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Abstract: Fitting probability distribution functions to observed data is the standard way to compute
future design floods, but may not accurately reflect the projected future pattern of extreme events
related to climate change. In applying the latest coupled model intercomparison project (CMIP5 and
CMIP6), this research investigates how likely it is that precipitation changes in CMIP5 and CMIP6
will affect both the magnitude and frequency of flood analysis. GCM output from four modelling
institutes in CMIP5, with representative pathway concentration (RCP8.5) and the corresponding
CMIP6 shared socioeconomic pathways (SSP585), were selected for historical and future periods,
before the project precipitation was statistically downscaled for selected cities by using delta, quantile
mapping (QM), and empirical quantile mapping (EQM). On the basis of performance evaluation,
a rainfall-runoff hydrological model was developed by using the stormwater management model
(SWMM) for CMIPs (CMIP5 and CMIP6) in historical and future horizons. The results reveal an
unprecedented increase in extreme events, for both CMIP5 (historical) and CMIP6 (future) projec-
tions. The years 2070–2080 were identified by both CMIP5 and CMIP6 as experiencing the most
severe flooding.

Keywords: probability distribution; climate change; CMIP5 and CMIP6; GCMs; RCPs; SSPs; delta;
QM; EQM; hydrological model; flood risk analysis

1. Introduction

Flooding is one of the most common natural disasters around the globe, and different
regions of the world are experiencing catastrophic flood occurrences due to the increasing
intensity and reoccurrence of heavy rainfall, resulting in severe loss of life and belong-
ings [1]. An outbreak of flooding ravaged many European nations between 12–15 July 2021,
claiming 243 lives, with Germany and Belgium accounting for 80.1% and 17.75% of the
casualties, respectively. The cost of the damage was estimated to total ten billion euros,
and both power and transport suffered major interruptions [2]. The aftermath of the 2012
‘Sandy’ flood of New York revealed “43 deaths. . . 6500 patients evacuated from hospitals
and nursing homes. . .Nearly 90,000 buildings in the inundation zone. . . 1.1 million New
York City children unable to attend school for a week. . . close to 2 million people without
power. . . 11 million travellers affected daily. . . $19 billion in damage” [3]. The aftermath
of floods has a severe impact on humans, infrastructure, economics, and the environment,
and the importance of effective risk management cannot be overemphasized. In order to
achieve a resilient community, decision-makers must prioritize holistic and effective risk
management techniques.

The traditional method for calculating future design floods is to fit probability distri-
bution functions to records, which may not properly represent the likely future pattern of
catastrophic occurrences resulting from climate change [4]. The generalized extreme value
(GEV) and the generalized Pareto are the two primary statistical methods used in extreme
event analysis [5,6]. The formulation of GEV and Gumbel distribution are similar, with the
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exception of extra shape parameters in the former. “Flood hazard” is the likelihood of flood
occurrence and intensity, namely the water depth, discharge, and duration of inundation
due to a possible flood event in a given metropolitan region over a particular period. These
excessive external loads are caused by extreme precipitation or storms, which result in
pluvial or coastal flooding, respectively. “Exposure” denotes the extent to which humans,
infrastructure, and socio-economic activities are vulnerable to urban flooding. Receptors
are connected to flood sources through a pathway.

The superimposition of the inundation extent map with the residential building stan-
dards is among the methodologies that this researcher suggests for providing information
about spatially exposed urban environments [7]. Future extreme precipitation is not well
captured by only fitting the exceedance probability of a historical precipitation, as incor-
porating climate changes into the assessment of future extreme event patterns in China is
critical for developing regional flood risk reduction strategies for future climatic scenarios.

Due to the rising intensity of precipitation and its consequences, urban floods are
causing considerable public concern and holistic risk assessment is therefore essential for
effective urban flood management. There is ample evidence that the joint effect of climate
change and growing urbanization is the principal cause of increased rainfall runoff [8]. The
increasing effect of climate change on regional hydrological characteristics and the flood
hazard in future climate patterns have received immense attention, and require a paradigm
shift, in which techniques of flood risk assessment shift from conventional techniques to
the populations and assets who have been identified as being vulnerable to future flooding
by the output of global circulation models.

The coupled model inter-comparison project (CMIP) was a repository of a climate
model for generating projections that was established by the World Climate Research Pro-
gram [9]. The CMIP5 has created over 39 models, with huge improvements on the original,
and uses an updated set of emission storylines known as representative concentration
pathways (RCP), which produce valuable climate information for decision-makers and the
research community [10]. CMIP6 follows the progression and adaption feature trend of the
earlier CMIP5 by using shared socioeconomic pathways (SSPs). The CMIP6 framework
connects social stories to physical radiative forcing pathways (RCPs), making a more robust
and enhanced process [11]. Several researchers have tried to analyse the CMIP data, with
the aim of examining the hydrometeorology trend in multiple scenarios in China.

The findings conclude that extreme temperature and precipitation have been generally
rising in this century, with these changes more visible in the CMIP6 simulation than the
CMIP5 [4,9,12]. And [9] reveals that flood frequency rises were most frequent in Asia, low-
lying Africa, and South America, and this future trend of flood change was also similar in
CMIP5 and CMIP6 [13]. However, while studies have demonstrated that CMIP5 performs
well in the historical data, the CMIP6 models generally have higher spatial and temporal
resolution (compared to CMIP5), and are therefore more suitable for detailed studies. The
CMIP6 models aim to better represent certain critical climate processes (e.g., the cloud),
making them more accurate than CMIP5 counterparts. The underlying potential means
it is necessary to undertake a systematic analysis of the advantages and disadvantages of
each projection that considers flood risk management.

China’s growing metropolitan areas, flourishing economy, and increasing population
have suffered considerable flood damage in recent years [14]. A good percentage of
the country’s urban infrastructure, and especially megacities, is vulnerable to a flood of
different return periods. The National Climate Centre of China reported that China is the
country most severely impacted by floods, with nearly 66 percent of the land area, more
than half of the population, and 67 percent of agricultural and manufacturing production
values exposed to danger every year, resulting in massive economic losses [1,15]. For
example, 1998 flooding of the Yangtze River caused 3704 causalities, and 2013 floods in
China killed 775 people and left 374 people missing [16]. Between 2000 and 2008, 748 flood
disasters happened in China, per the statistics from the China Committee for National
Disaster Reduction (CNCDR), aftermath 6624 deaths. Furthermore, 0.78383 billion people
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were impacted, 3.6 million buildings were affected, more than 123.6 million acres of crops
were lost, and an economic cost of about RMB 290 billion was spent.

