iteration requirement, the algorithm terminates, yielding an optimal solution for
network weight and minimum value. This method can be iteratively updated until
all requirements are met.

(4) Until the error satisfies the prediction requirements, the parameters of the network
are adjusted in accordance with the estimated error situation between the prediction
strategy output value and the actual value.

(5) The model iterates continuously and, when the allotted number of iterations is reached,
outputs the final forecast.
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5.1.2. Build PSO-BPNN Model

In this study, PSO-BPNN is used to predict the power generation capacity of EGS, and
five PSO-BPNN models are constructed to predict Tpro, Wt, ηe, Pinj and LCOE, respectively.
The PSO-BPNN model consists of three components: the input layer, the hidden layer
and the output layer. The input layer is comprised of four nodes representing the four
factors that influence EGS power generation capacity, including k, Tinj, q and d. The
output layer includes a node, which is the performance index obtained through numerical
simulation, respectively, Tpro, Pinj, Wt, ηe and LCOE. The number of hidden layer nodes
is typically determined using an empirical formula, and in this model, the number of
hidden layer nodes is 9. The schematic diagram is shown in Figure 7. The model is set to
iterate a maximum of 1000 times, with a training accuracy of 0.0001 and a learning rate
of 0.01. The transfer function from the input layer to the hidden layer is tansig, while the
transfer function from the hidden layer to the output layer is purelin. The training function
employed is trainlm. The data set is from the three vertical well EGS numerical model data
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sample in the previous section. The four main influencing factors are set in three cases,
respectively (Table 2). A total of 3 × 3 × 3 × 3 = 81 simulation conditions are set, and
each condition is simulated for 30 years. Based on the simulation data, we established a
PSO-BPNN prediction model to estimate the generating capacity of an EGS development
scheme. To ensure the convergence speed of the PSO-BPNN model is not affected by input
data dimensions, we normalized the input data within a range of 0-1. In order to verify
the accuracy of the model, 16 groups of data (about 20% of the total data) were randomly
selected as the validation set.
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Table 2. The values of the four key factors.

Value

Well Spacing, d (m) 400 500 600
Water Injection Tate, q (kg/s) 20 40 60

Injection Temperature, Tinj (◦C) 30 50 70
Fracture Permeability, k (m2) 2 × 10−12 2 × 10−11 2 × 10−10

5.1.3. Prediction Accuracy Evaluation

In order to confirm that PSO-BPNN prediction models are superior, three indices of
a mean absolute error MAE, a mean absolute percentage error MAPE and a root mean
squared error RMSE are used to evaluate the network performance. MAE, MAPE and
RMSE are all positive values, with higher prediction accuracy indicated by lower values,
which can be expressed in Equations (12)–(14) [42].

MAE =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣ (12)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣ (13)

RMSE =

√
1
n

n

∑
i=1

(
y′i − yi

)2 (14)

where yi represents the actual value; y′i represents the predicted value; yi represents the
mean of the actual values; n is the number of samples.
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5.2. Evaluation Modeling of EGS Power Generation Performance

In the process of selecting a geothermal production scheme, it is essential to compre-
hensively consider various influencing factors when evaluating the EGS power generation
performance. Therefore, adopting a scientific and effective method becomes necessary.
Building upon existing theory related to AHP, this study conducts an evaluation of the
power generation performance for three vertical wells in an EGS system. The objective is to
provide a geothermal mining strategy that ensures both safety and economic viability for
the Zhacang geothermal field. The main steps involved are as follows:

(1) Establish an evaluation index system, compare each element pairwise and construct
a comparative judgment matrix A based on the relative importance of each index
(Equation (15)). The construction often employs the 1~9 scale method.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 (15)

(2) The consistency test is conducted on the constructed comparative judgment matrix.
The process of solving the weight of the evaluation index ωi is essentially the process
of solving the eigenvector corresponding to the maximum eigenroot λmax of the
judgment matrix, and the eigenvector represents the importance of each element. The
calculation formula is shown in Equations (16) and (17).