The urban runoff management infrastructure tends to lag behind urban expansion,
and the occurrence and volume of city storm floods have rapidly risen [17], with many
studies concluding that the impact of urban floods on life and socio-economic status is
worse than before [5,15,18–21]. Flood events in China have been investigated by using
web-based information to explore spatial and temporal trends, and it has been reported
that almost 59.9% of China’s cities have been affected by a storm flood event, triple the
amount that the government projected in 2011 [17]. The magnitude of flood impacts
grew in the previous three decades, as a result of various physical, socioeconomic, and
hydro-mereology factors [19]. Although GCMs potentially have great potential to capture
this trend, their output is typically, as a result of spatial scale, too coarse to capture this
change in urban areas. The downscaling approach is therefore necessary to convert large-
scale GCM outputs to tailored regional scales of interest [22] Regional climate models
(RCMs) have also been frequently employed in the downscaling GCM forecasts of future
climate change scenarios. Downscaling techniques are divided into statistical and dynamic
downscaling, namely RCMs [23,24]. Dynamical downscaling involves either performing a
high-resolution restricted area model with GCM data as boundary conditions or conducting
a “time slice” experiment [25]. The computing load imposed by the increase in resolution
limits the practical implementation of dynamical downscaling. Measured long-term time
series are used in statistical downscaling to build statistical correlations that involve local
values and large-scale averages of surface variables. The statistics used might be basic
or complex, but the ultimate correlations are usually determined by using some type of
regression analysis [25] Statistical downscaling methods typically have broader applications
because of their low computation efficiency and comparatively good performance [22]. The
choice of statistical bias correction techniques is important because it affects the overall
accuracy of downscale data.

Recognizing how floods evolve in a changing environment will improve future flood
risk management, thus helping the decision-maker and community to tackle the flood. In
acknowledging the importance of addressing the above overarching issues, this study aims to:

1. Explore the future urban flood risk in different climate scenarios by using
GCM projections.

2. Analyse the applicability of CMIP5 and CMIP6 to flood risk by using a cross-regional
comparative study.

3. Explore the applicability of multiple downscaling methods to coupling global-scale
climatic data with urban-scale hydrological analysis.

A detailed explanation of the research will be discussed further, and provide an
additional reference for flood risk management in a wider context of climate change.

2. Materials and Methods
2.1. Study Area
Location

Shanghai, Beijing, and Guangzhou are the three most populated cities in China, with
a very high flood risk [26,27] So the research focuses on the urban area, which accounts
for 1.54%, 1.73%, and 1.09% of the total population, respectively. China’s climate varies,
with humid, semi-humid, semiarid, and arid climatic zones with different watershed sizes.
The western and northern parts of China have dry weather, and the eastern section has a
semi-humid and humid environment [28]. The East Asian summer monsoon has an impact
on eastern China., while Southwest China is influenced by a mix of the East Asian summer
monsoon and the Indian summer monsoon, while Northwest China remains untouched.
Most of continental China is located within the East Asian monsoon climatic zone, and
so monthly, yearly, and inter-annual changes in precipitation, P, and air temperature, T,
are visible [16,28]. The distribution of atmospheric precipitation throughout China’s huge
landmass is highly inconsistent across both space and time (Figure 1). The average annual
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P varies from the northwest to the southeast, ranging between 15 mm and over 2200 mm,
and the annual daily mean T changes from north to south, ranging between 12 and 25 ◦C.

Water 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

untouched. Most of continental China is located within the East Asian monsoon climatic 
zone, and so monthly, yearly, and inter-annual changes in precipitation, P, and air tem-
perature, T, are visible [16,28]. The distribution of atmospheric precipitation throughout 
China’s huge landmass is highly inconsistent across both space and time (Figure 1). The 
average annual P varies from the northwest to the southeast, ranging between 15 mm and 
over 2200 mm, and the annual daily mean T changes from north to south, ranging between 
12 and 25 °C. 

 
Figure 1. the spatial distribution of average precipitation and the temporal variability of annual 
precipitation (blue) and yearly river discharge (black) Subfigure (a–k) illustrate temporal variation 
in precipitation in different location across China precipitation (blue) and yearly river discharge 
(black) [20]. 

2.2. Data Preparation 
The DEM was accessed through the USGS national map explorer (https://earthex-

plorer.usgs.gov/, accessed between 20 April–28 May 2022). Although the previous finding 
recommends greater resolution DEM for a more accurate model [1], limitations resulted 
in this research adopting a 30-m resolution DEM issued by the USGS earth explorer [29] 
Figure 2A depicts the study area DEM. 

The land cover and land use data were gathered at the Environmental Systems Re-
search Institute (ESRI) https://env1.arcgis.com/arcgis/rest/services/Sentinel2_10m_Land-
Cover/ImageServer, accessed between 20 April–28 May 2022). The LULC has a resolution 
of 10 m with nine classifications of mapped surface that cut across the built area, vegeta-
tion, agriculture, and water. Figure 2B illustrates the LULC of the study area. Hydrological 
models are characterised by uncertainty, ranging from data acquisition and choice of 
model to parameterization, amongst others. The data collection of the different institute 
experiments who participated in the World Climate Research Programme was down-
loaded from https://www.wcrp-climate.org/, which was between 3 March–15 May 2022 to 
obtain CMIP5 (RCP8.5) and CMIP6 (SSP5) GCM projections for historical and future pe-
riods. Tables 1 and 2 show the model specifications. To maintain consistency, similar mod-
els from the same institute were selected for investigation with CMIP 5 and CMIP 6, with 
the variation categories r1i1p1 and r1i1p1f1, respectively [30] This ensured accurate com-
parison and performance evaluation. The CMIP5 explores the earlier RCP 8.5 in various 
greenhouse gas emission scenarios, and CMIP6 uses updated SSPs that consider potential 
changes in the global ecosystem and socioeconomic pattern [13,30] 

The SM2RAIN–ASCAT (Soil Moisture to Rain—Advanced SCATterometer) rainfall 
data record covers the years 2007–2020, with a spatiotemporal resolution of 12.5 km/d. 

Figure 1. The spatial distribution of average precipitation and the temporal variability of annual
precipitation (blue) and yearly river discharge (black) Subfigure (a–k) illustrate temporal variation
in precipitation in different location across China precipitation (blue) and yearly river discharge
(black) [20].

2.2. Data Preparation

The DEM was accessed through the USGS national map explorer (https://earthexplorer.
usgs.gov/, accessed between 20 April–28 May 2022). Although the previous finding recom-
mends greater resolution DEM for a more accurate model [1], limitations resulted in this
research adopting a 30-m resolution DEM issued by the USGS earth explorer [29] Figure 2A
depicts the study area DEM.

The land cover and land use data were gathered at the Environmental Systems
Research Institute (ESRI) https://env1.arcgis.com/arcgis/rest/services/Sentinel2_10m_
LandCover/ImageServer, accessed between 20 April–28 May 2022). The LULC has a
resolution of 10 m with nine classifications of mapped surface that cut across the built
area, vegetation, agriculture, and water. Figure 2B illustrates the LULC of the study area.
Hydrological models are characterised by uncertainty, ranging from data acquisition and
choice of model to parameterization, amongst others. The data collection of the different
institute experiments who participated in the World Climate Research Programme was
downloaded from https://www.wcrp-climate.org/, which was between 3 March–15 May
2022 to obtain CMIP5 (RCP8.5) and CMIP6 (SSP5) GCM projections for historical and
future periods. Tables 1 and 2 show the model specifications. To maintain consistency,
similar models from the same institute were selected for investigation with CMIP 5 and
CMIP 6, with the variation categories r1i1p1 and r1i1p1f1, respectively [30] This ensured
accurate comparison and performance evaluation. The CMIP5 explores the earlier RCP 8.5
in various greenhouse gas emission scenarios, and CMIP6 uses updated SSPs that consider
potential changes in the global ecosystem and socioeconomic pattern [13,30].

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://env1.arcgis.com/arcgis/rest/services/Sentinel2_10m_LandCover/ImageServer
https://env1.arcgis.com/arcgis/rest/services/Sentinel2_10m_LandCover/ImageServer
https://www.wcrp-climate.org/
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Figure 2. (A) is the digital elevation model of Beijing, and (B) is 2021 landuse, which was captured by
Living Atlas.
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Table 1. Model information for the selected CMIP 5.

s/n Model Name Institute Spatial Resolution RCPs

1 bcc-csm1-1 Beijing Climate Centre, China 2.80 RCP8.5
2 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.90 RCP8.5
3 CanESM The Canadian Earth System Model 2.50 RCP8.5
4 ACCESS Australian Community Climate and Earth System Simulator 2.80 RCP8.5

Table 2. Model information for the selected CMIP 6.

s/n Model Name Institute Spatial Resolution RCPs

1 BCC-CSM2-MR Beijing Climate Center, China 1.12 × 1.12◦ SSP 5
2 MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 0.94 × 0.94◦ SSP 5
3 CESM2 The Canadian Earth System Model 1.00 × 1.25◦ SSP 5
4 ACCESS Australian Community Climate and Earth System Simulator 1.12 × 1.12◦ SSP5

The SM2RAIN–ASCAT (Soil Moisture to Rain—Advanced SCATterometer) rainfall
data record covers the years 2007–2020, with a spatiotemporal resolution of 12.5 km/d. The
Global historical precipitation was downloaded from Link: https://zenodo.org/records/
6136294 (accessed between 3 March–15 May 2022). The new SM2RAIN–ASCAT data
record was created by applying the SM2RAIN algorithm to the ASCAT soil moisture data
records [31], the first instance when the SM2RAIN-ASCAT dataset matched the ASCAT
soil moisture spatial resolution output.

2.3. Statistical Downscales

GCM results are typically too coarse to capture climatic variations at the watershed
scale, and so a downscaling approach is necessary to convert large-scale GCM outputs to
tailored regional scales of interest [22]. There are several statistical downscaling strategies
and, of these, Bias Correction (BC) was one of the most successful and widely used to assess
climate change impacts across the world [24]. To correct the deviation in GCM output,
three common BC techniques were used [32].

2.3.1. The Delta Changes Technique

This technique, which is also referred to as “the perturbation method,” is a typical
strategy used to minimize model uncertainties in climate change impact studies [33,34].
The approach develops climatic scenarios by combining daily or monthly data with the
climate change signal (CCS) from GCM. CCS removes model lapses if they seem to be
comparable in both timeframes, and also removes any plausible variation in temporal scale,
as variability is derived from data. When the deltas change is calculated, the result can
be applied to past climate data with a finer spatial resolution to provide projected climate
forecasts for catchments of interest

∂ =
Pf

Pc
(1)

where ∂ = Change factor or climate change signal, Pf = future precipitation GCM simulated
precipitation, Pc = current precipitation GCM simulated precipitation, Pc = the currently
observed regional-scale temperature.

2.3.2. The Empirical Quantile Mapping (EQM)

The techniques can be extensively applied to many GCM variables [33,35,36], and pri-
marily involve generating the daily empirical cumulative distribution functions (ecdfs) on
a point-by-point basis [33,35,36], which distinguishes it from other techniques adopted for
precipitation by evaluating ecdfs for the wet and dry days separately. The EQM techniques
concurrently adjust the recurrence of precipitation events and standard deviations. The
downscale precipitation was computed by using Equation (2). The statistical distribution

https://zenodo.org/records/6136294
https://zenodo.org/records/6136294
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of model-simulated parameters is targeted to replicate the counterpart of observed parame-
ters. A correction is then made by adapting the model data’s quantiles (percentiles) to the
equivalents in the observed data.