ωi =
Wi

n
∑

i=1
Wi

, i = 1, 2, . . . , n (16)

Wi = n

√√√√ n

∏
j=1

aij, i = 1, 2, . . . , n (17)

where n is the order of the judgment matrix; aij is the relative importance of the two
indicators in the judgment matrix.

(3) Verify whether the judgment matrix meets the criteria of consistency, CR ≤ 0.1. When
CR > 0.1, the matrix needs to be rebuilt if it fails to meet the consistency requirement,
which can be expressed in Equations (18) and (19):

CR =
CI
RI

=
(λmax − n)/(n − 1)

RI
(18)

λmax =
1
n

n

∑
i=1

(Aω)i
ωi

, i = 1, 2, . . . , n (19)

where CI is the consistency index; RI is the random consistency index. When n = 4,
the RI = 0.9 [43].

(4) Under the condition of satisfying the consistency test, the evaluation of the EGS
power generation performance of three vertical wells can be determined according to
Equation (20).

U =
n

∑
i=1

ENi × ωi, i = 1, 2, . . . , n (20)

where ENi is the parameter set of each indicator after standardization.
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6. Results and Discussion
6.1. Performance of ANN Models

Figure 8 shows the average Tpro, Wt, average ηe and LCOE of the EGS over a period
of 30 years with respect to the predicted values of the PSO-BPNN model. The dotted
line represents the equivalence between the predicted data obtained from the PSO-BPNN
model and the numerical simulation data. The data points are closely clustered around
the dotted line, and there is minimal disparity in performance between the training set
and the validation set, indicating the robust stability of these models. The solid line is the
regression line for all data sets, with the obtained regression line slopes being 0.9990, 0.9980,
1.0007 and 0.9989, respectively. The coefficient of determination (R2) is generally in the
range of 0-1, and the better the performance of the model, the higher the R2 value. The
correlation coefficients of the model are 0.9994, 0.9999, 0.9999 and 0.9999, respectively, all
close to 1.0, indicating that the training quality of the PSO-BPNN model is satisfactory, and
no serious errors or wrong samples are observed.
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The evaluation index reveals that the PSO-BPNN model exhibits superior predictive
capability (Table 3). In terms of calculating the average Tpro, Wt, average ηe and LCOE of
the EGS, the MAE value of the training set in the PSO-BPNN model is lower than that
of the BPNN model by 0.0384, 4.8253, 0.0340 and 0.0002, respectively. Additionally, the
MAPE value is lower by 0.0205, 0.5347, 0.8535 and 0.5397, respectively, while the RMSE
value is lower by 0.0452, 7.3310, 0.0430 and 0.0003. The BPNN model exhibits a reduction
in the MAE value of 0.1789, 5.4200, 0.1057 and 0.0002 for the training set, while the MAPE
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value shows a decrease of 0.1052, 0.4603, 2.5126 and 0.5788, respectively. Additionally, the
RMSE values are reduced by 0.2100, 7.2711, 0.1255 and 0.0004. The prediction accuracy
of the PSO-BPNN model surpasses that of the classical BPNN model due to the enhanced
global optimization capability achieved by the PSO algorithm through random exploration
in particle space. The performance difference between the training set and the validation
set is negligibly small, thereby indicating the robust stability of the PSO-BPNN model.

Table 3. Statistical indicator values of BPNN and PSO-BPNN models in different data sets.