PDS, m,d =
1

ecdfObs, m
(ecdfGCM, m (PGCM, m,d)) (2)

where, PDS,m,d = Downscale precipitation, ecdfGCM,m = the empirical cumulative distribution
functions of GCM in monthly, PGCM,m,d = monthly or daily precipitation from GCM.

2.3.3. Quantile Mapping

QM approaches use statistical transformations to resample the results of climate
models. The statistical transformations entail using a mathematical relation to adapt the
distribution functions of the predicted parameters into the recorded data, which may be
represented formally as [33,35,36]. In correcting distortions in the mean and variance while
maintaining the baseline model output’s spatial patterns and variability, quantile mapping
offers several benefits. It is however important to acknowledge that quantile mapping
is not an appropriate method for extremely rare events or complex interactions between
variables, as it fails to consider variations in distribution form.

xo = f(xm) (3)

xo = observed parameter, f() = transformation function, xm = modelled parameter.
The quantile-quantile interaction was used to fuse the predicted variable distribution

function to the measured counterpart. It is worth noting that the quantile connection of
both measured and simulated variable data sets can be ascertained by using the CDFs, as
shown [32]

xo = F−1
o [Fm(xm)] (4)

Fm(xm) =cumulative distribution function of (xm), F−1
o [ ] = inverse form of the xo,

CDF of xo = the quantile function.

2.4. Bias Correction Performance and Evaluation

The capacity of GCMs to simulate historical climate is determined by several factors,
including the modelling trend, model network accuracy, and scientific awareness of specific
physical processes [37]. Many previous studies used the bias indices to evaluate climate models
by predicting hydrometeorological data, including the Taylor diagram [30,37–41]. Normalized
root means square error (NRMSE) [30,40,41] Nash–Sutcliffe efficiency (NSE) [41,42].

2.4.1. Taylor Diagram

Sequence correlations, centralized pattern root-mean-square errors, and ratios of the
standard deviations (RSD) of model results and data collected are used to create a Taylor
diagram, which is a useful and concise way to study model competencies [38–40]. The
means are removed before their second-order statistics are determined; the graphic does not
give additional information about biases but only defines the centre pattern error [32]. These
diagrams are useful for examining several features of complicated models or assessing
the relative competence of numerous GCMs. Taylor’s skill score was computed by using
Equation (5) [38].

TS =
4(1 + R)4

(σm
σo

+ σo
σd

)2 (1 + Ro)4 (5)

The subscripts d and o are denoted and observed model, respectively. σ is the standard
deviation Taylor scale (TS), which approximates to one if R and σd approaches R0 and σo,
respectively. And approach 0 indicates good performance.
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2.4.2. Nash–Sutcliffe Efficiency (NSE)

The NSE compares the residual variance in GCM simulations to the variance in
measured value, in order to estimate the relative size of residual variance [29,43]. NSE can
be computed by using Equation (6).

NSE = 1 − ∑n
i=1 (xd − xo)

2

∑n
i=1 (xd − xm)2 (6)

2.4.3. The Normalized Root Means Square Error (NRMSE)

The NRMSE quantifies the discrepancy in both observed and simulated values and is
often used in model performance evaluation [40]. The RMSE scale ranges from 0 to 1, with
values closer to 0 indicating greater accuracy. The NRMSE in % is determined by using
the formula.

NRMSE =
[ 1

N ∑N
i=1 (xm – xo)

2 ]
1
2

xmax − xmin
× 100 (7)

2.5. Hydrological Model

The storm water management model (SWMM) has been widely used to study the
rainfall runoff of a catchment around the world, including in Europe, North America [44]
Asia [45–47] and the Middle East [48]. In Beijing, SWMM has been used to study rainfall
runoff, optimal management practices, low-impact development, and sponge cities, in addi-
tion to other things [7,46,49–52]. Although SWMM has the capabilities of both hydrological
and hydraulic models, it is an open source model that requires little data for modelling
purposes [47], and can also simulate catchment situations at different spatial-temporal
scales. In order to obtain the aforementioned benefit, this research employed SWMM 5.1
in hydrological modelling, which has been established to be a stable version [47]. The
dynamic flow routing technique was adopted because it caters for backwater, friction loss,
pressured flow, channel storage and is capable of achieving more accurate results [48].
Flooding happens when water depth exceeds the allowable threshold at the node.

2.5.1. Modelling Parameters

Research published in Beijing was used to identify the watershed characteristic pa-
rameters, such as the manning coefficient, coefficient (pervious/impervious), runoff com-
putation techniques, the routing model, the infiltration model and mathematical modeling
related to SWMM. These data are summarized in Table 3.

Table 3. Summary of modelling parameters.

Parameters Parameters Description Unit Range

% Impervious The ratio of impervious area % 12–100
Area Area of the sub-catchment Hectares 1340–8972
Width Width coefficient of the sub-catchment m 2.06–12
Slope Average percent slope of the sub-catchment % 0.3–2
N-Impervious Manning coefficient in impervious area - 0.011–0.15
N-Pervious Manning coefficient in pervious area - 0.05-0.8
S-Impervious Depression storage depth in impervious area mm 1.27–2.54
S-Pervious Depression storage depth in pervious area mm 2.54–7.62
Manning coefficient of the roughness of the conduit - 0.011–0.024
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2.5.2. Model Calibration and Validation

SWMM calibration and validation specified the predominant characteristics of each
underlying component needed to be determined, so that the results could replicate the catch-
ment’s natural behavior [41,49,50]. The calibration procedure required modifications of
design parameters so projection findings could be enhanced [49]. On the basis of past study
findings and the parameter summary presented in Table 3, variables deeply linked to the
correlations and pattern of measured precipitation and the projected precipitation of CMIP5
and CMIP6 were considered. This research used the percentage impervious [50,53], and
the manning coefficient [50,53,54] in the calibration, and these parameters were carefully
modified throughout the model calibration stage [55–61]. The schematic diagram of each
sub—catchment and corresponding area is presented in the Figure 3 and detail framework
for the research is showed in the Figure 4.
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3. Results

The research results are discussed in relation to three themes. Section One addresses
the result of the statistical downscale obtained for GCM by CMIP5 and CMIP6, which
establish a basis for performance evaluation using the Taylor diagram and other selected
criteria, as described in the methodology. Section Two presents the result of the rainfall-
runoff model under the history in the years 1954 to 2012, with reference to the GCM
projection of CMIp5 and CMIP 6. The results of the future projection (2015–2100) of
the representative concentration pathway (RCP 8.5) by CMIP 5, and of the shared socio-
economy pathway (SSP850) by CMIP 6, are also discussed. The final section presents
analyses of the changed projection of CMIP5 and CMIP6, both in historical and future
projections. Critical conclusions related to the changed magnitude and intensity of floods
are also offered.
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3.1. The Statistical Downscale

The result of the statistical downscale of the three Chinese cities (Beijing, Shanghai, and
Guangzhou) is presented in this section in Figure 5, which presents a boxplot bias that cuts
across them. Beijing shows a strong alignment between the downscaled and observed data,
in the upper, middle, and lower quantiles. The whisker is also the result of all divergence
under 5 mm/day of precipitation. In Guangzhou, the result indicates a bias in the observed
and downscale data, whose variation ranges from 1–16 mm/day of rainfall. The positive
quantile has the highest precipitation variation of up to 10 mm/ day. The deviation was
however relatively small in the lower quantile, at around 1 mm/day of precipitation. The
difference in the middle quantile was found to be lower when compared to the upper
quantile, and lower when compared to the lower quantile. Downscale precipitation for
Shanghai is high when compared to Beijing, and low when compared to Guangzhou. While
there is no signification variation in the lower quantile, the upper quantile has a deviation
of up to 7 mm/day of rainfall.
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3.2. The Statistical Downscale Performance and Evaluation

The result of the performance evaluation of the statistical downscale is presented in
this section. Evaluation criteria were grouped into two sections. Section One consists of
seven indicators (RMSE, NRMSE, Pearson, Spearman, MAE, MBE, and NSE), and only the
result of Beijing is presented; Guangzhou and Shanghai, in contrast, are presented in the
appendix. Similarly, the Taylor diagram for Beijing is discussed, and the other two cities
are presented in the appendix. Figure 6 depicts the result of the delta, QM, and EQM bias
correction techniques, and their performance evaluation index for the selected CMIP5 and
CMIP6 GCM models. The result from ACCESS1-3 (Figure 6 subplot 1 & 2), and a closer
look at the delta method of downscale, indicates an improvement in CMIP6, compared
to CMIP5. The RMSE, NRMSE, MAE, MBE and NSE change from 1.58, 1.32, 0.96, 0.01,
and 0.221 in CMIP 5, respectively; and from 1.35, 1.07, 0.79, 0, and 0.307 in CMIP6, again
respectively. In the QM, a similar observation was made about the downscale.
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Figure 6. Performance evaluation of the selected GCM model for Beijing City.

However, the mean bias error changed from 0.225 in CMIP5 to −0.02 in CMIP6, which
implied that the QM method of downscaling underestimated the precipitation. The EQM
also had results close to the QM, with the exception of slightly better performance in the
mean bias of 0.19 (in CMIP5) and 0.10 (in CMIP6). The result of downscaled MPI GCM
output with different bias correction methods is presented in Figure 6 (subplot three and
four) for CMIP5 and CMIP6, respectively. In both CMIP5 and CMIP6 projection, there is a
strong correlation between six of the seven evaluation criteria. However, a disparity was
noticed in the MBE value changes in Delta, EQM, and QM, which were 0, −48, −0.64 to 0.01,
−0.3, and −0.45, in CMIP5 and CMIP projection, respectively. No significant improvement
was observed in the latest and earlier CMIP projection.
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Figure 6 (subplots 5 & 6) depicts the downscaled result of CanESM GCM output by
using three downscale statistical approaches. Nearly 86% of the evaluation criteria in
CMIP5 and CMIP6 projection had similarities, with the exception of the MBE, and value
change in EQM and QM, which went from −0.2 and −0.33 to 0.08 and 0.15 in CMIP5 and
CMIP projection, respectively. Interestingly, the values were indifferent to delta techniques.
No significant improvement was observed in the latest and earlier CMIP projection.

Figure 7 shows the Taylor diagram for Beijing city in CMIP5 and CMIP6 projection for
the selected GCM models (ACCESS, BCC, CanESM, and MPI), along with corresponding
statistical downscale results for the Delta, EQM, and QM, which were analysed. The down-
scaled CMIP5 ACCESS1-3 using EQM techniques recorded results close to the observed
data, with RMSD values of 6.8, a correlation value of 0.67, and an SD value of 6.5. The
models whose performance most closely resembles CMIP5 ACCESS1-3 are the CMIP5
EQM MPI-ESM-HR, CMIP5-EQM CanESM2 and CMIP5-EQM BCC-CSM1, which each had
RMSD, correlation, and SD of 7.5, 0.64, and 8; 7.5, 0.64, and 8; and 7.8 0.58, and 8.5. But
the downscaled MPI model using the QM downscale techniques recorded the maximum
RMSD, correlation, and SD, of 13, 0.4, and 12.7.
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Similar to the result of CMIP6, which showed a quite striking improvement in GCM out-
put, the CanESM2—QM, ACCESS—EQM, CanESM2–EQM, BCC-CSM1—EQM, CanESM2—
Delta, BCC-CSM1—QM, ACCESS1-3—Delta, and BCC-CSM1—Delta all recorded correlates
greater than 0.60. The CanESM2—QM has a minimum RMSD deviation of 2 in the observed
data, while MPI-ESM-HR QM has a maximum RMSD value of 15.

Outlet Comparison

The result of the hydrological modelling of rainfall-runoff in the measured data was
obtained by a simulated case based on historical and future projection of CMIP5 and
CMIP6 scenarios. On the basis of the outcome of the performance evaluation, the CanEsm
downscaled precipitation was selected for hydrological modelling that would use the
Beijing study area. The historical period spans the years 1954 to 2014 and the future
era spans 2015 to 2100, which are both considered with the Representative concentration
pathway (RCP 8.5), by CMIP 5, and the shared socio-economy pathway (SSP850), by CMIP6.
The result of hydrological model calibration is presented in Figure 8.