Evaluation
Indicators

BPNN PSO-BPNN

MAE MAPE RMSE MAE MAPE RMSE

Training set
Tpro 0.1589 0.0886 0.2147 0.1205 0.0681 0.1695
Wt 7.1527 0.7486 10.4210 2.3274 0.2139 3.0900
ηe 0.0526 1.3191 0.0721 0.0186 0.4656 0.0291

LCOE 0.0003 0.6650 0.0004 0.0001 0.1253 0.0001

Validating set
Tpro 0.4360 0.2522 0.5521 0.2571 0.1470 0.3421
Wt 9.5780 0.8191 13.2173 4.1580 0.3588 5.9462
ηe 0.1266 3.0370 0.1608 0.0209 0.5244 0.0353

LCOE 0.0003 0.7129 0.0005 0.0001 0.1341 0.0001

6.2. Results of AHP Optimization

In this study, AHP was used to establish a comprehensive evaluation system for the
power generation performance of EGS in three vertical wells, as shown in Table 4. The
judgment matrix, CI = 0.0035 < 0.1, meets the requirements. The weight coefficients of
each parameter are calculated to be 0.0827, 0.2668, 0.1540, 0.4965. Therefore, the weight
order of each performance index of EGS is LCOE > Wt > ηe > Tpro. The AHP evaluation
system of power generation performance is shown in Equation (21). By using this evalua-
tion system, more than 300,000 schemes were evaluated, and the best production scheme
was determined. d was 580 m, q was 56 kg/s, Tinj was 38 ◦C, k was 2.0 × 10−10 and the
comprehensive score was 0.691, which was higher than the basic (0.551).

U = Tpro × 0.0827 + Wt × 0.2668 + ηe × 0.1540 + LCOE × 0.4965 (21)

Table 4. The weight vector calculation and consistency test of AHP judgment matrix.

A Tpro Wt ηe LCOE ω Indicators

Tpro 1 1/3 1/2 1/6 0.0827 λmax = 4.010
Wt 3 1 2 1/2 0.2668 CI = 0.0035
ηe 2 1/2 1 1/3 0.1540 RI = 0.9

LCOE 6 2 3 1 0.4965 CR = 0.0038

6.3. Discussion

Since there are more than 340,000 production schemes, one of every 100 geothermal
production schemes is randomly selected and plotted in the figure. Figure 9 shows the
LCOE, and the corresponding Wt of the optimal scheme and the random scheme. The
random scheme is represented by the blue hollow point, and the optimal scheme is repre-
sented by the red solid point. The LCOE decreases with the total power generation, and the
decline curve is similar to a hyperbolic curve. The Wt of the optimal scheme is 1775 GWh,
and the LCOE is 0.03837 USD/kWh, which is much lower than the industrial electricity
cost of Qinghai Province (0.074 USD/kWh). The injection pressure of the random scheme
with LCOE less than the optimal scheme is greater than the minimum horizontal principal
stress of the reservoir, which does not meet the requirements of safe production.
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Figure 9. The LCOE and total power generation Wt of random schemes and the optimal scheme.

Figure 10 displays cloud plots depicting the variation of the LCOE under the influence
of combined factors. The data in the figure comes from the PSO-BPNN model. The q
has the greatest influence on LCOE, and it is significantly greater than other factors. The
difference in LCOE under different q schemes can be as high as 0.02 USD/kWh, and under
different Tinj schemes, it can be as high as 0.005 USD/kWh. Under different d schemes,
it can be as high as 0.003 USD/kWh, and under different k schemes, it can be as high as
0.001 USD/kWh. In summary, q has the greatest impact on LCOE, followed by Tinj and
d, k which has the smallest impact. Smaller LCOE can be obtained by increasing q and d,
reducing Tinj and k.
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Figure 11 shows Tpro of each production scheme in the 30th year. It can be seen that
the maximum production temperature is 192 ◦C and the minimum is 138 ◦C in all schemes.
The Tpro of the optimal scheme in the 30th year is 165 ◦C, which far exceeds the minimum
requirements for power generation (105.36 ◦C) and heating (50 ◦C). Garnish et al. proposed
that Tpro drop in an economically successful EGS during the range of 15–20 years should be
less than 10% [38]. Therefore, it is assumed that the decrease in Tpro within 30 years should
be less than 15% (163.63 ◦C), which is represented by a black dotted line in the figure. The
optimal production temperature meets the requirements of economic development and has
the potential for long-term power generation.
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Figure 11. The production temperature Tpro in the 30th year of random schemes and the opti-
mal scheme.