The result of the hydrological m analysis of future projected scenarios between 1954 to
2015 in the CMIP5, CMIP6, and observed data are presented in Figure 9. The CMIP5 projection
overestimated precipitation, while the CMIP projection was close to the measured data.
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The result of the statistical analysis of future projected scenarios between 2015 to 2100
in the CMIP5 and CMIP6 are presented in Figure 10A,B, for CMIP5 and CMIP6, respectively.
The low runoff event is filtered from the timeseries.
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4. Discussion

The downscaled CMIP6 projection captured the temporal variation in precipitation,
showing that when compared to the CMIP5, it is consistent with [4,9,12]. The improved
performance of CMIP6 was due to a finer spatial resolution of the GCM models and im-
proved representation of the complex earth process [9]. The CMIP5 runoff time-series result
indicates a 4.8% decrement, as compared to the maximum runoff in an observed historical
period. The runoff was dominated by an antecedent situation, with a higher flood frequency.
However, the frequency was more often provoked, which agrees with [11]. This might pose
a threat to the recovery and, most likely, result in an overwhelmed system. In the CMIP6,
the result reveals a maximum flooding of 7675.898 m3/s in the year 2075, corresponding
to 21,800 iterations. CMIP6 projects more severe flooding with a 56.9% increase when
compared to CMIP5, along with a 49.33% increase when compared to observed historical
floods. It was also dominated by high-intensity floods with a higher frequency.
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A threshold of 1000 m3/s was introduced to exclude events with low runoff event
from the base case (the measured data), and to simulate cases for the historical and future
projection based on CMIP5 and CMIP6 scenarios [62]. Events above this threshold were
classified as extreme events. The extreme event was further analyzed based on the percent-
age composition that exceeded certain thresholds in the historical period of 1954 to 2014,
for both CMIP 5 and CMIP6. The event was dominated by flooding of 2000 m3/s. A total
of 25% of the events fall under 1200 m3/s; another 25% of the events fall under 1400 m3/s;
and 32.5% of the events are in the range of 1400 m3/s and 2000 m3/s. Events with 2800,
3000, 3200, 3400, 4600, and 5200 m3/s each constituted 1% of the catastrophe events.

A total of 186 events were identified, with a range between 1000.929 and 5833.825.
Most of the events were characterized by 1800 m3/s, although an event with a magnitude
of 5833.8 m3/s emerged from an observed historical case. A total of 38% of events are due
to flooding less than 1400 m3/s, while nearly 41 of the 186 events were due to runoff in the
range of 1400–1800 m3/s. In contrast, the CMIP6 event has a total of 86 events, which is,
when compared to the CMIP5, quite close to the number of events in the observed case.
Also, most events were dominated by a 1800 m3/s flood. Interestingly the percentage
of events characterized by 3200 m3/s flood increased from 0% in both cases (to 4% in
the CMIP6).

The CMIP5 projection revealed a high number of runoff events, and a total of 269 projected
anticipated events. It is important to note that events with higher magnitude became more
pronounced and reoccurred, accounting for 30.5% of the total event. This indicates a higher
flood hazard in the future, which may be due to climate change.

The predicted CMIP 6 was very similar to CMIP5, although CMIP6 predicted a higher
flood of magnitude. The sum of 254 severed floods was expected on the basis of the
projection, and analysis of this event reveals an unprecedented range between 1000.271 and
7675.898 m3/s. This flood event was characterized by 44% of the cumulated events being
above 2000 m3/s, and the remaining 55% was dominated by events below 2000 m3/s.

5. Conclusions

The research facilitates our understanding of the likely growth in the intensity and
frequency of flood disasters induced by changes in climate, as projected by CMIP5 and
CMIP5 in historical and future horizons. On the basis of the findings, the CMIP5 and
CMIP6 models were found to be adequate in capturing precipitation changes in Beijing
to a reasonable extent [53]. The study also reported that CMIP6 models significantly
improved when compared to earlier CMIP5 versions. In addition, a study of CMIP6
models, when compared to CMIP5 models for seasonal variation, depicted a significant
improvement in the seasonal pattern. The SWMM rainfall runoff for Beijing city unveiled
an unprecedented increase in flooding, which posed a threat to the community. As a result,
analysing future alterations allows us to examine the influence of both climatic and social
change and recognize the broad shift in precipitation [63,64]. In the case of Beijing, the
model result shows a reasonable degree of correlation between both the CMIP5 and CMIP6,
which indicates the skill of GCM in capturing variation in precipitation, and is consistent
with the findings of [37,38]. Similarly, the MAE, NRMSE, and RMSE demonstrate a good
downscaled model performance. Conversely, NSE showed an unsatisfactory performance.
Here it is important to note that the divergence of MBE was due to differences in bias
correction techniques. In the historical era, the CMIP5 (rcp8.50) predicted the most severe
runoff event when compared to the CMIP6 (SSP585) and, in the future horizon, the CMIP6
(SSP585) predicts maximum flood events when compared to the CMIP5 (rcp8.5). The years
2070–2080 were dominated by a peak flood event in future projection, by both CMIP5
(rcp8.50) and CMIP6(SSP585). The total number of 75 events in the observed historical year
skyrocketed by the end of 2100 and, according to CMIP5 and CMIP6 projections, increased
by 350% and 338%, respectively. Undoubtedly, the future will experience more severe and
frequent floods. The study also illustrates differences in precipitation, the main driver of
floods due to climate change, while CMIP5 predicts flood severity and re-occurrence.



Water 2024, 16, 474 17 of 20

6. Recommendations

The research focuses on assessing changes in precipitation patterns as a result of
climate change, and does this by using GCM projections from CMIP5 and CMIP6. The
downscale statistical method, utilizing Artificial Neural Network, Multiple Linear Regres-
sion, Genetic Programming, and a Wavelet–Neural Network hybrid model, was employed
to enhance precipitation resolution at the catchment level. Four GCM institute outputs
were analyzed, and it was suggested future studies should include more institutes and
ensemble models to reduce bias. CMIP6 simulation results pending completion by 2023
will however warrant a reevaluation of the study when they become available. The analysis
considered the rcp8.5 and SSp585 scenarios for CMIP5 and CMIP6 projections, respectively.
The recommendation for future investigations include exploring scenarios like SSP1-2.6,
SSP2-4.5, and SSP3-7.0 to project precipitation alterations for different emissions pathways.
The hydrological model focused on rainfall-runoff modeling, suggested that best manage-
ment practices (BMP), low impact development (LID), and possibly sponge city concepts
should be incorporated into future research. The study utilized SWMM, which has a
1D modeling limitation that hinders GIS-based hazard, vulnerability, and risk mapping,
and it was therefore suggested that future investigations should consider using modeling
software such as HEC-Ras version 6.1 by US Army Corps of Engineers, USA Mike-Urban
version 2023 by Danish Hydraulic institute Denmark, and InfoWorks version 23.2.6 by
Autodesk, San Francisco, CA 94105, USA. In addition, the study advocates computing
the cost implications of various flood risks with the aim of ensuring decision-makers are
fully informed.
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Kriaučiuniene, J.; et al. Inter-Comparison of Statistical Downscaling Methods for Projection of Extreme Precipitation in Europe.
Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [CrossRef]

35. Ahmed, K.; Shahid, S.; Nawaz, N.; Khan, N. Modeling Climate Change Impacts on Precipitation in Arid Regions of Pakistan: A
Non-Local Model Output Statistics Downscaling Approach. Theor. Appl. Climatol. 2019, 137, 1347–1364. [CrossRef]

https://doi.org/10.1088/1748-9326/aa92b6
https://doi.org/10.1029/2020JD033031
https://doi.org/10.1016/j.wroa.2023.100204
https://www.ncbi.nlm.nih.gov/pubmed/38098882
https://doi.org/10.5194/hess-25-2705-2021
https://doi.org/10.1016/j.wse.2019.12.004
https://doi.org/10.1016/j.scitotenv.2019.134076
https://doi.org/10.1080/07900627.2018.1513830
https://doi.org/10.1007/s11069-015-1892-6
https://doi.org/10.5194/nhess-16-757-2016
https://doi.org/10.1016/j.advwatres.2019.05.020
https://doi.org/10.1016/j.scitotenv.2015.08.068
https://doi.org/10.5194/hess-23-5133-2019
https://doi.org/10.1007/s00382-021-05859-w
https://doi.org/10.1002/joc.7014
https://doi.org/10.1016/j.scitotenv.2019.135245
https://doi.org/10.1016/j.scitotenv.2020.137166
https://www.ncbi.nlm.nih.gov/pubmed/32069697
https://doi.org/10.1016/j.jhydrol.2017.05.019
https://doi.org/10.1016/j.jhydrol.2021.126373
https://doi.org/10.1016/j.atmosres.2021.105927
https://doi.org/10.5194/essd-11-1583-2019
https://doi.org/10.1002/joc.7468
https://doi.org/10.1007/s10584-011-0224-4
https://doi.org/10.5194/hess-19-1827-2015
https://doi.org/10.1007/s00704-018-2672-5


Water 2024, 16, 474 19 of 20

36. Fauzi, F.; Kuswanto, H.; Atok, R.M. Bias Correction and Statistical Downscaling of Earth System Models Using Quantile Delta
Mapping (QDM) and Bias Correction Constructed Analogues with Quantile Mapping Reordering (BCCAQ). J. Phys. Conf. Ser.
2020, 1538, 012050. [CrossRef]

37. Zamani, Y.; Arman, S.; Monfared, H.; Azhdari Moghaddam, M.; Hamidianpour, M. A Comparison of CMIP6 and CMIP5
Projections for Precipitation to Observational Data: The Case of Northeastern Iran. Theor. Appl. Climatol. 2020, 142, 1613–1623.
[CrossRef]

38. Xu, H.; Chen, H.; Wang, H. Future Changes in Precipitation Extremes across China Based on CMIP6 Models. Int. J. Climatol. 2022,
42, 635–651. [CrossRef]

39. Jiang, D.; Hu, D.; Tian, Z.; Lang, X.; Jiang, C.; Hu, D.; Tian, Z.P.; Lang, X.M. Differences between CMIP6 and CMIP5 Models in
Simulating Climate over China and the East Asian Monsoon. Adv. Atmospheric Sci. 2020, 37, 1102–1118. [CrossRef]

40. Chen, X.; Zhang, H.; Chen, W.; Huang, G. Urbanization and Climate Change Impacts on Future Flood Risk in the Pearl River
Delta under Shared Socioeconomic Pathways. Sci. Total Environ. 2021, 762, 143144. [CrossRef]

41. Gu, L.; Yin, J.; Zhang, H.; Wang, H.M.; Yang, G.; Wu, X. On Future Flood Magnitudes and Estimation Uncertainty across 151
Catchments in Mainland China. Int. J. Climatol. 2021, 41, E779–E800. [CrossRef]

42. Song, Y.H.; Chung, E.S.; Shahid, S. Spatiotemporal Differences and Uncertainties in Projections of Precipitation and Temperature
in South Korea from CMIP6 and CMIP5 General Circulation Models. Int. J. Climatol. 2021, 41, 5899–5919. [CrossRef]

43. Zhang, Y.; Ren, Y.; Ren, G.; Wang, G. Precipitation Trends Over Mainland China From 1961–2016 After Removal of Measurement
Biases. J. Geophys. Res. Atmos. 2020, 125, e2019JD031728. [CrossRef]

44. El-Sharif, A.; Hansen, D. Application of Swmm to the Flooding Problem in Truro, Nova Scotia. Can. Water Resour. J. 2001, 26,
439–459. [CrossRef]

45. Agarwal, S.; Kumar, S. Applicability of SWMM for Semi Urban Catchment Flood Modeling Using Extreme Rainfall Events. Int. J.
Recent Technol. Eng. 2019, 8, 245–251. [CrossRef]

46. Rai, P.K.; Chahar, B.R.; Dhanya, C.T. GIS-Based SWMM Model for Simulating the Catchment Response to Flood Events. Hydrol.
Res. 2017, 48, 384–394. [CrossRef]

47. Seenu, P.Z.; Venkata Rathnam, E.; Jayakumar, K.V. Visualisation of Urban Flood Inundation Using SWMM and 4D GIS. Spat. Inf.
Res. 2020, 28, 459–467. [CrossRef]

48. Nile, B.K.; Hassan, W.H.; Alshama, G.A. Analysis of the effect of climate change on rainfall intensity and expected flooding by
using ann and swmm programs. ARPN J. Eng. Appl. Sci. 2019, 14, 974–984.

49. Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate
Models and Their Evaluation Coordinating. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to
the Fourth Assessment Report of the IPCC (FAR); Cambridge University Press: Cambridge, UK, 2007.

50. Li, J.; Zhang, B.; Mu, C.; Chen, L. Simulation of the Hydrological and Environmental Effects of a Sponge City Based on MIKE
FLOOD. Environ. Earth Sci. 2018, 77, 32. [CrossRef]

51. Wijesekera, S. Using SWMM as a Tool for Floodplain Management in Ungauged Urban Watershed. Engineer 2012, 45, 1–8.
[CrossRef]

52. Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling Urban Floods and Drainage Using SWMM
and MIKE URBAN: A Case Study. Nat. Hazards 2016, 84, 749–776. [CrossRef]

53. Zhu, Y.Y.; Yang, S. Evaluation of CMIP6 for Historical Temperature and Precipitation over the Tibetan Plateau and Its Comparison
with CMIP5. Adv. Clim. Change Res. 2020, 11, 239–251. [CrossRef]

54. Ramteke, G.; Singh, R.; Chatterjee, C. Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE
Model in the Face of Climate Change. Water Resour. Manag. 2020, 34, 4233–4252. [CrossRef]

55. Wang, Y.; Zhang, Z.; Zhao, Z.; Sagris, T.; Wang, Y. Prediction of Future Urban Rainfall and Waterlogging Scenarios Based on
CMIP6: A Case Study of Beijing Urban Area. Water 2023, 15, 2045. [CrossRef]

56. Murphy, C.; Kettle, A.; Meresa, H.; Golian, S.; Bruen, M.; O’Loughlin, F.; Mellander, P.E. Climate Change Impacts on Irish
River Flows: High Resolution Scenarios and Comparison with CORDEX and CMIP6 Ensembles. Water Resour. Manag. 2023, 37,
1841–1858. [CrossRef]

57. Meresa, H.; Murphy, C.; Fealy, R.; Golian, S. Uncertainties and Their Interaction in Flood Hazard Assessment with Climate
Change. Hydrol. Earth Syst. Sci. 2021, 25, 5237–5257. [CrossRef]

58. Li, R.; Zhang, J.; Krebs, P. Global Trade Drives Transboundary Transfer of the Health Impacts of Polycyclic Aromatic Hydrocarbon
Emissions. Commun. Earth Environ. 2022, 3, 170. [CrossRef]

59. Li, P.; Zhang, J.; Krebs, P. Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water 2022, 14, 993.
[CrossRef]

60. Jiang, R.; Lu, H.; Yang, K.; Chen, D.; Zhou, J.; Yamazaki, D.; Pan, M.; Li, W.; Xu, N.; Yang, Y.; et al. Substantial Increase in Future
Fluvial Flood Risk Projected in China’s Major Urban Agglomerations. Commun. Earth Environ. 2023, 4, 389. [CrossRef]

61. Ding, X.; Liao, W.; Lei, X.; Wang, H.; Yang, J.; Wang, H. Assessment of the Impact of Climate Change on Urban Flooding: A Case
Study of Beijing, China. J. Water Clim. Change 2022, 13, 2692–3715. [CrossRef]

62. Meresa, H.; Tischbein, B.; Mekonnen, T. Climate Change Impact on Extreme Precipitation and Peak Flood Magnitude and
Frequency: Observations from CMIP6 and Hydrological Models. Nat. Hazards 2022, 111, 2649–2679. [CrossRef]

https://doi.org/10.1088/1742-6596/1538/1/012050
https://doi.org/10.1007/s00704-020-03406-x
https://doi.org/10.1002/joc.7264
https://doi.org/10.1007/s00376-020-2034-y
https://doi.org/10.1016/j.scitotenv.2020.143144
https://doi.org/10.1002/joc.6725
https://doi.org/10.1002/joc.7159
https://doi.org/10.1029/2019JD031728
https://doi.org/10.4296/cwrj2604439
https://doi.org/10.35940/ijrte.A3169.078219
https://doi.org/10.2166/nh.2016.260
https://doi.org/10.1007/s41324-019-00306-9
https://doi.org/10.1007/s12665-018-7236-6
https://doi.org/10.4038/engineer.v45i2.6936
https://doi.org/10.1007/s11069-016-2455-1
https://doi.org/10.1016/j.accre.2020.08.001
https://doi.org/10.1007/s11269-020-02669-3
https://doi.org/10.3390/w15112045
https://doi.org/10.1007/s11269-023-03458-4
https://doi.org/10.5194/hess-25-5237-2021
https://doi.org/10.1038/s43247-022-00500-y
https://doi.org/10.3390/w14060993
https://doi.org/10.1038/s43247-023-01049-0
https://doi.org/10.2166/wcc.2022.224
https://doi.org/10.1007/s11069-021-05152-3


Water 2024, 16, 474 20 of 20

63. O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.;
Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482.
[CrossRef]

64. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93,
485–498. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1175/BAMS-D-11-00094.1

	Introduction 
	Materials and Methods 
	Study Area 
	Data Preparation 
	Statistical Downscales 
	The Delta Changes Technique 
	The Empirical Quantile Mapping (EQM) 
	Quantile Mapping 

	Bias Correction Performance and Evaluation 
	Taylor Diagram 
	Nash–Sutcliffe Efficiency (NSE) 
	The Normalized Root Means Square Error (NRMSE) 

	Hydrological Model 
	Modelling Parameters 
	Model Calibration and Validation 


	Results 
	The Statistical Downscale 
	The Statistical Downscale Performance and Evaluation 

	Discussion 
	Conclusions 
	Recommendations 
	References