Figure 12 shows the average Pinj of each production scheme within 30 years. All
production schemes exhibit a maximum injection pore pressure of 90 MPa and a minimum
of 45 MPa. According to Zhang et al., the minimum horizontal principal stress at the
injection bottom is approximately 67.3 MPa [29], as indicated by the black dotted line in
the Figure. The Pinj of the optimal scheme is 65 MPa, which meets the requirements of safe
production. Figure 13 shows the average ηe of each production scheme within 30 years. The
average ηe of the optimal scheme is 3.33. The ηe can be enhanced by increasing the value
of k and Tinj, while reducing q. However, this approach is not favorable for harnessing
heat from the thermal reservoir. To achieve higher power generation, it is essential to
adopt a scheme with larger q and smaller Tinj. Consequently, the average ηe of the optimal
production scheme falls to below average.

The findings demonstrate that the utilization of the PSO-BPNN model and AHP for
assessing power generation performance can effectively discern the optimal geothermal
production schemes in terms of economic feasibility and safety considerations. The time
required for modeling to optimization is less than 24 h, whereas the average computa-
tional duration of a numerical model amounts to 20 min, and the computation time for
340,000 models totals approximately 9600 h. Consequently, employing the PSO-BPNN
model and AHP as a power generation performance evaluation method can significantly
enhance optimization efficiency. Moreover, this approach can be directly applied to the
other three vertical well EGS projects in order to facilitate further advancement in opti-
mization design. The generalizability of this method can be enhanced from the following
perspectives: the ANN algorithm will be optimized to improve the calculation accuracy;



Water 2024, 16, 509 18 of 21

the optimization design schemes of different well numbers and different well types will be
designed to achieve the comprehensive optimization of multi-techniques.
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Figure 13. The average electric energy efficiency ηe over a 30-year period in both the random schemes
and the optimal scheme.

7. Conclusions

The present study proposes a comprehensive evaluation method for assessing the
performance of EGS power generation in the Zhacang geothermal field, employing PSO-
BPNN and AHP techniques to determine the optimal production scheme. The PSO-BPNN
model is trained using numerical model data to predict the power generation performance
of different production schemes in the Zhacang geothermal field. Additionally, an AHP
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comprehensive evaluation method is established based on various performance indicators
to determine the optimal system design for three vertical-well EGSs within a 30-year
operation cycle.

The results show that well spacing, water injection rate, injection temperature and
fracture permeability are the main influencing factors of EGS in three vertical wells by
numerical simulation sensitivity analysis. The PSO-BPNN model has a high accuracy in
predicting the accuracy of each performance index within 30 years of EGS with a mean
absolute percentage error of about 0.52%, which is 2.51% lower than the BPNN model. In
terms of computational speed, the computational time of the PSO-BPNN model is only
1/400 of the numerical model, and the computational efficiency is greatly improved. Based
on the AHP comprehensive evaluation method established from the computational data of
the PSO-BPNN model, the optimal mining scheme is obtained as well spacing of 580 m,
water injection rate of 56 kg/s, injection temperature of 38 ◦C, fracture permeability of
2.0 × 10−10 m2, with total power generation of 1775 GWh and LCOE of 0.03837 USD/kWh.
It can be seen that this method is effective in EGS optimization and provides considerable
profit for the operation of EGS in the Zhacang geothermal field and can also be applied
to other similar EGS projects. In future research, more studies need to be conducted
to optimize the ANN, improve the computational accuracy and design optimal design
schemes for different numbers of wells and different types of wells in order to promote the
in-depth development of the optimal design of EGS.
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